CSC 180 lab 7B: Structs
Thurs Oct 25 or Mon Oct 29, 2001

Note: For week 7, there are twhalf-labs; this weels lab assignment is a combination obteeparate,
short topics.Please also see lab 7AC6mmand-line aguments.

Last weeks lab examined arrays, araggregae” data type. This weeks lab xamines another aggrae
data type, calledrecords’ i n most programming languagesitiralled “struct” (for “structure’) in C.

A struct is not uniform lile an array. It contains a specified list ofwvious data types, and each item
gets aname, not an inde.

1. A struct can be used to represent a time iraleo¥ the format 12:34:56, as folls:

struct tineinfo {
int hours;
int mns;
int secs;
s
The ‘timeinfo” i dentifier there is called the strutag”; this creates a type calle@truct timeinfo’, so
that we can later declaranables such astruct timeinfo x;’. (I didn't call it “'time’ because there is
already a C library function calletiime™.)
If xis of type ‘struct timeinfo’, then its members can be referred to as x.hours, x.mins, and x.secs.

2. If we want to pass structs to functions, or return them from functions, we can do so imitus ey
But we frequently pagintersto structs instead, so that the called function can modify the struct
members. live declare a function

void normalize(struct timeinfo *p)
then we could call this function by saying
normal i ze(&) ;

and it could adjust the hours, mins, and secs memb¥éithin the function normalize(), itewuld have ©
say things lilke *p).hours. Theprecedence of *’ andis duch that those parentheses are necessary
However, there is an alternate syntax, which'ts>"’ (a minus sign and a greatdran sign, bt we think
of it as an arne). So* something—>otherthingis short for “(*something).otherthing’ Thusinside
normalize, we could refer to p—>hours, p—>mins, and p—>secs.

3. Write the function‘hormalize’. It has the follving specification, referring to th®ld’’ values of
hours, mins, and secs before the call, and'tieev” values after it returnsAll of the following should be
made true:

* (oldhours * 60 + oldmins) * 60 + oldsecs =\®urs * 60 + nemins) * 60 + navsecs

* 0 < newsecs < 60

* 0 < nevmins < 60
(Thus ngaive-forty minutes is represented by —1 hours and 20 minu®ekl, kut this males it not a
special case.)

4. Write a little test program to try your normalize functidrhe test program should read in the three
numbers (you can pass thingsli&x.hours to scanf()), call normalize(), then output the reséis.
example, an input of 0 hours, 0 minutes, and 3601 seconds should output 1 hours, 0 minutes, and 1
seconds.

5. Given the normalize function, a function to addotimes together is easyf you hase ime, after

doing lab 7A, write a function which tak two sruct parameters (not pointers to struct) and returns a
struct (a@in, not a pointer to a struct) which is the sum of treetimes. Itcan declare a result struct; set
its hours alue to the sum of the tmergument hours, its minutesle to the sum of the tnargument
minutes, and its secondalue to the sum of the tmargument seconds; then normalize thidue; then
return it.

