Samuel Boivin

Dynamic Graphics Project

University of Toronto

I am now working as a Research Scientist for INRIA-Futurs (since October 2003)

[Web page best viewed with IE 6.0+ or Netscape 6+]


 

 

 

Inverse Dynamics [French]

Cédric Syllebranque and Samuel Boivin

In AFIG 05

Abstract: The main goal of these works is to compute the parameters of a dynamic model directly from images or from a specific device (like the Kawabata machine).

In this paper, we show how to extend an existing technique to compute the parameters of a mass-spring system directly from synthetic images using a well-know 3D modeling software. We iteratively compute the traction, bending and shearing parameters by comparing the videos generated by this software and ours. We use the final estimated parameters to produce a realistic synthetic image sequences in Computer Graphics.

We are also currently working on a new technique that estimates the Young modulus and the Poisson coefficient directly from a real video of a solid getting deformed under external action of a user. The external forces are captured through a specific device that we built for this purpose. The parameters are iteratively estimated using a new error metric for comparing a set of images.

 

Cloth Simulation

Cyril Ngo-Ngoc and Samuel Boivin

INRIA Research Report #5099

Abstract: This research report describes a cloth simulation system including nonlinear behaviors. Our cloth model simulates the fabric as a complex yarn interlacing structure. This approach allows us to deal with the yarn scale problem by including the nonlinear interactions happening inside this structure. This model has three different components: the traction, the bending and the shearing. We also add new friction terms in order to reproduce the yarn interlacing structure and the nonlinear properties of a real cloth.  Moreover, this representation avoids a detailed 3D geometric model of yarns which is almost always unusable in computer graphics.
Furthermore, our physical model is based on the Kawabata Evaluation System
(KES). It reproduces the behavior of a cloth using the parameters coming from direct measurements on real clothes. Therefore we propose an identification procedure to compute all the physical parameters of our model from the KES curves. Since many textile manufacturers use this KES to design their fabrics, we are able to accurately simulate their real fabrics in computer graphics using the manufacturer's parameters. The simulation of a complete garment made of these fabrics could also be achieved in a virtual fashion show to visualize its characteristics and/or flaws for example.

 

Samuel Boivin 
To be submitted somewhere, one day...
Abstract:  In this work, we present our post-doctoral results on inverse rendering, to recover all the reflectance parameters of a refractive medium from a single image. We describe many different approaches for estimating the parameters of a typical refractive object (diffuse transmittance, specular transmittance, refractive index, ...). We demonstrate that some intuitive ideas produce wrong results and we show many different reconstructed scenes containing a glass of wine for example. Our technique is able to estimate the properties of these complex media using one or several images. Until now, this technique has only been tried on various computer graphics scenes as datum images.

Samuel Boivin 
In ACM SIGGRAPH 2002 Course Notes #39
Acquiring Material Models Using Inverse Rendering 
Steve Marschner and Ravi Ramamoorthi
Abstract:  In this course, we present our works on inverse rendering, to recover all the reflectance parameters from a single image. We show some new extensions regarding experimental validation and inverse rendering of refractive media generating caustics.

Samuel Boivin and André Gagalowicz
In CGIV'2002 Proceedings
Abstract: In this paper, we present an extension of our works, introducing resent a new a new experimental validation of our results . Our method is used to recover an approximation of the bidirectional reflectance distribution function (BRDF) of the surfaces present in a real or synthetic scene. This is done from a single photograph and a 3D geometric model of the scene. The result is a full model of the reflectance properties of all surfaces, which can be rendered under novel illumination conditions with, for example, viewpoint modification and the addition of new synthetic objects.Our technique produces a reflectance model using a small number of parameters. These parameters nevertheless approximate the BRDF and allow the recovery of the photometric properties of diffuse, specular, isotropic or anisotropic textured objects. The input data are a geometric model of the scene including the light source positions and the camera properties, and a single captured image. We present several synthetic images that are compared to the original ones. Some of the recovered reflectance values are compared to the real ones used to produce an original synthetic image. Possible applications are given in augmented reality such as novel lighting conditions and addition of synthetic objects.
 

Samuel Boivin and André Gagalowicz

In ACM SIGGRAPH 2001 Proceedings

[Note: symbols in figure 3 page 110 are misprinted: the "rho" symbol is missing before subscripts "d" and "s"]
Abstract:  In this paper, we present a new method to recover an approximation of the bidirectional reflectance
distribution function (BRDF) of the surfaces present in a real scene. This is done from a single photograph and a 3D geometric model of the scene. The result is a full model of the reflectance properties of all surfaces, which can be rendered under novel illumination conditions with, for example, viewpoint modification and the addition of new synthetic objects. Our technique produces a reflectance model using a small number of parameters. These parameters nevertheless approximate the BRDF and allow to recover the photometric properties of diffuse, specular, isotropic or anisotropic textured objects. The input data are a geometric model of the scene including the light sources positions and the camera properties, and a single image captured using this camera. 
Our algorithm generates a new synthetic image using classic rendering techniques, and a lambertian hypothesis about the reflectance model of the surfaces. Then, it iteratively compares the original image to the new one, and chooses a more complex reflectance model if the difference between the two images is greater than a user-defined threshold. We present several synthetic images that are compared to the original ones, and some possible applications in augmented reality.
 

Samuel Boivin
Thèse de l'École Polytechnique, 2001

Soutenance vidéo intéractive  au format SMILE (nécessite RealPlayer)

Résumé: L'image de synthèse a souvent pour objectif de créer une illusion de la réalité, et elle est aidée en cela par des algorithmes de rendu réaliste. Malheureusement, peu de techniques se réfèrent à des images réelles pour calculer des images synthétiques, limitant ainsi le réalisme des résultats obtenus. 
Nous proposons ici une nouvelle approche issue du rendu inverse, et qui consiste à créer une nouvelle image de synthèse photoréaliste, depuis une image réelle prise avec une caméra quelconque, et en utilisant un modèle géométrique 3D de la scène (incluant les sources de lumière). Notre méthode repose sur l'emploi d'une image unique, et procède à l'estimation totalement automatique depuis cette image des paramètres d'une fonction de distribution de réflexion bidirectionnelle (BRDF), fondée sur le modèle de Ward. Nous démontrons que nous pouvons ainsi retrouver les réflectances des surfaces diffuses, spéculaires (parfaites ou non), ainsi qu'isotropes, anisotropes ou texturées, grâce à tout un ensemble d'algorithmes itératifs et hiérarchiques. Chacun de ces algorithmes recherche la meilleure approximation possible de la fonction de réflexion de la surface analysée, en minimisant l'erreur entre l'image réelle et l'image synthétique générée par rendu réaliste. De nombreux exemples de reconstruction géométrique et photométrique sur des scènes d'intérieur sont montrés, ainsi que les images d'erreurs entre l'image réelle et l'image synthétique. 
Par ailleurs, nous apportons dans cette thèse plusieurs idées théoriques et pratiques pour la conception d'un logiciel de calcul d'images de synthèse qui soit à la fois rapide, mais aussi capable de créer des images photoréalistes, alors que ces deux objectifs sont antinomiques. Au delà de ces techniques de rendu réaliste et de rendu inverse, nous proposons enfin plusieurs applications directes de notre méthode, pour la réalité augmentée par exemple, ou la compression de séquences d'images.

 

Samuel Boivin and André Gagalowicz
Chapter of the book Imaging and Vision Systems: Assessment and Applications, 2001

Jacques Blanc-Talon and Dan Popescu

Abstract:In this chapter, we propose a new approach to compute the 3D geometry and the BRDF of surfaces from real photographs. We use a pair of stereoscopic images (left and right) to estimate both geometrical and photometric properties of objects inside a real scene. The vision process recovers the 3D geometrical model, and the properties of the camera including its position. The photometric process estimates the reflectances of objects, limited to the perfectly diffuse case and to the perfectly specular case. Several reconstructions are shown from real photographs, including a complex interior scene. Some augmented applications have been realized such as the generation of new synthetic images from a novel viewpoint for example.

Coming soon...

Samuel Boivin and André Gagalowicz
In ERCIM News No.44, 2001
Abstract: Several techniques have been recently developed for the geometric et photometric reconstruction of indoor scenes. We have designed a new analysis/synthesis method that can recover the reflectances of all surfaces in a scene, including anisotropic ones, using only one single image taken with a standard camera and a geometric model of the scene. Several industrial applications are now possible using this advanced technique.
 

Samuel Boivin, André Gagalowicz and Youichi Horry

In International Journal Machine Graphics and Vision, 2000

Abstract: This paper describes a new set of techniques based upon laws of object composition for the modeling and animation of deformable objects. They present some similarities with logical ,or morphological operations. This method is unique because the volume of the merged object is held constant with respect to its constituents. Composition from two objects is allowed for general shapes which may have very different topologies. These techniques are applied towards shapes which are approximated by a polyhedral description. When integrated into a modeler, they can be used as modeling tools, animation tools, deformation tools or even morphing tools depending on how they are handled. One of the advantages of these tools is that the user may easily deduce the procedure to follow in order to obtain a given result.

 


Rendu Réaliste par Radiosité [French]

Samuel Boivin

Rapport de D.E.A. de l'Université de Technologie de Compiègne(U.T.C.), 1995
Résumé: Ce rapport de DEA décrit tout d’abord un état de l’art conséquent sur les méthodes existant en radiosité et en rendu photo-réaliste. Il contient ensuite le descriptif très détaillé d’un logiciel de rendu réaliste innovant et développé à l’INRIA Rocquencourt.

 

Some plants coming soon...

 
Simulation de Croissance de Végétaux [French]
Samuel Boivin

Rapport de Maitrise de l'Université de Reims/Université Paris VIII, 1994
Résumé:Ce rapport décrit mon stage de Maîtrise effectué sur la simulation de croissance de végétaux. J’ai implémenté mon propre moteur de rendu basé sur un Z-Buffer (les cartes graphiques grand public de l’époque ne disposant pas encore de cet algorithme en hard). J’ai également développé mon propre simulateur de plantes et d’arbres en synthèse d’images en utilisant des L-systems, et en me servant de mon logiciel de rendu pour calculer les images.

 

 A Rendering Method For the Realistic Simulation of Natural Scenes

Samuel Boivin and Laroussi Doghman

In IMAGECOM'96

Abstract: In this paper we describe a new rendering algorithm to produce photo-realistic images. This software was the precursor of the much more evolved rendering software called Phoenix that I have developed during my phD. Phoenix is used to render all the CG images since 2001.