
CSC 180 lab 7A: Command-line arguments
Thurs Oct 25 or Mon Oct 29, 2001

Note: For week 7, there are two half-labs; this week’s lab session is a combination of two separate, short
topics. Pleasealso see lab 7B, ‘‘Structs’’.

As a systems-oriented programming language, C must provide a facility to pick up ‘‘command-line
arguments’’. For example, when you type ‘‘cat file’’, the ‘‘cat’’ command has to be able to find that string
‘‘ file’’.

C does this by providing an alternate allowable definition of main(), whose declaration looks like
this:

int main(int argc, char **argv)

‘‘ argc’’ stands for ‘‘argument count’’. It is the number of elements in ‘‘argv’’, ‘ ‘argument vector’’
(‘‘vector’’ i s another word for ‘‘array’’, in computer programming).While these are theoretically
arbitrary parameter names, the use of the names ‘‘argc’’ and ‘‘argv’’ i s so standard that you should not use
any other name.

1. Write a program using this extended main() declaration syntax, and simply print the value of argc.
Run it with various numbers of arguments, e.g.

./a.out x y z a b c

./a.out

./a.out x a

The value is always one more than you might expect. Thisis because that ‘‘./a.out’’ i s included in the
count, and is available as argv[0].

2. Since a string can be passed around as a value of type pointer-to-char, argv should be an array of
strings. Andwhen it is passed to main() by the operating system, it will decay into a pointer to its zeroth
element, so the data will be of type pointer-to-pointer to char.

Write a program which first checks that argc is at least 2, then prints the value of argv[1] (using %s).
A session with this program might look like this, where ‘%’ is your shell prompt:

% ./a.out hello, world
hello,
%

Since "world" is argv[2], it didn’t print that part.The shell (command interpreter) divides up the
arguments based on spaces.

3. Write a program which prints all of the argv values in a loop.Try it out.

