

Mnemonic Rendering: An Image-Based Approach for
Exposing Hidden Changes in Dynamic Displays

Anastasia Bezerianos, Pierre Dragicevic, Ravin Balakrishnan
Department of Computer Science

University of Toronto
{anab, dragice, ravin}@dgp.toronto.edu

(b)

Figure 1. (a) The Mnemonic Desktop with pixel persistence and pixel flashback techniques: hidden parts of windows
are being revealed showing motion trails and a dusty appearance that will fade out as changes are being replayed. (b)
The Mnemonic Wall: visual changes outside the user’s central vision leave motion trails that will exhibit similar behav-
ior as the user glances at them.

ABSTRACT
Managing large amounts of dynamic visual information
involves understanding changes happening out of the user’s
sight. In this paper, we show how current software does not
adequately support users in this task, and motivate the need
for a more general approach. We propose an image-based
storage, visualization, and implicit interaction paradigm
called mnemonic rendering that provides better support for
handling visual changes. Once implemented on a system,
mnemonic rendering techniques can benefit all applica-
tions. We explore its rich design space and discuss its ex-
pected benefits as well as limitations based on feedback
from users of a small-screen and a wall-size prototype.
ACM Classification: H5.2 [Information interfaces and
presentation]: User Interfaces - Graphical user interfaces.
General terms: Design, Human Factors
Keywords: Change visualization, mnemonic rendering.

INTRODUCTION
In current computing displays, dynamic visual changes
regularly happen without the user being aware of them. For
example, a download manager might complete its task in
the background, emails might be received in an occluded
window, or changes might occur in a partially hidden live
video stream. Unless explicit notification or history mecha-
nisms are provided, chances are that the user will miss

these changes, or only become aware of them by chance or
by explicitly trying to reconstruct them at a later time. In-
deed, studies have shown that people are rarely able to spot
visual changes when they occur during disruptions as short
as eye saccades [25]. Change occurring during longer peri-
ods of invisibility should be even harder to reconstruct,
because the user might have partly forgotten the previous
state or missed significant intermediate changes. In particu-
lar, visual transitions often play an important role in the
understanding of visual changes [5, 21, 39].
While some applications do provide notifications, these
typically work well for single discrete events and not for
multiple or continuous events over a period of time. Fur-
ther, current window managers do not provide any inte-
grated system-wide support for visualizing such dynamic
changes occurring in the background, in the user’s periph-
ery, or over some past time period.
In this paper, we explore the idea of recording and present-
ing visual changes that might have been missed by the user
due to the changes occurring in the background, periphery,
or at a time where the user was otherwise preoccupied. As
part of this exploration, we first survey existing approaches
and discuss their limitations. We then develop a general
image-based storage, visualization, and implicit interaction
paradigm to provide better support for handling visual
changes, called mnemonic rendering. The term mnemonic
is intended to capture the essence of storing, cueing, access
to memory, and reminiscence. Mnemonic rendering as-
sumes that each pixel knows whether it is visible to the user
or not and buffers its color changes when invisible so that
no information is lost. It then restitutes these changes to the
user as soon as it becomes visible again. We present three
restitution techniques, and discuss usability issues.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
UIST’06, October 15–18, 2006, Montreux, Switzerland.
Copyright ACM 1-59593-023-X/05/0010...$5.00.

(a)

BACKGROUND
Navigating within Visually Dynamic Digital Worlds
Since the advent of multitasked and networked computing,
concurrent interaction with a variety of applications has
become the norm. One aspect that varies across applica-
tions is the user’s level of control: whereas word-
processing and authoring applications predominantly obey
the user, network communication tools or computer process
monitors show autonomous, “dynamic” behavior. Further-
more, hybrid applications that are highly reactive to both
user and exogenous events will become more numerous
with the increase of collaborative groupware applications
[30].
Whether dynamically evolving or not, the total amount of
visual information available to the user at a given time most
often exceeds hardware display or human perceptual capa-
bilities, pointing towards the need to partition the digital
world either virtually or physically [12]. In window-based
computing systems, a large part of visual information
available simultaneously is hidden, while the perceived
visibility of each piece of information regularly changes as
the user proactively switches between tasks [14].
Recent large-scale studies have shown that some primary
information is typically kept visible during long time inter-
vals, while secondary information is accessed regularly [14,
15]. Interestingly, the studies on window systems also sug-
gest that secondary information is often of a more dynamic
nature than the primary. Dynamic information is often pur-
posely hidden to preserve privacy or to avoid visual disrup-
tions during the primary task [15]. Similar usage patterns
have been observed on multiple monitor configurations in
which secondary information is often relegated to periph-
eral vision [12]. They have also been observed, to a lesser
extent, on virtual desktops [26].
Clearly, an important component of the average computer
user’s activity currently involves regular polling of hetero-
geneous and dynamic visual information, which is not visi-
ble for periods of time. Given the limits of visual percep-
tion and attention, this also affects multi-monitor systems
and will most likely influence next-generation user inter-
faces involving large displays or multiple ambient displays.

Supporting Integration of Dynamic Visual Information
Current window environments have been used for more
than two decades and most of the time users seem to have
no trouble integrating dynamic visual information. The
main reason is that windowed applications don’t expect to
be continuously visible and thus rely on implicit or explicit
strategies for easing visual information integration. Com-
monly used strategies are persistence, structuring, reduc-
tion, history and notification. These are semantic strategies,
in that they depend on the meaning of the visual content:
• Persistence. The visual content of a window at a given

time is often sufficient to infer what happened. For ex-
ample, new emails don’t simply flash in an email client;
they accumulate inside a container and can be accessed
via a scrollbar if not visible any more. Persistence en-
sures that most changes are not lost.

• Structuring. Window contents are not just messy visual
scenes; they are structured in meaningful ways so that
they can be quickly interpreted into discrete, higher-level
concepts. Structuring visual information allows users to
infer changes using their semantic memory whenever
visual short-term memory is not exploitable. For exam-
ple, previously received emails can be remembered based
on the subject or sender.

• Reduction. Often the number of possible changes in a
window is limited, making them predictable. Changes
can also have privileged locations or salient visual fea-
tures, making them faster to detect. For example, new
emails usually appear in a predictable location and in
bold font.

• History. Time is often part of visualizing information.
Combined with persistence, time visualization provides
histories that indicate the order in which changes oc-
curred or their respective ages, when relevant. For exam-
ple, emails are stacked in order of arrival and are time-
stamped. Histories can be displayed statically or based on
re-visitation.

• Notification. Some applications additionally maintain
awareness by notifying users of meaningful changes as
they occur. For example, users can be easily alerted each
time a new email is received.

Limits of These Approaches
The semantic strategies aforementioned are widely adopted
in computer applications and seem to provide some support
for the user to easily integrate dynamic visual information.
However, these approaches have some limitations:
• Notifications are only useful if they are time-critical or

relevant to the current goal. Evidence shows that most
users are not willing to be interrupted while absorbed in
their primary task (for email notifications, see for exam-
ple [34]). As most events and changes in personal com-
puting are not time-critical, proactive navigation into
visual information should be prevailing.

• Semantic structuring alone is not enough to support effi-
cient integration of visual information. Using memory
and visual search for spotting changes limits the amount
of visual information that can be monitored. For exam-
ple, the user will hardly remember an entire text docu-
ment or a folder’s content. Likewise, this strategy does
not scale well to inherently continuous information: even
the value of a single continuous variable displayed as a
progress bar or a color can’t be accurately memorized by
the user.

• The remaining strategies are strongly dependent on the
nature of displayed information and are always designed
and implemented separately in each application.

Because there is no general approach for supporting visual
information integration, we can expect an uneven level of
support among applications and the existence of flaws that
make the detection of some changes difficult or impossible.
Examples of such problems are discussed next.

Some Motivating Real-World Examples
Through an informal survey of twelve regular computer
users we identified some examples of everyday tasks being
regularly affected by lack of support for occluded changes:
• Web-based monitoring. Three users mentioned they often

monitor real-time data, for example basketball or hockey
scores, from web pages that auto-refresh content. They
periodically switch back and forth between their main
task and the browser and often find it hard to compare
the current data (for example score and who is winning)
with the previous time they checked. One user mused
that a mechanism for highlighting what changed since
the last time the user viewed the page would be useful.
Similar issues were pointed out by other users for differ-
ent types of web-based dynamic content, such as online
news sources. Note that there is evidence for strong
change blindness on magazine-style web pages [33].

• Communication. Three users mentioned having trouble
with email, newsgroups and instant messaging (IM) cli-
ents. Identifying new emails or newsgroup postings is of-
ten challenging for users who keep several older unread
messages or switch them to the “unread” state. Such hab-
its have indeed been identified in previous surveys on
email usage [34, 38]. Whittaker [38] also observed that
unread messages can occasionally scroll out of sight and
be forgotten. In IM clients, status changes in long buddy
lists seem to often go unnoticed. Additionally, the con-
versation can sometimes move ahead of where the user
left it and she might not know where to pick it up from.

• Single-user file management. Five users mentioned di-
verse issues when manipulating (downloading, copying
or moving) files. Lengthy file operations can be initiated
and then forgotten, for example if a hidden progress dia-
log automatically closes once a transfer is completed.
Finding a new file in a directory can be hard if its older
timestamp has been kept, or if its name is unknown or
too similar to other files. Locating a new file is particu-
larly awkward when it has just been added to a cluttered
desktop according to some unpredictable heuristic.

• File sharing. In peer-to-peer file sharing, file operations
are typically lengthy and numerous and users seem to
monitor high amounts of information. Two users men-
tioned their desire to be able to compare the changes in
their download and upload status (speed, new seeds,
parts finished) since the last time they checked. Two us-
ers also mentioned working on a shared project file and
sometimes missing files added or deleted by collabora-
tors.

• Other. One user who works in a command line environ-
ment often finds it difficult to detect presence or absence
of new lines added by running processes when switching
between terminals. A software developer has trouble no-
ticing new warnings/errors in an IDE while editing code.
Interestingly, users can also be blind to their own
changes: one user mentions she sometimes types in the
wrong window while concentrating on another area, then
has trouble identifying the effects of her actions.

AN IMAGE BASED APPROACH
Our survey identified several instances where users found
visual changes in their computer environment hard to fol-
low. Occasionally users do not pay attention to the changes,
but most often these changes are simply not visible.
Although individual applications could be improved by
paying even more attention to visualization, history or noti-
fication, it is worth considering simpler approaches that
might work globally in an application agnostic manner.
Consider for example what happens when a number of new
emails are downloaded while a) the mail client is mini-
mized and subsequently reactivated for use, versus b)
launching the mail client afresh. In the first case, the user is
instantaneously shown a screen with new and old emails,
and has to rely on visual searching for application provided
cues such as highlights and dates to discern the new emails
from the old. In the second case, newly downloaded emails
appear one by one in the inbox and some folders are pro-
gressively bolded. No visual search and no semantic mem-
ory are involved because all changes simply pop out: mo-
tion perception is more powerful than most other strategies
[25] and requires nothing more than the actual visual
changes to be presented over time.
Following the above example, we argue that a reasonable
strategy to pursue would be an image based approach that
stores invisible changes at the pixel level for later redisplay,
or restitution, to provide the user with a simple visual un-
derstanding of changes that they may have missed. Such an
approach assumes a pixel-level model of visual changes,
which we introduce in the next section.

Surfaces and Pixel Visibility
Suppose that visual information made available to the user
is spread among surfaces. A surface can be either physical
or virtual, and contains dynamically rendered visual infor-
mation. Whether they are physical or virtual, it is conven-
ient to think about surfaces as unstructured matrices of pix-
els, which can be rendered off-screen as bitmap images.
Although rendered and “made available” to the user, a pixel
may or may not be actually visible. There are two reasons
why a pixel may be invisible to the user (Figure 2):
• It is not displayed. In layered graphical models, surfaces

are allowed to overlap so that a pixel may be hidden by a
surface of higher priority in terms of z-order. For exam-
ple, all or part of a window’s content can be obscured by
another window (Figure 2a). In peephole graphical mod-
els such as virtual desktops, potentially very large sur-
faces are cropped so that only part of them is visible
(Figure 2b),known as the “keyhole effect” [39] . Win-
dows can also be minimized or temporarily hidden while
the underlying application keeps running and the window
still exists in the user’s mental model and/or in the com-
puter’s memory (Figure 2c).

• It is not seen by the user. Even when physically dis-
played, a pixel can be obscured by a physical object,
such as user’s hand on a touch screen (Figure 2d) or a
physical input device. But most of the time, a pixel is not
seen simply because it is outside the user’s field of view.

In desktop computing, users are not continuously looking
at the screen: a pixel can remain unseen during the time
of an eye-blink, a brief talk with a colleague, or absence
during the night (Figure 2e). When large and/or multiple
displays are being used, a pixel might not be seen be-
cause the focus of the user’s attention is on another part
of the display (Figure 2f).

Figure 2. A pixel might be invisible to the user be-
cause: (a) of occlusion by another window, (b) it is
on a virtual canvas outside the current display area,
(c) its window is minimized; or it is displayed but not
seen by the user due to: (d) physical occlusion, (e)
interruption, (f) being outside the focus of attention.

The first type of invisibility (the pixel is not shown) mainly
concerns small displays and desktop computing, whereas it
is less of an issue on large and/or multiple displays, that
allow more visual information to be shown concurrently.
Conversely, the second type of invisibility (the pixel is not
seen) occurs on small displays but is a more serious issue
on large displays where visual information resides outside
the user’s field of view, especially during close interaction.
Of course, pixel visibility is rarely a binary property. For
example, in layered models supporting translucency such as
see-through tools [4], a pixel can be more or less “shown”.
The concept of “seen” is even more subtle. First, human
vision is physiologically non uniform and abilities such as
acuity, color discrimination and movement sensitivity are
unevenly distributed within the visual field. Second, vision
is a global perceptual phenomenon hardly decomposable
into individual pixels and involving cognitive mechanisms
such as attention [16, 25].
Though human vision is a complex phenomenon, we can
make significant advances by adopting a minimalist model
of visual perception that is purely optical (if something is
visible to the eye, then it is perceived) and binary (we ig-
nore partially visible information). Given that user’s locus
of attention is difficult to infer precisely even using special-
ized hardware [13], such a model is a practical substitute
that captures a reasonable subset of possible use cases.
Another important assumption we make is the single-
viewer scenario: several distant users can manipulate visual
content on a surface and a surface can be replicated in other
physical displays, but each surface is seen by only one user.
This assumption will hold throughout this paper.

Mnemonic Rendering
As the user navigates visual information, the visibility of
each pixel is subject to change over time. On surfaces con-
veying dynamic visual information, the color of each pixel
is also subject to change. Discontinuities may arise when
changes occur on pixels while they are invisible.
Mnemonic Rendering involves buffering pixel changes
then restituting these changes on the screen. A visible pixel
is rendered normally, whereas an invisible pixel stores a
time-stamped history of its color changes, so that no transi-
tional information is lost (Figure 3). When the pixel be-
comes visible again it restitutes its buffered history. After
the restitution the pixel is displayed normally.
The goal of buffering and restitution is to aid users in main-
taining an accurate mental representation of the state of
visual displays, in the presence of invisible changes. This is
achieved by storing and presenting the changes themselves
in a manner that does not require memorization and com-
parison with previous states.

Restitution Techniques
Restituting a pixel buffer consists of rendering it in a syn-
thetic way during a limited period of time, possibly dis-
missing part of the stored information. As an example, we
describe two simple types of restitution: a static one called
persistence and a dynamic one called flashback (Figure 3).

Figure 3. Mnemonic rendering. All changes occur-
ring since a pixel is hidden (1) are buffered (2).
Removing the occluding element (3), results in res-
titution of the entire buffered history, blended (per-
sistence) or played back (flashback) (4).

Persistence. When a pixel becomes visible it temporarily
displays its buffered history as a single color obtained from
blending all colors previously buffered. On a macroscopic
scale, persistence typically results in motion trail effects.
Suppose that an entire surface is hidden, then shown after a
change happened on this surface. When the visual change
has a simple motion quality (e.g., a translation or a rotation)
persistence produces a temporary semitransparent trail
showing the motion path (the moving gauge in Figure 4a).
When the change is more complex (e.g., scrolling text or an
animated icon), persistence blurs the areas where changes
happened (the weather icons in Figure 4a).
Flashback. When a pixel becomes visible it plays back its
history in a sped-up timeline. On a macroscopic scale, pixel
flashback displays the previously visible state, then replays
the changes that occurred in fast-forward motion until the
present state is reached (Figure 4b).

Figure 4. Two examples of using our restitution
techniques. (a) Persistence, (b) Flashback.

When adjacent pixels are made visible or invisible at dif-
ferent times, mnemonic rendering results in transient “time-
warping” effects and visual breaks (Figure 5). The time-
warping effect is produced by an animation that is progres-
sively occluded or progressively shown (e.g., a window
moves over another one). Visual breaks can arise, for ex-
ample, if a part of a window is shown after a change hap-
pened on the entire window.

Figure 5. Time-warping (left) and visual break (right)
on a moving gauge with the flashback technique.
Shading conveys pixel “age”.

Although mnemonic rendering is a simple technique, its
design space is very rich. First, persistence and flashback
can be implemented in several ways and each small varia-
tion can result in different visual effects. Second, there are
several ways to make the technique more sophisticated and
improve its scalability. In the next sections, we go into
more details on mnemonic rendering and its variations.
Visual Effects
There are several ways of implementing the persistence
technique. The blended color can be obtained by averaging
all colors present in the history, which amounts to alpha-
blending each pixel with the previous ones using alpha val-
ues that follow a geometric progression of scale factor -½.
Other averaging weights can be used, as well as other color
composition schemes. For example, having weights de-
pending on timestamps can produce fading-out or fading-in
trails. Simple pixel superimposition can be used instead of

alpha-blending when pixels already include an alpha chan-
nel. Objects moving on a transparent background would
then leave sharp trails. Other compositing techniques can
be used for preserving more information, such as multi-
blending [3].
If time between glances is short or old data is unimportant,
a transient variant of persistence can be obtained by adding
temporal response to color changes, similar to phosphor
persistence of old monitors. On oscilloscopes for example,
such effect is sought after for viewing complex data.
Color manipulation may also convey status information on
a pixel (invisible, restituting or normally shown). For ex-
ample, applying de-saturation or sepia effects during resti-
tution gives a feel of oldness (see Figure 5), while preserv-
ing most of the visual information. Such an effect can fade
out throughout the restitution, enhancing the film metaphor
while allowing smooth transition to the current visual state.
Timing
Restitution length can be variable (e.g., it can depend on
the invisibility duration), but must be short enough to give
the user a rapid glimpse of the changes. This is especially
true if surfaces are interactive, because the user may want
to quickly resume interaction with the application. Typical
lengths for GUI animations (i.e., an opening menu) are
below one second. So, restitutions must similarly be
achievable in a small bounded time.
With the persistence restitution, the averaged pixel color
rapidly fades out to reveal the actual pixel color. With the
flashback restitution playback can be compressed linearly
to achieve bounded restitution time. Frames can be dropped
or blended with adjacent frames (a technique known as
motion blur). The simplest non-linear time compression
technique involves playing color changes successively
without taking their timestamp into account. But this tech-
nique can desynchronize adjacent pixels, unless grouping is
used (see the section on grouping below).
Another timing issue is handling pixel changes during resti-
tution. If restitutions are fast compared to the speed of the
actual changes, these pixel changes can be ignored. The
techniques can also be easily extended to support concur-
rent buffering and playing. For example, updating the play-
back sequence and speed as new pixels are being buffered
will ensure continuity with animations currently occurring.
Invisibility Detection
Detecting whether a pixel is shown or not (see Figure
2a,b,c) can be easily done using software techniques. De-
tecting whether a pixel is seen or not (see Figure 2d,e,f) can
be done using a variety of approaches, including:
• Software-based inference: on interactive systems, ab-

sence can be coarsely inferred from periods of inactivity.
• Presence detection: absence can be inferred with better

time accuracy using simple vision algorithms or sensors.
• Head tracking: tracking location and/or orientation of a

user’s head allows inferring the user’s field of view, thus
gaining spatial accuracy.

• Eye-tracking: eye tracking gives even more accurate spa-
tial information about the user’s locus of attention.

• Occlusion detection: in some cases, physical occlusions
can be inferred using software approaches (e.g., hand lo-
cation on a touch screen). In other cases, occlusions can
be accurately detected using additional hardware [18].

Non-intrusive hardware solutions exist for all of these ap-
proaches [32] and can be spread among displays. For ex-
ample, displays could be aware of eye contact [35].
Although eye-tracking technology may seem appealing,
coarser approaches for visibility detection might actually
yield better results. They limit Midas Touch problems [17]
and might provide the user with finer control over the resti-
tutions when conservative inference strategies are used.
Using head tracking for example, a conservative inference
strategy would not assume visibility inside the entire field
of vision. Rather, it would add an “area of invisibility”
around the user’s central vision. The way these invisible
pixels are rendered reflect trade-offs between peripheral
awareness and distraction reduction. For example, such
pixels can display their last visible color, resulting in a non-
distractive static rendering. Or actual pixel colors can be
shown instead, resulting in a dynamic rendering serving
peripheral detection. Intermediary approaches include using
persistence to soften change rendering.
Grouping
The time-warping effect mentioned earlier (Figure 5) pro-
vides a spatiotemporal visualization of the changes together
with invisibility periods. However, such an effect might
puzzle the user and visual breaks can hinder her under-
standing of more global changes.
There are several approaches for ensuring some level of
synchronization. First, changes in pixel visibility can be
deferred so that they occur at the same time. Delaying can
rely on clock ticks or on user actions. For example, pixels
won’t start recording or be restituted before the user has
finished dragging an occluding window.
Another approach for ensuring synchronization is grouping
pixels so that their visibilities are all updated at the same
time. Several grouping strategies can be considered:
• Surface-wide grouping. If whole surfaces are seen as

groups, then their content will remain visually consistent.
• Dirty region-based grouping. For performance concerns,

most graphical toolkits repaint only rectangular regions
that have changed. Although semantic, this information
is very often available at a low-level on the system. Dirty
regions often match fixed areas on the surface, but can
also be parceled out and follow objects as they move. In
that case, global motion groups can be obtained by itera-
tively accumulating dirty regions that intersect on two
successive animation frames.

• Image-based grouping. More accurate motion groups can
be directly derived from the images. One minimalist ap-
proach is drawing pixels that changed and grouping them
based on proximity. More sophisticated motion segmen-

tation techniques have been proposed in various fields,
including vision and image compression [27]

Once a grouping strategy has been adopted, several ap-
proaches can be considered for triggering the groups, i.e.,
starting the restitutions by marking all pixels visible:
• Triggering on full visibility: a group is triggered when it

is fully visible. One issue with this approach is that it
may be hard or impossible to make a group fully visible,
for example if the group runs over the user’s field of
view.

• Triggering on partial visibility: a group is triggered as
soon as it is partially visible. Triggering is easy, but may
lead to missed changes, for example if the group is partly
occluded or runs over the user’s field of view.

• Incremental triggering: triggering can be done on the first
motion group, then on the second one and so on. For ex-
ample, if an object has moved around the user on a circu-
lar display, the user will have to look at the starting point
and follow it until the end.

Interactivity
Interaction with mnemonic rendering is most of the time
passive in that it exclusively involves changes in pixel visi-
bilities. However, adding active interaction can be useful.
For example, when histories are lengthy or complex, the
user might prefer to have some control on the restitution,
rather than be provided with longer playback times. We
briefly describe a lightweight mechanism allowing flexible
navigation in the history of changes, which assumes the
presence of a pointing device. This technique can be ap-
plied to any type of restitution, for replaying a flashback or
restoring persistence.
During the restitution and for an extra second afterwards, a
semitransparent disc is visible. Before the disc fades out,
the user can indicate interest in the restitution by depressing
the pointer, in which case the disc changes into a circular
representation of the restitution timeline (Figure 6). Restitu-
tion is controlled with circular gestures, allowing both
coarse and fine control. This is useful when history lengths
differ by several orders of magnitude [22, 29].
Feedback and input locations depend on the constraints of
the particular interactive system. For example, on a very
large display, the input area should be close to the user
whereas the disc feedback might be displayed elsewhere
within the field of view. On a desktop computer, the input
area and the disc feedback can be confounded and dis-
played at the mouse location when the restitution started,
thus being both easy to trigger and to ignore.

Figure 6. Control dial operated remotely by the user
to control restitution playback.

MNEMONIC DESKTOP AND MNEMONIC WALL
In order to test the viability of the mnemonic rendering
approach, explore its design space and get early user feed-
back, we developed two prototypes called Mnemonic Desk-
top and Mnemonic Wall.

The Mnemonic Desktop
The Mnemonic Desktop is a toy window environment with
windows simulating dynamic behaviors such as a clock,
text being written by a remote user, a peer-to-peer
download manager, a webcam, and moving objects (Figure
1a). These animations can be accelerated by depressing the
clock. Each window is a surface which can made fully or
partly invisible by moving other windows over it, minimiz-
ing it, or moving it outside the desktop.
Three types of restitution are available: an averaging-based
pixel persistence that smoothly fades out, a flashback with
linear time compression, and a sequential combination of
both. The restitutions last about one second, have a fading
out “dusty” effect, and can be controlled with the dial pre-
viously described. A pixel-level restitution model is used,
combined with either a user-based or a clock-based de-
ferred synchronization: when the user uncovers a window,
histories are restituted on mouse button release. Using an-
other button, histories are triggered every 1/10 second.
The Mnemonic Desktop is implemented on top of Java2D.
In each window, histories are kept for as large as possible
rectangular regions. Windows repaint themselves on the
screen and on all invisible regions being buffered. When
pixels inside a buffered region are no longer in sync (e.g.,
part of the region becomes visible), the region is cut into
smaller pieces to preserve the pixel-level buffering model.
The Mnemonic Desktop can be downloaded for testing
from: www.dgp.toronto.edu/~anab/mnemonic

The Mnemonic Wall
The Mnemonic Wall is a document organizer running on a
5m x 1.8m back projected high-resolution wall-sized dis-
play (Figure 1b). Pictures and text boxes are spread out
over the display and can be moved around using a pen, or
are animated by the system to simulate a distant user. The
Mnemonic Wall also includes a variant of the layout-
matching game discussed in the “user feedback” section.
The entire wall-sized display is treated as a single surface.
A head-tracking system is used to determine pixel visibili-
ties. The visible area is visualized by a red translucent
quadrilateral, whose surface is chosen to encompass foveal
and parafoveal vision (Figure 1b). Since head movement
and eye amplitudes during gaze shifts follow a tight linear
relationship [36], we exaggerate horizontal and vertical
head movement values to allow natural head movements.
Three restitutions are supported: persistence, flashback, and
a combination of both. They are similar to those used on
the Mnemonic Desktop, except that pixels from the surface
have alpha channels (some are transparent) and the com-
bined technique shows persistence and flashback simulta-
neously. Also, a motion-based pixel grouping has been
adopted and groups are triggered based on their partial
visibility. Restitutions can be controlled with a dial.

The Mnemonic Wall has been implemented in C++ with
Chromium (chromium.sourceforge.net) providing graphics
rendering over the cluster of computers driving the 18 pro-
jectors of our display wall. Regular graphic primitives have
been used to mimic the mnemonic rendering effects afore-
mentioned. A Vicon (www.vicon.com) motion tracking
system provided head and stylus tracking.

USER FEEDBACK
Mnemonic rendering involves a number of potentially dis-
turbing effects such as overlapping graphics, delayed an-
imations and uncommon use of context information. In
order to make sure the techniques were viable (i.e. that at
least for one particular type of task they would prove bene-
ficial) we conducted an informal evaluation of the tech-
niques using a layout-matching game. Our goal was to un-
derstand how users would utilize the three restitution tech-
niques, to determine how effective or hindering they would
find them, and to elicit comments on their design. In this
section we describe the task we used and our findings.

The Task
10 participants played a series of games using regular ren-
dering and the three mnemonic rendering techniques (per-
sistence, flashback, persistence/flashback combination). 4
used the Mnemonic Desktop and 6 used the Mnemonic
Wall. Each session lasted about half an hour.
The desktop version of the layout-matching game showed
on its background two grids A and B, containing numbers.
Periodically, a number was randomly moved to a free loca-
tion by the system. This background was half-covered by a
moveable window containing two smaller grids a and b
whose numbers could be moved by the user (Figure 7, grid
A is covered). The task was to reorder a and b so that they
match A and B before a timer runs out. The large display
version was similar except it used four remote grids that
had to be reproduced on four proximal grids (Figure 8).
Given the display’s size, while working on one grid, the
two opposite grids could not be seen without major body
movement. On both versions, no control dial was used.

Figure 7. Layout matching game on the Mnemonic
Desktop. One grid is covered by the window.

Figure 8. Layout matching game on the Mnemonic
Wall, using pixel persistence.

We wanted the task to differ from common computing ac-
tivities in two respects. Firstly, a faster pace was required to
evaluate the techniques in a reasonable time. Secondly, we
wanted an engaging, well-defined task, and thus avoided
concurrent tasks with unclear priorities. The layout-
matching game involves a single primary task with a well-
defined goal: match all the layouts as fast as possible.
Nevertheless, the task shares salient characteristics with
personal computing activities: it requires glancing for poll-
ing information, and while seeing changes as they happen
might be useful, the task can still be completed if changes
are missed. Completing this task when all changes have
been missed is easier than real-life search for changes,
since it involves visual search alone (side-by-side compari-
son of two grids) instead of visual search plus semantic
memory. To ensure participant familiarity with this side-
by-side comparison strategy, non-mnemonic rendering was
presented first. Hence, participants could ignore mnemonic
rendering information if they found it unclear or useless.

Results
Relevance of Mnemonic Rendering
Participants easily understood the task. As expected, all
participants used a strategy of matching individual grids
sequentially. We counted the number of changes users had
to treat at each step. Although this was a function of user’s
speed, values from none to three were the most common.
All users made use of mnemonic rendering for reproducing
changes. After playing the game, they also ranked all three
restitution techniques higher than regular rendering that
required side-by-side comparison. They seem unaffected by
Midas Touch, so using head tracking and window occlu-
sion for passively controlling visual rendering seems realis-
tic.
Usefulness and Limits of Persistence
With the persistence restitution, occluded moving numbers
or numbers moving outside parafoveal vision left a semi-
transparent echo or trail behind them. Participants found
the technique useful when one or two hidden changes hap-
pened, but found it challenging for more than two overlap-
ping changes. However, they used the technique for quickly
determining whether any changes happened on a grid, al-
lowing them to spend less time on unchanged grids.
Clearly persistence failed as an explanation mechanism for
complex changes, but provided useful synthetic informa-
tion on the changes that could be quickly interpreted.
Usefulness and Limits of Flashback
With the flashback restitution, the numbers stood still if
they were occluded or unseen but moved in fast forward
motion as soon as the user glanced at them, if changes hap-
pened. All participants described the flashback technique as
being very effective. They noted that after looking at the
playback of changes they could replicate the sequence eas-
ily. Sometimes users could successfully mimic the motions
even when the animation was partly missed or apparently
chaotic, with up to four successive motions in one second.
More than four motions could hardly be reproduced.

However, on the large display users commented that the
lack of feedback in the presence of changes before the ac-
tual animations were played back prevented them from
using peripheral vision. Some users required an indication
as to whether the motion they were viewing was that of an
actual change or a flashback.
Clearly the flashback visualization we used, although effec-
tive in explaining changes, lacks feedback and does not
support peripheral awareness.
Persistence and Flashback Combined
With the persistence-flashback restitution, trails were
shown then faded out during the flashback. Unsurprisingly,
on the large display the majority of participants preferred
the combined technique. As they pointed out, the blurred
trails left by persistence both clearly provided rapid infor-
mation on changes and supported peripheral awareness,
whereas the flashback component was useful in explaining
in detail the actual changes. One participant felt distracted
by the persistence in the combination condition. On the
small display, two participants preferred the combination
whereas the other half preferred the flashback alone.
Design Considerations
Several design-related issues were raised. They mainly
concerned the proper choice of visual effects and timing:
Visual effects. When performing the task with the persis-
tence technique, several users commented positively on the
use of de-saturation as a metaphor to indicate older states.
Nevertheless, they requested a fainter representation of
older states, so as not to clutter the screen. Three users
commented that the intermediate history need not be too
detailed, as long as some transitional information is present.
Timing. One design aspect that particularly concerned us
was the timing of the restitution. We found the chosen 1
second to be appropriate for displaying one to three
changes without hindering the task. Some participants
found it occasionally too slow, while everyone found it too
fast for more than four changes. One participant said that
he would have liked the ability to replay the last restitution.
Grouping. On the large display, participants were comfort-
able with the way restitutions were triggered. On the small
display, visual breaks occasionally occurred but this did not
seem to affect participants.

RELATED WORK
Situation awareness designs. Time critical systems, as in
air-traffic control rooms, are particularly concerned with
the user maintaining an accurate mental model of the state
of a system [1, 10]. They focus on appropriate information
visualization and notification of changes [39]. Contrary to
these approaches, mnemonic rendering does not assume a
high-level system knowledge of the changes. Moreover,
changes are assumed non time-critical and their restitution
is controlled by the user.
Histories. A large number of recording and re-visitation
techniques have been proposed for various purposes includ-
ing action reversibility [9, 19], replication [20] and im-
proved information search [8, 28, 37]. A few application-

independent approaches to user history storage and naviga-
tion have been proposed [11, 23, 24] but they all assume a
software architecture or object-oriented protocol for sup-
porting them. In contrast to mnemonic rendering, history-
based techniques show changes the user has already visited
and are designed for much coarser time granularities.
Groupware. Change visualization in groupware is sup-
ported in some commercial applications and has been an
active area of research. Tam and Greenberg [30] provide a
review of current techniques. Such approaches are neces-
sary for dealing with complex changes such as asynchro-
nous edits of shared workspaces and documents. However,
an image-level technique can still be a useful complement
for improving awareness on real-time edits.
Window management systems. Apart from notification
techniques such as blinking taskbars, there is no system-
wide support for change awareness in current window
managers. Numerous articles mention the problem of mul-
tiple overlapping windows but they essentially focus on
facilitating navigation [14, 15, 31]. Some of them propose
new manipulation or visualization techniques for reducing
occlusion [3, 31], but do not address occlusion issues. As
far as we know, no work mentions the use of window visi-
bility as context information.
Multiple and large displays. Multiple monitors helped to
reduce occlusion [11] but human attention is limited.
Woods [39] identified the problem of integrating informa-
tion across multiple displays and proposed a set of design
heuristics based on the cinematographic concept of “visual
momentum”. However he was mainly concerned with tran-
sitions between displays. He advocated the use of abstract
overviews for enhancing peripheral awareness, but did not
address the understanding of the actual changes.
Animation. Animation has been used in user interfaces for
explaining changes, including smooth transitions based on
cartoon or movie techniques [2, 6]. Instead of interpolating
motion for better explaining discontinuous changes, our
approach restores visual continuity that may be occasion-
ally disrupted by occlusion or attention shift.

CONCLUSIONS and FUTURE WORK
In our increasingly dynamic computer environments visual
changes often occur without being seen. After identifying
the situations under which changes are missed, we intro-
duced the idea of mnemonic rendering to present these
missed changes in a lightweight and fluid manner. Varia-
tions of the design space were discussed and three visuali-
zation techniques developed and evaluated.
Since mnemonic rendering is image-based, it can be im-
plemented at the window manager level. A new trend in
window management is compositing, a technique that al-
lows windows to be rendered off-screen and manipulated as
images [7]. While its current application lies mainly in
cosmetic effects, mnemonic rendering suggests a new com-
pelling use of this graphics power.
Although more investigation is required, initial user feed-
back indicates that the techniques can be of interest to the

general user. Returning to our motivating examples, we feel
the use of persistence or flashback could help users identify
new items on their desktop or in folders, compare status
indicators (download progress, IM buddy lists), or detect
changes in web-page content over time.
Mnemonic rendering is application agnostic and may bene-
fit a variety of applications and tasks. Nevertheless, seam-
less integration of generic and dedicated techniques for
supporting change awareness requires further investigation.
In addition to the basic system-wide support provided by
mnemonic rendering, individual applications could further
exploit information on pixel visibility to better handle spe-
cific types of changes.
We plan to extend our model to encompass hierarchical
surfaces, in order to address issues related to applications
that include multiple dynamic sub-surfaces (for example
tabbed web-browsers). Although our techniques are aimed
at explaining hidden changes, they were not designed to
explicitly provide notification of the occurrence of the
changes. Clearly the two issues are inter-related and also
require further investigation.
A shortcoming of our approach is that it targets single user
scenarios. Although this assumption is quite realistic in
desktop environments, large display settings might be used
by multiple users synchronously. We plan to extend our
techniques to a setting with personalized visibility detection
and history storing. Clearly the design space of such an
extension will be very different. Finally, more formal
evaluations are required to determine how our techniques
fare under different durations and types of changes.

ACKNOWLEDGEMENTS
We thank Alexis Angelidis, Shahzad Malik, Dan Vogel,
John Hancock, members of the Dynamic Graphics Project
lab (www.dgp.toronto.edu) and our UIST reviewers.

REFERENCES
1. Banbury, B. and Tremblay, S., eds. (2004). A cognitive

approach to situation awareness: theory and applica-
tion. Ashgate.

2. Baudisch, P., Cutrell, E., and Robertson, G. (2003).
High-density cursor: A visualization technique that
helps users keep track of fast-moving mouse cursors.
Interact. p. 236-243.

3. Baudisch, P. and Gutwin, C. (2004). Multiblending:
displaying overlapping windows simultaneously with-
out the drawbacks of alpha blending. ACM CHI Con-
ference. p. 367-374.

4. Bier, E., Stone, M., Pier, K., Buxton, W., and DeRose,
T. (1993). Toolglass and Magic Lenses: The see-
through interface. ACM SIGGRAPH. p. 73-80.

5. Chang, B., Mackinlay, J., Zellweger, P., and Igarashi,
T. (1998). A negotiation architecture for fluid docu-
ments. ACM UIST Symposium on User Interface Soft-
ware and Technology. p. 123-132.

6. Chang, B. and Ungar, D. (1993). Animation: From car-
toons to the user interface. ACM UIST Symposium on
User Interface Software and Technology. p. 45-55.

7. Chapuis, O. and Roussel, N. (2005). Metisse is not a 3D
desktop! ACM Symposium on User Interface Software
and Technology. p. 13-22.

8. Cockburn, A., Greenberg, S., Jones, S., McKenzie, B.,
and Moyle, M. (2003). Improving web page revisita-
tion: Analysis, design and evaluation. Special Issue on
Web Navigation Skills, IT&Society, 3(1). p. 159-183.

9. Edwards, W.K., Igarashi, T., LaMarca, A., and Mynatt,
E.D. (2000). A temporal model for multi-level undo and
redo. ACM UIST Symposium on User Interface Soft-
ware and Technology. p. 31-40.

10. Endsley, M., Bolté, B., and Jones, D. (2003). Designing
for situation awareness: CRC.

11. Freeman, E. and Fertig, S. (1995). Lifestreams: Orga-
nizing your electronic life. AAAI Fall Symposium: AI
Applications in Knowledge Navigation and Retrieval.

12. Grudin, J. (2001). Partitioning digital worlds: focal and
peripheral awareness in multiple monitor use. ACM
CHI Conference. p. 458-465.

13. Hunt, A.R. and Andkingstone, A. (2003). Covert and
overt voluntary attention: linked or independent? Cog-
nitive Brain Research, 18. p. 102–105.

14. Hutchings, D.R., Smith, G., Meyers, B., Czerwinski,
M., and Robertson, G. (2004). Display space usage and
window management operation comparisons between
single monitor and multiple monitor users. ACM AVI
Conference on Advanced Visual Interfaces. p. 32-39.

15. Hutchings, D.R. and Stasko, J. (2004). Revisiting dis-
play space management: understanding current practice
to inform next-generation design. Graphics Interface
Conference. p. 127-134.

16. Itti, L., Rees, G., and Tsotsos, J., eds. (2005). Neurobi-
ology of attention. Elsevier.

17. Jacob, R.J.K. (1993). Eye-movement-based human-
computer interaction techniques: Toward non-command
interfaces. In Advances in Human-Computer Interac-
tion, D. Hix, Editor. Ablex. chapter 6. p. 151-190.

18. Jaynes, C., Webb, S., Steele, R.M., Brown, M., and
Seales, W.B. (2001). Dynamic shadow removal from
front projection displays. IEEE Visualization. p. 175–
182.

19. Kawasaki, Y. and Igarashi, T. (2004). Regional undo
for spreadsheets. ACM UIST Symposium on User Inter-
face Software and Technology. Demo abstract.

20. Kurlander, D. and Feiner, S. (1992). A history-based
macro by example system. ACM UIST Symposium on
User Interface Software and Technology. p. 99-106.

21. Mertz, C., Chatty, S., and Vinot, J. (2000). Pushing the
limits of ATC user interface design beyond S&M inter-
action: the DigiStrips experience. 3rd USA/Europe Air
Traffic Management R&D Seminar.

22. Moscovich, T. and Hughes, J.F. (2004). Navigating
documents with the virtual scroll ring. ACM UIST Sym-
posium on User Interface Software and Technology. p.
57-60.

23. Rekimoto, J. (1999). Time-machine computing: a time-
centric approach for the information environment. ACM

UIST Symposium on User Interface Software and Tech-
nology. p. 45-54.

24. Renaud, K. (2000). Expediting rapid recovery from
interruptions by providing a visualization of application
activity. OZCHI. p. 348-355.

25. Rensink, R.A. (2002). Change detection. Annual Re-
view of Psychology, 53. p. 245-277.

26. Ringel, M. (2003). When one isn't enough: An analysis
of virtual desktop usage strategies and their implica-
tions for design. ACM CHI Conference (Ext. Abstracts).
p. 762-763.

27. Salembier, P. and Marques, F. (1999). Region-based
representations of image and video: Segmentation tools
for multimedia services. IEEE Transactions on Circuits
and Systems for Video Technology, 9(8). p. 1147-1169.

28. Skopik, A. and Gutwin, C. (2005). Improving revisita-
tion in fisheye views with visit wear. ACM CHI Confer-
ence. p. 771-780.

29. Smith, G.M. and schraefel, m.c. (2004). The radial
scroll tool: scrolling support for stylus- or touch-based
document navigation. ACM UIST Symposium on User
Interface Software and Technology. p. 53-56.

30. Tam, J. and Greenberg, S. (In press - accepted 2005). A
framework for asynchronous change awareness in col-
laborative documents and workspaces. International
Journal of Human Computer Studies.

31. Tomitsch, M. (2003). Trends and evolution of window
interfaces. Thesis, University of Technology: Vienna.

32. Turk, M. (2004). Computer vision in the interface.
Communications of the ACM, 47(1). p. 60 - 67.

33. Varakin, D.A. and Levin, D.T. (2004). Unseen and un-
aware: Implications of recent research on failures of
visual awareness for human–computer interface design.
Human-Computer Interaction, 19. p. 389-422.

34. Venolia, G.D., Dabbish, L., Cadiz, J.J., and Gupta, A.
(2001). Supporting email Workflow. Tech Report
MSR-TR-2001-88. Microsoft Research.

35. Vertegaal, R., Mamuji, A., Sohn, C., and Cheng, D.
Media eyepliances: using eye tracking for remote con-
trol focus selection of appliances. ACM CHI Confer-
ence (Extended Abstracts). p. 1861-1864.

36. Wang, X. and Jin, J. (2001). A quantitative analysis for
decomposing visual signal of the gaze displacement.
Pan-Sydney area workshop on visual informtaion proc-
essing conference on visual information processing
2001. p. 153-159.

37. Wexelblat, A. and Maes, P. (1999). Footprints: History-
rich tools for information foraging. ACM CHI Confer-
ence. p. 279-277.

38. Whittaker, S. and Sidner, C. (1996). Email overload:
exploring personal information management of email.
ACM CHI Conference. p. 276-283.

39. Woods, D.D. and Watts, J.C. (1997). How not to have
to navigate through too many displays. In Handbook of
Human-Computer Interaction. Elsevier Science.

