
CSC 180 Assignment 1, Fall 2001
Due at the end of Thursday October 4, 2001; no late assignments without written explanation.

Calculations involving dates and times are often more complex than one might think.There are
a number of interesting programming problems in this area.

This assignment involves the calculation of the day of the week (e.g.‘‘ Sunday’’) from the
year, month, and day number of a given date. Thereis a standard algorithm for this, as follows.

• Let D be the day number, from 1 to 31.E.g. for Sept 3, 2001, D=3.
• Let M be a special month number counting from March as follows: For January, M=11;

for February, M=12; for March, M=1; and so on to December for which M=10.
• If i t’s January or February, subtract one from the year.
• Let C be the century portion of the adjusted year (e.g. for 1937, C=19).
• Let Y be the last two digits of the adjusted year, i.e. the year without the century

(e.g. for 1937, C=37 . . . or 36 if the month is January or February).
• Compute a value as follows, where ‘‘div’’ i s integer division (division without remainder

or fractions): (26M − 2) div 10 + D + Y + Y div 4 + C div 4 − 2C + 7777
• The remainder when this value is divided by 7 (that is, this value mod 7) is the weekday

number, where 0 is Sunday, 1 is Monday, and so on through 6 which is Saturday.

A weekday-calculating function

Write a function ‘‘weekday’’, declared as ‘‘ int weekday(int year, int month, int day) ’’ ,
which takes a date as three integers and returns the weekday number using the above algorithm.
It does not print anything; it returns a value, like the math library functions, for the caller to do
what they want with it.

Compiled with the following function in a separate file:

#include <stdio.h>

int main()
{

extern int weekday(int year, int month, int day);
printf("%d\n", weekday(1937, 6, 18));
return 0;

}

it should output 5, because June 18th, 1937, was a Friday. The above file can be copied from

˜ ajr/a1/testweekday.c on an ECF machine.

A short main pr ogram to call weekday()

Write a main function in a separate file, main.c, which prompts for the year, month, and day of a
date, and calls the weekday() function you wrote above. If you call scanf() with a format
argument of "%d%d%d", it will return 3 if the user enters the three integers properly. Otherwise,
say ‘‘Bad input’’ (a better message would be possible, but is not the focus of this assignment) and

(over)



- 2 -

do not proceed.
The user’s input should then be checked. Any year is acceptable, including negative years,

but the day number must be between 1 and 31 (inclusive) and the month number must be
between 1 and 12 (inclusive). If they enter an invalid day or month number, say ‘‘Invalid date’’
and do not proceed.

Otherwise, call the weekday function, and output the answer in the following format. The
entire interaction looks like this, where ‘‘1937 6 18’’ i s the user input.

Input year, month, and day, in that order
1937 6 18
The 18th day of the 6th month in the year 1937 is weekday number 5

To assist our use of the grading software, please format your output exactly as above, and use
those exact two error messages (‘‘Bad input’’ and ‘‘Invalid date’’).

A main program with no extraneous output

Make a version of that main.c in a new file, toolmain.c, which is less ‘‘user-friendly’’ but perhaps
more useful as a tool in conjunction with other programs or scripts.It will not output a prompt,
and it will not label the output.It immediately does a scanf; it still checks for errors; but if there
are no errors it simply outputs the weekday number with no labelling.

The entire interaction would look like this, where ‘‘1937 6 18’’ i s the user input.

1937 6 18
5

The first Monday after a given date

Write a program which uses weekday() to find the first Monday starting from a given date. For
example, June 14th, 1937, is a Monday. If the user enters that date (‘‘1937 6 14’’), it is simply
output. Ifthe user enters the date ‘‘1937 6 18’’, which is not a Monday, your program
increments the day number in a loop until it arrives at 1937/06/21, which is the next Monday.

To avoid repeating the code from above, this program does not need to check the return
value from scanf nor check that the month and day numbers are in the correct range.It can just
call scanf() and ignore the return value, and proceed with the calculation.

This program should not prompt for the input, either.
However, its output should be nicely formatted in accordance with the following example,

where again, ‘‘1937 6 18’’ i s the user input.

1937 6 18
1937/06/21 is a Monday

Optionally, you can use the ‘0’ printf modifier to print leading zeroes, and a field width to specify
how wide you want the field to be.The above ‘‘06’’ and ‘‘21’’ were formatted with ‘‘%02d’’
instead of the simple ‘‘%d’’.

You do not need to deal with the case where the next Monday is in the next month.

(continued)



- 3 -

File submission
Each file must begin with a ‘‘prologue comment’’ i ncluding any useful description of the file and
also your full name, your student number, and your tutorial room and time (on Tuesday—the
tutorial, not the lab session).

Your program should use proper indentation as illustrated by programs in lecture and in the
textbook.

Your filesmust have the names weekday.c, main.c, toolmain.c, and firstmonday.c, and they
must obey the inter-file interface specifications above. That is, your weekday.c must work with
the example main function from page 1 in a separate file, and all of your variant main functions
in main.c, toolmain.c, and firstmonday.c must work with your weekday.c (or anyone else’s
correct weekday.c, such as mine).

When you are done, submit your files for grading.You submit the source code files, not the
compiled files.Submit your files with the command

submitcsc180f 1 weekday.c main.c toolmain.c firstmonday.c

You may still change your files and resubmit them with the same command any time up to the
due time.You can check that your assignment has been submitted with the command

submitcsc180f -l 1

(Note that the option is ‘‘−l’ ’ w ith the letter L, for list, although the argument at the end is ‘‘1’ ’,
the digit, for assignment 1.)This is the only submission method; you do not turn in any paper.

Remember: This assignment is due at the end of Thursday, October 4th at midnightsharp. Late
assignments are not ordinarily accepted andalways require a written explanation. Even if you
are just a few minutes late, you must submit a written explanation for lateness or we will not
know to check back for your assignment.Check the submission time with ‘‘submitcsc180f −l 1’’.

If you are not finished your assignment by the submission deadline, you should just submit
what you have, for partial marks.Getting two out of the 5% isn’t quite the end of the world if
you just do it once (although obviously it’s suboptimal), and it’s certainly better than a zero.
Most of all, I don’t want to create the situation where you get further and further behind in all
your work and lose more and more marks.There’s a time allotted to each assignment; you do
what you can in the time allotted.

Despite the above, I’d l ike it to be clear that if thereis a legitimate reason for lateness,
please do submit your assignment late and give me that written explanation. Ifyou know in
advance that you’re going to be late for a good reason, please talk with me about it in advance;
although be warned that my suggestion might be that you should simply submit in advance.

I’d also like to point out that even a zero out of 5% is much better than cheating and
suffering an academic penalty. Don’t cheat even if you’re under pressure.Whatever the penalty
ev entually applied for cheating, it will be worse than merely a zero on the assignment.


