CSC 258 midterm

4 November 2008, 6:10

Name (underline surname):

Student number:

Please circle your tutorial section:

surname A-K: BA 3004 (Alicia Grubb)
surname L-P: BA 3008 (Lin Mei)
surname R-Z: BA 3012 (Letao Wang)

No aids permitted, but there is a list of algebraic identities attached.
Total: 40 marks.
Time allotted: 45 minutes.

Since time is short, be careful not to get stuck on one question to the exclusion of others. The amount of marks or answer-space allotted does not indicate how long it will take you to complete the question, nor does the size of the answer-space indicate the size of the correct answer.

Answer all questions. Answer questions in the space provided.

Do not open this booklet until you are instructed to.

1. [10 marks]
a) What function does the following logic gate diagram compute (see top of page 2)?
b) Simplify this formula (using any appropriate technique).

Logic gate diagram for question 1:

2. [10 marks]
a) What is the output sequence of the following "counter", after it gets established in its cycle?

b) Draw a sequential circuit with a clock input and one output. Your circuit will count clock pulses. The output is usually 0 , but is 1 for every fourth cycle. That is to say, the sequential outputs of your circuit are $0,0,0,1,0,0,0,1, \ldots$
3. [10 marks]

Illustrate the four-bit addition of -4 plus -3 . State the four-bit values of the two operands, find the four-bit sum, convert the sum to base ten, and state the resulting values of the condition codes $\mathrm{N}, \mathrm{Z}, \mathrm{V}$, and C.
4. [10 marks]

Write assembly-language code (VELMA or similar) to determine which is greater: the contents of R0 or the contents of memory location 1234. Put the maximum of these two values into R2.

Reminder: In VELMA, the instruction "CMP R0, R1" subtracts R1-R0.

Appendix: Some Boolean algebra identities

identity laws:

$$
\begin{aligned}
& a \cdot 1=a \\
& a+0=a
\end{aligned}
$$

base laws:

$$
\begin{aligned}
& a \cdot 0=0 \\
& a+1=1
\end{aligned}
$$

idempotence:

$$
\begin{aligned}
& a a=a \\
& a+a=a
\end{aligned}
$$

excluded middle:

$$
a+\bar{a}=1
$$

non-contradiction:

$$
a \cdot \bar{a}=0
$$

double-negation:

$$
\overline{\bar{a}}=a
$$

exclusive-or definition:

$$
a \oplus b=a \bar{b}+\bar{a} b
$$

commutative:

$$
\begin{aligned}
& a b=b a \\
& a+b=b+a \\
& a \oplus b=b \oplus a
\end{aligned}
$$

associative:

$$
\begin{aligned}
& (a b) c=a(b c) \\
& (a+b)+c=a+(b+c) \\
& (a \oplus b) \oplus c=a \oplus(b \oplus c)
\end{aligned}
$$

distributive:

$$
\begin{aligned}
& a(b+c)=a b+a c \\
& a+b c=(a+b)(a+c)
\end{aligned}
$$

de Morgan's laws:

$$
\begin{aligned}
& \overline{a+b}=\bar{a} \bar{b} \\
& (a b)=\bar{a}+\bar{b} \\
& \text { etc }
\end{aligned}
$$

absorption:

$$
\begin{aligned}
& a(a+b)=a \\
& a+a b=a \\
& a+\bar{a} b=a+b
\end{aligned}
$$

no name:

$$
a b+a \bar{b}=a
$$

Do not write anything in the following table:

	value	grade
1	10	
2	10	
3	10	
4	10	
total	40	

