A Generic Halfedge Mesh Data Structure for .Net

Alexander Kolliopoulos

November 13, 2005

Introduction and M otivation

Polygonal meshes are used extensively in computer graphics. A palygesh represents a shape, usually
in 3D, by using a set of points, tivertices, connected bgdges. Edges form the boundariesfates. A mesh
is convenient to work with because it explicitly represents the surfacetieats working with—vertices,
edges, and faces are discreetly enumerated and may be manipulated.directly

Meshes are often stored by simply keeping a list of points with a list of fadesre each face is a list of
vertices, and each vertex of a face is an index into the list of points. Whilésthimple to implement and
manage, many common operations are slow and awkward. It is common to itezath® neighbors of a
mesh element—for example, to compute smooth contours in non-photorealistérirey it is necessary to
examine faces adjacent to a face to trace contour chains. Anothermprizbirat this mesh representation
does not explicitly represent edges. For polyhedral contour renyéris necessary to iterate over all edges
in a mesh. Itis notimmediately clear how one would do this without visiting the eofgmsery face, which
means that each edge of a closed manifold mesh would be visited twice.

An elegant solution to these problems is the halfedge mesh data structure.
This represents connectivity directly by means dfaifedge. Each edge is
made up of two halfedges, one pointing to each vertex of the edge. Eac
of the halfedges also has a reference to an adjacent face, the ifegigka \ \

[

adjacent to this face, and the previous halfedge. A vertex or face eelysn edge

a reference to a single halfedge to find all adjacent halfedges in its reighb

hood. Finding all faces adjacent to a face is efficient—starting at thésface

halfedge, the first adjacent face is that on the opposite halfedge., Ween face

only need simple lists for the faces, edges, and vertices, and halfediges. -~

move to the next halfedge, and its opposite halfedge has a reference to the halfedge

second adjacent face. This process may be continued until we haxmegcbtu

to the starting halfedge. vertex
While all connectivity information of the mesh is available, it can be 4/

awkward to traverse the data structure. This can be alleviated by providing ,®

iterators and methods that hide much of the internal design of the data strty \

ture. OpenMesh is a library that provides such an abstraction for Ct+ [1

This presents the user with classes corresponding to all the basic mesh ele-

ments with a number of iterators. An attractive feature of this library is its

use of C++ templates to parameterize the data that is associated with '@gHe 1- The elements of a
element, calledraits. A user can, say, add curvature information to verticB&/fedge mesh data structure.
in the mesh type definition, and this adds curvature data members to every

vertex of a mesh. Once a user is familiar with the concepts, this library poeidery powerful interface
to querying mesh topology.

When | finished my masters thesis in non-photorealistic rendering, it bedearet@ me that the C++
design of my project had just about reached its breaking point. The Che2a3 offered a compelling
development framework, but this would require a completely new mesh datéLst, as none existed that
satisfied the needs of my work. Hence, | decided to implement a generidgalfieesh data structure in C#
2.0 with features similar to those of OpenMesh.

Design and Implementation

The .Net design guidelines suggest a number of coding practices toiads&iping an external interface
simple and consistent, ranging from naming of types to error handling wittpéens [3]. Where it makes
sense, these guidelines are followed, but instances where the guidetnes limiting or awkward for the

design of such a complex data structure are noted.

The library is based on an extensible mesh topology class that does fiottlgxmplement any geo-
metric data types or methods. Using the generics feature of C# 2.0, this alassqterizes traits for each
of the four mesh elements—edge, face, halfedge, and vertex. This imniegtissents a problem: due
to the extensive use of references, each of the element types mustabe @vall the traits of the mesh.
The alternative is to cast element types to some base type and back, whilthbeocexposed to a user in
a very unsatisfactory fashion. However, it is also troubling to considelating and using types such as
Hal f edge<EdgeTraits, FaceTraits, HalfedgeTraits, VertexTraits>, Since very simple operations,
such as instantiating a new halfedge object, become an unreadable mese¢ ¢ype specifiers. Each
of the classes—edge, face, halfedge, vertex, and mesh—could le@waames shortened with thei ng
keyword, but this would require five lines that must be kept consistethieaibp of every source code file
for every type of mesh being used. A solution is to fold all the mesh elemers igfwethe main mesh class
as public nested classes. While the .Net guidelines discourage the uddiofq@sted classes, in this case
it is a much more elegant solution than the alternative. Not only does thistrfiefact that an edge is an
element that belongs to a mesh, rather than being a class at the same leeddasetimesh class, but it also
allows us to use a single alias with C#s ng statement—only at the top of a file would one need to declare
usi ng MeshType = Mesh<EdgeTraits, FaceTraits, HalfedgeTraits, VertexTraits>;.Then, auser
can simply use types such msshType. Edge, MeshType. Face, and so on.

For the generic topology class to be of much use in graphics, traits musfiibedien at least some
of its elements. At the very least, a user is likely to require vertex positionghvare not provided at
the topological level, as this allows a greater degree of customization. A Xpatses itself as a single
public data member on each mesh element. Here again, it is necessary tdrbnedke .Net guidelines
that strongly discourage public instance fields. It would seem that a garblerty would trivially offer the
same capabilities, however, this approach introduces its own difficultiehielnase of using a value type
trait, accessing its corresponding property would copy the entire dataw&uo a new memory location,
which is usually unnecessary. Even worse, it is impossible to assign ateatusingle property or field
of the trait, since a copy of the trait is being accessed rather than the trhit fthess means a user has to
make a copy of the trait, change the one item in question, and replace theteitirese of a public field
eliminates such problems without introducing any complications. As an exanupipose the vertex trait
is aVect or 3 structure. To change the sign of the Z value of a vertex using a properdidwequire the
following code:

MeshType. Vertex v = Get Vert exFr onSonmeMet hod() ;
Vector3 position = v.Traits;

position.Z x= -1,

v.Traits = position;

Using a public field instead of a property for the vertex trait, this code simptdidse following:

MeshType. Vertex v = Get Vert exFronSoneMet hod() ;
v.Traits.Z = -1,

While a trait can be as simple as an integer or a vector structure, in practidesipfsl to wrap traits
in their own structures so that they will have identifiable names and new traitsecadded later without
breaking existing code. It is much clearer to acoesB ai ts. Posi ti on than simplyv. Traits. One of
the drawbacks to this design is apparent when a mesh element doesiiré r@drait. The solution is to
define an empty structure and use it as the trait typeuct Null Traits { }. This can incur a one or
more byte overhead for each traitless element, even though it containtan®\dile it may not be elegant,
it isn’t a significant waste of memory considering each mesh element will tyypresuire tens of bytes for
references to other mesh elements and bookkeeping information.

Traits provide a simple way to associate data with features of a mesh, buatis¢remgth of a halfedge
mesh structure is the ability to locally traverse a mesh quickly and easily. In adtiitiproviding direct
access to halfedge links, a number of iterators allow users to quickly glesment neighborhoods. Unlike
C++ iterators, C# 2.0 provides coroutines so that iterator implementation isercyse and clear, while the
user needs never directly create or manage an iterator object. Tokalltafunction on each face adjacent
to a vertex, one only needs the code each (MeshType. Face f in vertex.Faces) { Visit(f); },
which uses th€&aces property of a vertex object, hiding the iterator implementation.

There are often times when it is useful to have some data attached to a typstoElament for only
a short period of time during program execution. For example, to calcubateats on vertices, it is useful
to calculate normals on faces first; but once the vertex normal calculatiomiglete, the face normals are
no longer necessary. Rather than defining these face normals in thediée@nd living with the memory
penalty when the trait is not needed, OpenMesh provides classes thaba#do add and remove data from
mesh elements at runtime, which they call properties. To avoid confusion W#itrdperties, we use the
termdynamic traits. In the base mesh class, dynamic traits are implemented as nested clas$eseanke
type of mesh element. A dynamic trait class takes a single generic type paréna¢igefines the type of
data to associate with its mesh element. It initializes an array of the trait type topghepapte size, so it
is only valid for elements currently in the mesh. A dynamic trait is accesseddsynggthe item for which
the value is required to an indexer. For example, a face trait is accegsedd Trai t s. Menber while a
dynamic trait is accessed IbyiceDynani cTrai t [f ace] . When a user is finished with a dynamic trait, it can
be set to null, so the memory it occupies will be freed the next time the garlb#igetor examines it.

With the generic topological halfedge mesh class and its element classesenipiaconly a matter
of defining trait structures to produce a fully functional 3D mesh clasdadty one can inherit from the
topological class directly to hide the details of the trait definitions and assedigtgthms with class meth-
ods. ATri Mesh class has been implemented with members based on the Sharp3D.Math librardl® han
vectors [2], and it restricts instances to have triangular faces sinceadta@lgorithms require this. Com-
plex operations, such as reading a mesh from a file or computing principlatates, are implemented as
methods. Furthermore, the traits are almost completely hidden away (“almodéritcause the compiler
will sometimes generate messages that show the full definition of the basg blasgherwise, a user need
not even be aware of the generic base class. Mesh elements have simpe lik@ Tri Mesh. Face and
Tri Mesh. Vert ex, and all the nested classes and methods of the base class are deffreslifothe derived
class.

Testsand Tools

The base mesh class alone is made up of 12 nested classes in addition to asfumsteexception types,
and many of the nested classes are closely tied in behavior.Trihesh class introduces a number of
algorithms on top of this library. With the large number of interdependent coemgs, small changes to
one can have non-obvious effects in other places. To a degreefdbtorang capabilities of Visual Studio
2005 have helped prevent problems early on [5]. A small number of tagtslteen written so far to test
some of the basic behaviors and the more complicated parts of the librage Tdsts are written for NUnit,
which takes advantage of C# attributes to simplify test design and execuioWpile many more tests
need to be written to reflect the scale of the library, the current collectis lyéze one confidence in some
of the more complicated methods.

Following the .Net coding style guidelines ensures code consistency aretises helps prevent mis-
takes in judgment, but it is inevitable to occasionally overlook some goodaroging practices. FxCop
is an exceptional tool to help find possible problems with design and penficerthat a programmer might
miss or forget [4]. The tool analyzes compiled code, for which it indicat@sings according to a library
of rules. The rules range from checking that members are casedttyteeensuring arguments to public
methods are validated before being used. Although many warnings aed this to the atypical design of
the library, those that correspond to conscious design decisions eaxclbeed by the user, and the others
can be dealt with case by case.

This library would be of little use to most other developers without good dontatien, as there are a
number of particular features that diverge from the design of stardiasd libraries. All publicly exposed
members already have C# XML comments in place; this can be easily checkedasimings can be en-
abled in the compiler for public members that lack documentation. Unfortunédels, for turning these
comments into a more useful form of documentation are currently lacking.cNia great tool for gener-
ating human-readable documentation from XML comments, but it still doesuppost C# 2.0 [6]. When a
tool does become ready to support the new documentation features dd,Ge2library will be completely
ready though.

Results and Conclusion

Features of C# 2.0 have greatly reduced the amount of time spent managmaryrend debugging com-
pared to what | am used to, while the various free tools for testing andicigecode have been greatly
helpful. In the future, profiling tools that support C# 2.0 might be useduloptimizing performance as
well. A coverage tool could also help ensure that as much code as padsdiblag tested.

Interestingly, OpenMesh has recently abandoned support for theirnmepkation of traits in favor of
only what roughly corresponds to dynamic traits. This simplifies extendirga mesh type—all nonessen-
tial data members exist in objects separate from the mesh itself. All of theigéym parameters could be
removed from the mesh class if this approach were taken in the C# implemengattbnsers would need
only learn one method of accessing data on mesh elements. However, this abthe cost of a level of
indirection when accessing traits, since they must be accessed by passésl element to another object
rather than being bound to the element itself. It would also complicate clasgemd from the topology
class—all dynamic traits would be exposed as members of the mesh classthathiidden only where
they are needed as members of the mesh elements. For these reasomegtheesign of the library seems
satisfactory and will remain as it is.

The library is currently being used in a number of programs within my petsesaarch projects and
will be made available online under an open source license soon. Thé gseeasic programming for this

data structure has proven to be flexible enough for my research. Asdjeetomatures, hopefully others
might find it useful as well.

References

[1] Mario Botsch, Stephan Steinberg, Stephan Bischoff, and Leif KliblOpenMesh — A Generic and
Efficient Polygon Mesh Data Structure. @penSG Symposium, 2002.ht t p: / / wwv. opennesh. or g/ .

[2] Eran Kampf. Sharp3D.Matht t p: / / ww. ekanpf . com Shar p3D. Mat h/ .

[3] Microsoft Corporation. Design Guidelines for Class Library Depeics.
http://nsdn. mcrosoft.conm |ibrary/default.asp?
url =/1ibrary/ en-us/cpgenref/htm /cpconnetframeworkdesi gngui del i nes. asp.

[4] Microsoft Corporation. FxCopht t p: / / www. got dot net . cont t eant f xcop/ .
[5] Microsoft Corporation. Microsoft Visual Studiat t p: // msdn. ni crosof t. com vst udi o/ .
[6] The NDoc Team. NDocht t p: / / ndoc. sour cef or ge. net/ .

[7]1 The NUnit Team. NUnithtt p: / / ww. nuni t. org/ .

