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Abstract

A problem of increasing importance in computer graphics is to generate data with the style of some
previous training data, but satisfying new constraints. If we use a probabilistic latent variable model,
then learning the model will normally be performed using Expectation-Maximization (EM), or one of
its generalizations. We show that data synthesis for such problems can also be performed using EM,
and that this synthesis process closely parallels learning, including identical E-step algorithms. This
observation simplifies the process of developing synthesis algorithms for latent variable models.

1 Introduction

A problem of increasing importance in computer graphics is to generate data with the statistics or style of
some previous training data, but satisfying new constraints. For example, in character animation, we may
wish to create new animations satisfying user-specified positional constraints, in the style of some original
training data.

A powerful way to describe the statistics and styles is to write a PDFp(x|θ) over data, wherex de-
notes a data vector (e.g., a character pose, an animation sequence, a 3D model, etc.), andθ describe model
parameters. The likelihood of a collection of data vectors (e.g., training data is)

∏
i p(xi|θ).

In a latent variable model, the likelihood of a data vector is described in terms of an additionallatent
variablehi (or “hidden variable”)

p(x|θ) =
∑
j

p(x,h = hj |θ) (1)

=
∑
j

p(x|h = hj , θ)p(h = hj |θ) (2)

where{hj} are the possible values ofh. If h is a continuous variable, then the summation is replaced by
integration of the possible values ofh. Many popular models — including Mixtures-of-Gaussians, Linear
Dynamical Systems, and Hidden Markov Models —- can be described as latent variable models [11].

In a typical application, there will be two phases:
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1. Learning. Given training data{xi}, estimate the modelθ.

2. Synthesis. Given a modelθ, and new constraints onx, estimatex

The synthesis step may pose numerical and computational difficulties if the latent variables are uncon-
strained. Previous work avoided this difficulty by using prior estimates of the hidden variables [2, 3, 6] or
user-selected values [8]; such approximations are difficult to come by in the presence of external constraints
on the output (such as keyframe constraints). Wang et al. [12] use EM in motion synthesis; in our analysis,
their method becomes a special case.

One of the most effective algortihms for learning in latent variable models is the Expectation-Maximization
algorithm [4] and its generalizations. In this note, we show that data synthesis for such problems can also
be performed using EM and that this synthesis process closely parallels learning. Specifically, the E-step
of synthesis is identical to the E-step in learning, and the M-step of synthesis optimizes the same objective
function as the M-step of learning. These observations simplify the process of developing synthesis algo-
rithms for latent variable models. Our derivation is based on the free energy formulation of EM [7, 9], and
follows from the observation that the free energy is the same for both learning and synthesis.

2 Learning with EM

Learningθ by maximum likelihood is achieved by optimizing:

θ∗ = arg max
θ

∏
i

p(xi|θ) (3)

= arg min
θ
L(θ) (4)

where
L(θ) ≡ −

∑
i

ln p(xi|θ) (5)

In latent variable models, this objective function is:

L(θ) ≡ −
∑

i

ln
∑
j

p(xi,hi = hj |θ) (6)

It often happens that this objective function is difficult or expensive to work with, to optimize or even to
evaluate. In these cases, the EM algorithm can be derived by introducingvariational parametersγij . These
parameters are free parameters, subject only to the constraint that

∑
j γij = 1.

We can derive the following variational bound [7, 9]:

L(θ) = −
∑

i

ln
∑
j

p(xi,hi = hj |θ) (7)

= −
∑

i

ln
∑
j

p(xi,hi = hj |θ)
γij

γij
(8)

≤ −
∑
ij

γij ln
p(xi,hi = hj |θ)

γij
(9)
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= −
∑
ij

γij ln p(xi,hi = hj |θ)−
∑
ij

γij ln γij (10)

≡ F(θ, γ) (11)

The bound follows from Jensen’s inequality (ln
∑

i λixi ≥
∑

i λi lnxi if
∑

i λi = 1). The quantityF(θ, γ)
is called the variational free energy.

Suppose, for a given value ofθ we want to minimize the free energy w.r.t.γ:

γ∗ = arg min
γ
F(θ, γ) (12)

By solving ∂
∂γF(θ, γ) = 0 subject to the constraints

∑
j γij = 1 (enforced using Lagrange multipliers), we

obtain:

γ∗ij = p(hi = hj |xj , θ) (13)

In other words, the optimal variational parameters is the probability distribution over the latent variables,
given the input data.

Substitutingγ∗ into the free energy and rearranging terms gives:

L(θ) = F(θ, γ∗) (14)

= min
γ
F(θ, γ) (15)

From this follows the key result, that minimizingF(θ, γ) with respect toθ andγ is equivalent to minimizing
L(θ):

min
θ
L(θ) = min

θ,γ
F(θ, γ) (16)

The EM algorithm alternates between minimizing the free energy with respect toγ andθ:

loop until convergence
E-step: γ ← arg minγ F(θ, γ)
M-step: θ ← arg minθ F(θ, γ)

At convergence, the estimateθ is guaranteed to be a local minimum ofL(θ).

3 Synthesis with EM

Given a modelθ and constraintsC, we can definep(x|θ, C) = p(x|θ)p(x|C)/Z whereZ is a normalization
constant. This might correspond to a model in which the constraintsC are observed as a function of the
unknownx, i.e., according top(C|x). These constraints could be provided by user interaction, by observa-
tions, or other computations. Then, we wish to generate data by maximizing the probability of the data and
the constraints:

x∗ = arg max
x

p(x|θ, C) (17)
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= arg max
x

p(x|θ)p(x|C) (18)

= arg min
x
− ln p(x|θ)− ln p(x|C) (19)

= arg min
x
− ln

∑
j

p(x,h = hj |θ)− ln p(x|C) (20)

≡ arg min
x
L(x) (21)

If we have hard constraints instead of soft constraints, then the synthesis problem is:

x∗ = arg min
x
− ln p(x|θ) (22)

s.t.C(x) = 0 (23)

This corresponds to a constraint distribution that is a delta-function aroundx values that satisfy the con-
straints. For the rest of the discussion, we will assume soft constraints.

We can derive a free energy following the same derivation as before, obtaining in the end:

F(x, γ) = −
∑
j

γj ln p(x,h = hj |θ)− ln p(x|C)−
∑
j

γj ln γj (24)

The variational parameterγ is now a vector (with
∑

j γj = 1), since we are only synthesizing a singlex
data point. We again have the useful property:

L(x) = min
γ
Fx(x, γ) (25)

The EM for synthesis algorithm is:

loop until convergence
E-step: γ ← arg minγ F(x, γ)
M-step: x← arg minxF(x, γ)

Note that the free energy for synthesis is nearly identical to the free energy for learning, except for the
additional constraints, and of course the fact that there is only one data vector. The two main results are:

1. The E-step for synthesis is identical to the E-step for learning.

2. The M-step for synthesis optimizes the same objective function as M-step for synthesis, plus
constraints.

This parallel between the two algorithms simplifies development of synthesis algorithms — one may even
use the same source code for the E-step in synthesis as for learning. The M-step will be different For
example, to synthesize animations from a Hidden Markov Model, we would alternate between numerical
optimization of the target animation, and an E-step that is identical to the standard Forward-Backward
algorithm used for HMMs. In retrospect, it is clear that the analysis and synthesis E-steps used in [12]
should be identical.

Similar intuitions apply to generalizations of EM. For example, if an exact E-step is intractable, then
variational learning may be useful [7]. In this case, one may use the same approximate E-step for both
learning and synthesis.
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Another way of understanding the correspondence between learning and synthesis is to observe that
both learning and synthesis are equivalent to maximizing the joint probability of the data and the model:

p(x, θ) = p(x|θ)p(θ) = p(θ|x)p(x) (26)

In other words: in learning, we computearg maxθ p(θ|x) = arg maxθ p(x, θ), and, in synthesis, we com-
putearg maxx p(x|θ) = arg maxx p(x, θ). We can derive a single free energy that bounds this joint proba-
bility:

F(x, θ, γ) ≥ − ln p(x, θ) (27)

In learning with EM, we minimize this free energy w.r.t.x andγ, and, in synthesis, we minimize this same
free energy w.r.t.θ andγ.

4 Example: Mixtures-of-Gaussians

As an example, we consider the Mixtures-of-Gaussian (MoG) model [1, 10]. An MoG consists ofK Gaus-
sian PDFs, with Gaussianj having meanµj and covarianceφj . A K-dimensional vectorπ is provided,
satisfying

∑K
j=1 πj = 1. A vector is sampled from the MoG model by first selecting one of the Gaussians

— Gaussiani is selected with probabilityπj — and then sampling from that Gaussian. We can also label
a data point with a latent variableL that indicates which Gaussian the data point was sampled from. More
formally:

P (L = i|θ) = πj (28)

p(x|L = i, θ) = N (x|µj ;φj) (29)

where the parameter vectorθ = [π, µ, φ] encapsulates the parameters of the MoG, andN (x|µj ;φj) denotes
a multidimensional Gaussian PDF with meanµj and covarianceφj :

N (x|µ;φ) =
1√

(2π)d|φ|
exp

(
−1

2
(x− µ)T φ−1(x− µ)

)
(30)

whered is the dimensionality of the data vector. We can write the entire MoG PDF by marginalizing over
L:

p(x|θ) =
K∑

j=1

p(x, L = i|θ) =
K∑

j=1

p(x|L = i, θ)P (L = i|θ) (31)

=
K∑

j=1

πjN (x|µj ;φj) (32)

Hence, the complete PDFp(x|θ) is a linear combination of Gaussians.
The free energy for the MoG model andN data pointsxi is given by:

F({xi}, θ, γ) =
1
2

∑
ij

γij(xi − µj)T φ−1
j (xi − µj) +

1
2

∑
ij

γij ln(2π)d|φj | −
∑
ij

γij lnπj (33)

−
∑
ij

γij ln γij (34)
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In learning, we alternate between minimization w.r.t.γ, and with respect toθ. The E-step update is:

γij ← πjN (xi|µj ;φj)∑K
j=1 πjN (xi|µj ;φj)

(35)

In the M-step, the update toθ is:

πj ←
N∑

j=1

γij/N (36)

µj ←
N∑

j=1

γijxi/
∑
j

γij (37)

φj ←
N∑

j=1

γij(xi − µj)(xi − µj)T /
∑
j

γij (38)

Note thatπj is computed as the proportion of data points labeled with Gaussiani; µj is the weighted mean
of the data points; andφj is the weighted covariance of the data points.

In synthesis, we wish to generate a single data vectorx subject, given a modelx and some additional
constraintsC. In other words, our goal is to minimize the free energy w.r.t.x andγ subject toC(x) = 0.
The E-step is the same as before, except thatγ is now a vector (since there is only one data point):

γj ← πjN (x|µj ;φj)∑
j πjN (x|µj ;φj)

(39)

For the M-step, the free energy can be written as:

A =
∑
j

γjφ
−1
j (40)

b =
∑
j

γjφ
−1
j µj (41)

F(x, γ) =
1
2
xTAx− bTx (42)

plus constant terms that do not depend onx. The M-step entails minimization of this quadratic objective
function w.r.t.x, s.t.C(x) = 0. If x is unconstrained, then the M-step update is:

x ← A−1b (43)

5 Generalizations

The observations here apply as well to the various generalizations of the EM algorithm, such as variational
learning, Monte Carlo EM, and EM-ECG. In each case, the generalized E-steps used in synthesis mirror
those used in learning.
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