CSC 258 Four common Boolean operators

not –>>>–

This is a unary operator; the rest are binary operators. Our symbol: an overbar, e.g. \bar{p} Other common symbols: ~ ' ¬ Funny note: The ' symbol is postfix; others are prefix. In e-mail: Use an apostrophe for '; may require more parentheses than overbar Truth table:

$$\begin{array}{c|cc}
p & \bar{p} \\
\hline
0 & 1 \\
1 & 0
\end{array}$$

Our symbol: multiplication Other common symbols: $\land \& \cap$ Truth table:

p	q	pq
0	0	0
0	1	0
1	0	0
1	1	1

or _

Our symbol: + Other common symbols: $\vee | \cup$

Truth table:

p	q	p+q
0	0	0
0	1	1
1	0	1
1	1	1

exclusive or (also called "xor")

Our symbol: \oplus

 \rightarrow

In e-mail: Use the word "xor" Truth table:

q	$p \oplus q$
0	0
1	1
0	1
1	0
	<i>q</i> 0 1 0 1

CSC 258 Some Boolean algebra identities

identity laws: $a \cdot 1 = a$ a + 0 = abase laws: $a \cdot 0 = 0$ a + 1 = 1idempotence: aa = aa + a = aexcluded middle: $a + \bar{a} = 1$ non-contradiction: $a \cdot \bar{a} = 0$ double-negation: $\overline{\bar{a}} = a$ exclusive-or definition: $a \oplus b = a\bar{b} + \bar{a}b$

commutative:

ab = ba a + b = b + a $a \oplus b = b \oplus a$ associative: (-b) = -c(b, c)

 $\begin{aligned} (ab)c &= a(bc)\\ (a+b)+c &= a+(b+c)\\ (a\oplus b)\oplus c &= a\oplus (b\oplus c) \end{aligned}$

distributive:

```
a(b+c) = ab + aca+bc = (a+b)(a+c)
```

de Morgan's laws:

```
\overline{a+b} = \bar{a}\bar{b}\overline{(ab)} = \bar{a} + \bar{b}etc
```

absorption:

```
a(a+b) = aa+ab = aa+\bar{a}b = a+bno name:
```

$$ab + ab = a$$