
University of Toronto
Faculty of Arts and Science

December 2008 Examinations

CSC 258H1F

Duration: 3 hours

No aids allowed

Last name:

First name(s):

Student number:

Make sure you have all 15 pages (including this page and the two appendices).
(Don’t panic about the page count—there’s lots of extra space for answers.)

Answerall questions. Answerquestions in the space provided. Answersnot in the correct space
will not be graded unless a note in the correct space says ‘‘see page ...’’ and the answer on that
page is clearly labelled with the question number.

Be careful not to get stuck on some questions to the complete exclusion of others. The amount
of marks or answer-space allotted does not indicate how long it will take you to complete the
question, nor does the size of the answer-space indicate the size of the correct answer.

Exam solutions will be made available on the course web page in a few days.

Do not open this booklet until you are instructed to.

Do not write anything in the following table:

question value grade question value grade

1 6 7 16
2 6 8 10
3 6 9 6
4 5 10 10
5 15 11 10
6 10

subtotal total 100

CSC 258H, December 2008, page 1 of 15

1. [6 marks]
a) Using only AND, OR, XOR, and NOT gates, draw a ‘‘half-adder’’. (A half-adder adds two
one-bit numbers to produce a one-bit result and a carry-out. There is no carry-in.)

b) Using only two half-adders and an OR gate, draw a ‘‘full adder’’. (A full-adder adds two one-
bit numbers plus a carry-in, producing a one-bit result and a carry-out.)

c) Using four full-adders and any other needed individual gates, draw a circuit which adds the
constant three (0011) to a four-bit input number.

CSC 258H, December 2008, page 2 of 15 continued...

2. [6 marks]
Recall how we made a JK flip-flop out of a master-slave SR flip-flop:

S

R Q

Q

K

J

(The clock input to the JK flip-flop should be supplied directly to the internal SR flip-flop.)

a) Draw a JK flip-flop with synchronous reset: If the synchronous reset input is 1 when the clock
goes from 1 to 0, the output will be 0 for the next cycle regardless of the values of J and K.

b) Draw a JK flip-flop with asynchronous reset: When the asynchronous reset input is 1, the
output immediately becomes zero regardless of the clock state.

CSC 258H, December 2008, page 3 of 15 continued...

3. [6 marks]
a) Draw a ‘‘counter’’ which counts in the sequence 3, 2, 1, 3, 2, 1,

b) Draw a ‘‘counter’’ which counts in the sequence 3, 2, 3, 2,

CSC 258H, December 2008, page 4 of 15 continued...

4. [5 marks]
Design a circuit with two inputs: Clock and X.X is sampled on each clock cycle. Theoutput Z
is 1 if and only if the most recent three X samples were 0, 1, and 1, in that order.

Optional hint: One way of doing it involves a three-bit shift register.

CSC 258H, December 2008, page 5 of 15 continued...

5. [15 marks]
Here are all pairs of condition codes.For each, give an example four-bit addition which will
result in these two condition codes being set to 1 (the other two might be set or cleared).
However, one of the pairs is impossible, which you should also identify and explain in a sentence
why it is impossible.

The first one is completed as an example.

C V:

1011
+ 1011

0110

(a) C N:

(b) C Z:

(c) V N:

(d) V Z:

(e) N Z:

CSC 258H, December 2008, page 6 of 15 continued...

6. [10 marks]
Here is a program fragment to compute the greatest common divisor ofx andy, using Euclid’s
algorithm.

Here it is in Python:

while y != 0:
t = x
x = y
y = t % y

Here it is in C or Java:

while (y) {
int t;
t = x;
x = y;
y = t % y;

}

(I think that everyone here knows Python, C, or Java. If not, please ask me to write this code out
for you in some other high-level language you know.)

Write VELMA code (not a subroutine: nothing is on the stack, you can use any registers) which
is equivalent to the above. Assume thatx is in R0 andy is in R1 before your program fragment
is executed.

CSC 258H, December 2008, page 7 of 15 continued...

7. [16 marks (in four parts)]
a) Earlier models of the PDP-11 did not have multiply and divide instructions. Write a VELMA
subroutine which takes two parameters and multiplies them by repeated addition, without using
MUL. Assumethat the two numbers are non-negative (although either or both of them might be
zero). For example, if your subroutine is called with parameters 4 and 7, it would compute
4+4+4+4+4+4+4. Don’t worry about overflow.

b) Write another VELMA subroutine which uses the above subroutine to multiply two arbitrary
integers. Itcalls your part (a) subroutine with the absolute values of the two parameters. Then,
if appropriate it arithmetically-negates the result so as to return the correct product of the original
two integers. To compute ‘‘−x’’ y ou may use the PDP-11 ‘‘NEG’’ i nstruction which
arithmetically negates its single operand in place; e.g. ‘‘NEG R1’’ does R1← −R1.
Don’t worry about overflow. Remember that ‘‘SUB R0, R1’’ performs R1← R1 − R0.

(continued)

CSC 258H, December 2008, page 8 of 15 continued...

7, continued

c) Write a main program which uses your part (b) subroutine to computex − y * z + a * b, where
x is a memory location identified by the label X, andy, z, a, and b are registers R2, R3, R4, and
R5, respectively.

d) Why did I have to say ‘‘don’t worry about overflow’’ in part (b) above? That is, what
parameters would cause your subroutine in part (b) to overflow even though the subroutine in
part (a) does not overflow when it’s called? (Give an example pair of parameters which has this
property and explain where the overflow occurs.)

CSC 258H, December 2008, page 9 of 15 continued...

8. [10 marks]
Our standard fetch sequence looks like this:

0. PCout, MARin, Read, Zero A, Set Carry-In, Add, Zin
1. Zout, PCin, Wait MFC
2. MDRout, IRin

Explain the following elements of step 0 at a high level—state the purpose of the operations.

a) What is the purpose of PCout, MARin, Read? (Why is it appropriate to do this?)

b) What is being added? How does step 0 above cause this addition? Why do we want to add
those things?

CSC 258H, December 2008, page 10 of 15 continued...

9. [6 marks]
a) Write microcode to perform a VELMA ‘‘JUMP’’ i nstruction (the target is in the ‘‘mem’’ fi eld,
which is available as AddressFieldOfIRout). (Startat step 3, after the standard fetch sequence.)

b) Write microcode to perform a VELMA ‘‘JUMP@’’ i nstruction (e.g. ‘‘JUMP @1234’’).

10. [10 marks]
Suppose a RISC CPU instruction set with a delayed branch rule and with the three-register
instruction format. Write code for such a RISC CPU which adds the integers from 1 to 1000.

State in which register we can find the sum when your program HALTs.

CSC 258H, December 2008, page 11 of 15 continued...

11. [10 marks]

Consider, wherex = 0 through 7 inclusive, the values of
x

i=0
Σ i, as two-digit decimal numbers.

They are, sequentially (in base ten): 00, 01, 03, 06, 10, 15, 21, and 28.

Draw a circuit which produces a display (using two sev en-segment digit displays) which goes
through the above sequence repeatedly, i.e. 00 comes after 28. Note that this means that other
than whenx = 0, each output adds to the previous output.

You can use any standard high-level components which we’ve used in the course, such as
registers and adders. (And obviously you will use two sev en-segment decoders, as provided
below.)

Seven−segment
decoder

Seven−segment
decoder

divide by
 ten

quotient remainder

CSC 258H, December 2008, page 12 of 15 continued...

Extra space if needed
(you must write ‘‘see page 13’’ in the usual answer space for the given question)

End of exam. Total marks: 100.Total pages: 15 including appendices.

CSC 258H, December 2008, page 13 of 15 continued...

Appendix A: Some Boolean algebra identities

identity laws:
a⋅1 = a
a + 0 = a

base laws:
a⋅0 = 0
a +1 =1

idempotence:
aa = a
a + a = a

excluded middle:
a + a =1

non-contradiction:
a⋅a = 0

double-negation:
a = a

exclusive-or definition:
a⊕ b = ab + ab

commutative:
ab = ba
a + b = b + a
a⊕ b = b⊕ a

associative:
(ab)c = a(bc)
(a + b) + c = a + (b + c)
(a⊕ b)⊕ c = a⊕ (b⊕ c)

distributi ve:
a(b + c) = ab + ac
a + bc = (a + b)(a + c)

de Morgan’s laws:
a + b = ab
(ab) = a + b
etc

absorption:
a(a + b) = a
a + ab = a
a + ab = a + b

no name:
ab + ab = a

CSC 258H, December 2008, page 14 of 15 continued...

Appendix B: Simple one-bus CPU architecture

Data paths represented by the large arrows (namely, each arrow to or from the bus except for the
ALU input, plus Zin) correspond to microprogram control lines. Control lines also include
Read and Write (memory functions), Wait MFC, the ALU functions, Set CC, Set Carry-In,
Carry-Forward, Zero A, Complement B, and End. Set CC causes the condition codes to be set
by the current ALU operation. Carry-Forward causes the C condition code to be supplied as
Carry-In. ZeroA provides a zero value to the ALU which can be used in the same cycle, without
affecting the contents of Y. End makes the current microinstruction the last microinstruction of
the microroutine by resetting theµPC.

There are also eight conditional microbranch control lines, of the form ‘‘If C then End’’,
‘‘ If C then End’’, and so on for all of C, V, Z, and N. ALU operations only set the condition
codes if the Set CC bit is on. Note that when a microbranch is taken, the current
microinstruction still completes, just as it does with the End control line.

CSC 258H, December 2008, page 15 of 15

