
Paparazzi: Surface Editing by way of Multi-View Image Processing

HSUEH-TI DEREK LIU, MICHAEL TAO, ALEC JACOBSON, University of Toronto, Canada

ne

ural sty
le transfer

superpixel

L0 smoothing

Fig. 1. Paparazzi enables plug-and-play image processing algorithms on 3D shapes. For instance, superpixel produces a Mosaic style shape; L0 norm makes
the shape piecewise planar but preserves features such as the noses; style transfer synthesizes the artistic style from a painting to the geometry. Note that the
images are just for showing the 2D effects, they are not in the Paparazzi optimization loop.

The image processing pipeline boasts a wide variety of complex filters and

effects. Translating an individual effect to operate on 3D surface geometry

inevitably results in a bespoke algorithm. Instead, we propose a general-

purpose back-end optimization that allows users to edit an input 3D surface

by simply selecting an off-the-shelf image processing filter. We achieve this

by constructing a differentiable triangle mesh renderer, with which we can

back propagate changes in the image domain to the 3D mesh vertex positions.

The given image processing technique is applied to the entire shape via

stochastic snapshots of the shape: hence, we call our method Paparazzi.
We provide simple yet important design considerations to construct the

Paparazzi renderer and optimization algorithms. The power of this rendering-

based surface editing is demonstrated via the variety of image processing

filters we apply. Each application uses an off-the-shelf implementation of

an image processing method without requiring modification to the core

Paparazzi algorithm.

CCS Concepts: • Computing methodologies → Rendering; Mesh ge-
ometry models;

Additional Key Words and Phrases: geometry processing, surface editing,

inverse graphics, image-based modeling, geometric deformation

ACM Reference Format:
Hsueh-Ti Derek Liu, Michael Tao, Alec Jacobson. 2018. Paparazzi: Surface

Editing by way of Multi-View Image Processing. 1, 1 (September 2018),

11 pages. https://doi.org/10.1145/8888888.7777777

Author’s address: Hsueh-Ti Derek Liu, Michael Tao, Alec Jacobson, University of

Toronto, 40 St. George Street, Toronto, ON, M5S 2E4, Canada, hsuehtil@cs.toronto.edu.

ACM acknowledges that this contribution was authored or co-authored by an employee,

contractor, or affiliate of the United States government. As such, the United States

government retains a nonexclusive, royalty-free right to publish or reproduce this

article, or to allow others to do so, for government purposes only.

© 2018 Association for Computing Machinery.

XXXX-XXXX/2018/9-ART $15.00

https://doi.org/10.1145/8888888.7777777

1 INTRODUCTION
Decades of digital image processing research has culminated in

a wealth of complex filters and effects. These filters are not only

important as pre- and post-processes to other techniques in the

image-processing pipeline, but also as useful tools for graphic de-

signers and satisfying effects for consumers and social media users.

Many of these filters depend heavily on the regular structure of

pixel grids. For example, convolutional neural networks leverage

this regularity to enable high-level, advanced filtering operations,

such as neural style transfer.

While some simple image processing filters (e.g., Laplacian smooth-

ing) have direct analogs for 3D geometry processing, building analogs
of more complex filters often requires special case handling to ac-

commodate arbitrary topologies, curved metrics, and irregular trian-

gle mesh combinatorics found in 3D surface data. Moreover, many

image processing methods are difficult to redefine for 3D geometry.

For instance, artistic styles of paintings can be effectively captured

and transferred across images, but it is not immediately clear how

to transfer the style of a 2D painting to a 3D surface.

In this paper, we develop a novel machinery, Paparazzi, to simul-

taneously generalize a large family of image editing techniques to

3D shapes. The key idea is to modify an input 3D surface mesh by

applying a desired image processing technique on many rendered

snapshots of the shape (hence, Paparazzi). Essential to the core of

Paparazzi is our differentiable rendering process that allows the

propagation of changes in the image domain to changes in the mesh

vertex positions. We first construct a stochastic multi-view optimiza-

tion for generalizing energy-minimization-based image processing

techniques. We then generalize this algorithm further to accommo-

date generic iterative image-processing filters. The renderer and its

, Vol. 1, No. 1, Article . Publication date: September 2018.

https://doi.org/10.1145/8888888.7777777
https://doi.org/10.1145/8888888.7777777


2 • Hsueh-Ti Derek Liu, Michael Tao, Alec Jacobson

parameters are carefully constructed to consider view sampling, oc-

clusion, and shading ambiguities. The intermediary and output trian-

gle meshes of our optimization are filtered to ensure watertightness,

facilitating downstream geometry processing applications, such as

3D printing (see inset for a 3D-printed L0-smoothing Frog from

Fig. 1). We demonstrate the versatility and plug-and-play nature

of Paparazzi by generalizing a handful of

image filtering techniques to 3D shapes, in-

cluding guided filters, quantization, super-

pixel, L0-smoothing, and neural style trans-

fer.With Paparazzi, we generalize these im-

age filters to geometry by simply plugging

existing implementations in.

2 RELATED WORK
Our work touches topics across visual computing, including ren-

dering, computer vision, and geometry processing. We focus our

discussion on methods similar in methodology or application.

Differential rendering. Rendering is the forward process of syn-

thesizing an image given information about the scene geometry,

materials, lighting and viewing conditions. Solving the inverse prob-
lem is tantamount to solving computer vision. Loper and Black

[2014] propose a fully differentiable rendering engine, OpenDR,

using automatic differentiation. Their renderer is differentiable to

any input parameter – not just geometry, thus more general than

ours. Though they demonstrate considerable speedup over naive

finite differences when differentiating with respect to many mesh

vertices, our analytical derivative results in orders of magnitude

speedups over their method for the case we consider in this paper

(see Fig. 2). Liu et al. [2017] propose a neural network architecture

to approximate the forward image formation process, and predicts

intrinsic parameters, shape, illumination, and material, from a single

image. This neural network approach is differentiable and utilizes

existing data to achieve plausible material editing results. How-

ever, it is approximate and requires a large training effort for each

task and for each rendering parameter. Many other differentiable or

invertible renderers have been constructed for estimating materi-

als/microgeometry [Gkioulekas et al. 2013; Zhao 2014] or lighting

conditions [Marschner and Greenberg 1997; Ramamoorthi and Han-

rahan 2001]. While our lighting conditions and materials are quite

tame (flat shading with three directional lights), we differentiate the

entire image with respect to all mesh vertex positions.

Our analytic derivatives are faster and scale better than exist-

ing automatic differentiation frameworks: OpenDR (forward mode)

[Loper and Black 2014] and the TensorFlow 3D Mesh Renderer

(reverse mode, a.k.a., back propagation) [Genova et al. 2018]. On

a single machine, Paparazzi can handle problems with more than

100,000 variables, but OpenDR and TensorFlow run out of mem-

ory on problems with few thousand and few hundreds variables

respectively. In Fig. 2, our runtime (on a 256×256 image) is orders

of magnitude faster.

Image-based Surface Editing. In geometric modeling, a number

of previous methods have proposed interactive or automatic meth-

ods to edit a shape by directly specifying its rendered appearance

Derivative Runtime (log-log)time (sec.)

10-1

100

#vertices

Our derivative

TensorFlow 

OpenDR

out of 
memory

200 400 800

Fig. 2. We compare runtime per iteration of our approach with two autodiff-
based approaches (256×256 image). Our approach is faster and scales better.

[Kerautret et al. 2005; Tosun et al. 2007; Van Overveld 1996]. For ex-

ample, Gingold and Zorin [2008] allow a user to paint darkening and

brightening strokes on a surface rendered with a single light source.

To overcome the shading ambiguity — a thorny issue shared by all

shape-from-shading methods — they choose the deformation that

would minimally change the existing surface. Instead, we overcome

this ambiguity by increasing the lighting complexity. Schüller et al.

[2014] take advantage of the bas-relief ambiguity for Lambertian

surfaces to create bounded thickness surfaces that have the same

appearance as a given surface from a particular view. A unique

contribution of our work is that we optimize for desired appearance

over all views of a surface using stochastic gradient descent.

Image-based methods are widely used for mesh simplification

and accelerated rendering [Weier et al. 2017]. These methods re-

duce polygon meshes for rendering efficiency, but preserve their

perceptual appearance [El-Sana et al. 1999; Hoppe 1997; Lindstrom

and Turk 2000; Luebke and Erikson 1997; Luebke and Hallen 2001;

Williams et al. 2003; Xia and Varshney 1996]. The success of image-

driven simplification demonstrates the power of image-driven meth-

ods, but only as a metric. Our method goes one step further, and

utilize rendering similarity to generalize a large family of image

processing techniques to surface editing.

[Kato et al. 2017]

Kato et al. [2017] generalize neural style transfer to 3D meshes by

applying image style transfer on renderings. At a high level, their

approach is similar to Paparazzi insofar as they propagate the im-

age gradient to the geometry, but their derivatives are approximate
while ours are analytical. In particular, they consider whether a

pixel is covered by a certain triangle, which requires approximating

a non-differentiable step function with respect to motions of mesh

vertices in 3D. In contrast, we consider how a triangle’s orientation

(per-face normal) changes under an infinitesimal perturbation of a

mesh vertex. This captures the continuous change of each pixel’s

color and enables analytical derivatives. Kato et al. [2017] do not

prevent self-intersections (see red above) that inevitably arise dur-

ing large deformations. Self-intersections may lead to diverging or

sub-par optimization results. These differences make Paparazzi a
more general image-driven method for creating high-quality, even

fabricable 3D objects.

, Vol. 1, No. 1, Article . Publication date: September 2018.



Paparazzi: Surface Editing by way of Multi-View Image Processing • 3

single-view L0 smoothing [Xu et al. 2011]

Fig. 3. The Bunny is optimized so the gradient of its rendered image for a
single view is minimal in an L0 sense.

Shape from shading. Recovering geometry from photographed

(or rendered) images is known as the “shape from shading” problem.

This subfield itself is quite broad, so we defer to existing surveys

[Prados and Faugeras 2006; Zhang et al. 1999] and focus on the most

related methods. Given insufficient or unreliable data, shape from

shading algorithms typically fall back on assumptions for regular-

ization, such as surface smoothness [Barron and Malik 2015], and

consequently produce less detailed models. The single view shape

from shading problem is made easier in the presence of per-pixel

depth information, where inverse rendering can be used to refine
the depth geometry to match the shading image [Or-El et al. 2016;

Wu et al. 2014]. Shading-based depth refinement can be extended

to full-shape reconstruction refinement if given multiple depth and

shading images from different views [Choe et al. 2017; Robertini

et al. 2017; Wu et al. 2011]. Gargallo et al. [2007] exactly differentiate

the reprojection error function with respect to the unknown surface.

Delaunoy and Prados [2011] extend this to minimize image-based

regularization terms to aid in multi-view surface reconstruction. All

such shape-from-shading methods are built around assumptions

that the input data is captured – however unreliably – from an

underlying fully realized physical shape. Our problem is similar to

multi-view shading-based geometry refinement but there is a major

difference – we have access to an general underlying geometric

representation. We utilize this access to develop a more powerful

framework that generalizes various image processing directly to 3D,

rather than just geometry refinement.

Single-purpose Geometry Processing Filters. In our results, we show
examples of various filters being applied to geometry by simply

attaching Paparazzi to existing image-processing code (e.g., Skim-

age [Van der Walt et al. 2014]). Our results demonstrate that we suc-

cessfully transfer these effects: for example, [Xu et al. 2011] creates

piecewise-constant images, and via Paparazzi we use their method

to create piecewise-constant appearance geometry (see Fig. 3 for

a single-view example). Some of the image-processing filters we

use for demonstration purposes have previously been translated
to triangle meshes as single-purpose filters. For example, He and

Schaefer [2013] introduce a novel edge-based Laplacian to apply L0
regularization to meshes. Similarly, in order to create a 3D analogy

of guided filters [He et al. 2010] for meshes, Zhang et al. [2015]

design a specific triangle-clustering method tailored to guided filter-

ing. Extending texture synthesis to 3D geometry has been an active

research area [Dumas et al. 2015; Gu et al. 2002; Knöppel et al. 2015;

Lai et al. 2005; Landreneau and Schaefer 2010; Turk 1991; Wei and

Source I’ Result R(V)V

Fig. 4. A sphere is deformed to match a source image I ′ from the perspective
of a single camera.

Levoy 2001], the typical challenges lie in accounting for curvature

and irregular mesh discretizations.

Rather than increment the state of the art for any specific mesh

filter or application (e.g., denoising), our technical contribution is

a suite of algorithms to provide a general-purpose, plug-and-play

machinery for directly applying a large family of image processing

filters to 3D. We evaluate our results in terms of how well Paparazzi
correctly applies the image-processing effect to the input geometry.

3 OVERVIEW
Paparazzi is a general-purpose machinery that allows a user to apply

an image-processing filter to 3D geometry, without needing to rede-

fine that filter for surfaces or even implement new code for triangle

meshes. The input to our method is a non-self-intersecting, mani-

fold triangle mesh and a specified image-processing technique. The

output is a non-self-intersecting deformation of this mesh, whose

appearance has undergone the given processing. The core insight

is that if we can pull gradients back from rendered images to ver-

tices then we can apply gradient-descent-based optimization with

respect to vertex positions. We first describe the well-posed scenario

where the specified image-processing technique is described as an

energy optimization in the image domain. Subsequently, we show

that a slight modification to our energy-based method enables us to

generalize to the class of iterative image-processing techniques.

3.1 Energy-Based Image Filters
Many image editing algorithms can be formulated as the minimiza-

tion of a differentiable, image-domain energy E. In the ideal setting,

we extend any such energy minimization to surfaces by considering

the integral of this energy applied to all possible rendered images

for a space of camera “views”:

min

V

∫
i ∈views

E (Ri (V )),

where Ri is a function mapping a mesh with vertices V to an image.

Minimization is straightforward to write as a gradient descent

with respect to vertices using the chain rule:

V ← V −

∫
i ∈views

∂E

∂Ri

∂Ri
∂V
. (1)

The space of views can be tuned to satisfy problem-specific needs.

For instance, it could be as small as a single front-on camera or as

large as the space of all cameras where some amount of geometry is

visible. We defer discussion of a good default choice until Section 6.

Consider the toy example of an energy-based image editing al-

gorithm visible in Figure 4, where the energy E is simply the L2

, Vol. 1, No. 1, Article . Publication date: September 2018.



4 • Hsueh-Ti Derek Liu, Michael Tao, Alec Jacobson

iteration 1 iteration 2 iteration 3 iteration 4

…

Fig. 5. We sample a view per iteration in the multi-view optimization.

distance to a rendering of another shape. In the optimization, we

consider only a single view of a sphere. After gradient descent, the

sphere’s geometry is deformed so that this one view is impercepti-

bly similar to the source image. For a single view, our method only

changes vertices that affect that view’s rendering, which makes this

result appear like a decal.

The presence of the Jacobian ∂Ri/∂V exposes the main require-

ment of the renderer R: differentiability with respect to vertex posi-

tions. In this paper, we present an as-simple-as-possible renderer

that is analytically differentiable with mild assumptions and is ef-

fective for generating high-quality geometries (see Section 5).

3.2 Stochastic Multi-view Optimization
When we look at a single view, the analytical derivative ∂R/∂V

enables the direct generalization of image processing algorithms

to geometries via Equation (1), but evaluating this integral over a

continuous space or distribution of views is challenging.

We handle this issue by borrowing tools from the machine learn-

ing community, who have extensively applied gradient descent to

energies involving integrals or large summations when training

deep networks [Bottou et al. 2016; Ruder 2016]. Rather than attempt

to compute the integrated gradient exactly, we leverage stochastic

gradient descent (SGD) and update the geometry with the gradient

of a small subset of the views, as few as one. As is common in ma-

chine learning literature, we apply momentum both to regularize

the noise introduced by using a stochastic gradient and to improve

general performance with the Nesterov-Adam method [Dozat 2016],

a variant of gradient descent that combines momentum and Nes-

terov’s accelerated gradient. Our stochastic multi-view optimization

is summarized in Algorithm 1.

As the mesh deforms according to the optimization, the quality

of triangles may degrade and self-intersections may (and inevitably

will) occur. We discuss the importance of interleaving a mesh quality

improvement stage in our optimization loop in Section 4.3.

3.3 Iterative Image Filters
With only minor modifications we may generalize our method from

energy-based deformations to the realm of iterative filters, generi-

cally defined as an iterative process acting in the image domain:

Ij+1 ← f (Ij ).

We replace the energy gradient with the update induced by a

single iteration of the filter by replacing the derivative ∂E/∂R with

the difference ∆R := f (R) − R. The update to the mesh vertex

positions becomes:

V ← V −

∫
i ∈views

( f (Ri (V )) − Ri (V ))
∂Ri
∂V
.

Algorithm 1: Energy-Based Method

Input:
V0, F0 triangle mesh

R renderer

E image energy

Output:
V , F optimized triangle mesh

begin
V , F ← V0, F0;

O ← offset surface from V0, F0;

while E not converge do
i ← sample camera from O ;
∂E/∂Ri ← compute image derivative for camera i ;
∂Ri/∂V ← compute shape derivative for camera i;

V ← V − γ ∂E
∂Ri

∂Ri
∂V ;

V , F ← CleanMesh(V , F );

Algorithm 2: Iterative Filter Method

Input:
V0, F0 triangle mesh

R renderer

f image filter

Output:
V , F optimized triangle mesh

begin
V , F ← V0, F0;

O ← offset surface from V0, F0;

for iteration < max. iterations do
i ← sample camera from O ;

∆Ri ← f (Ri (V )) − Ri (V );
∂Ri/∂V ← compute shape derivative for camera i;

V ← V − γ∆Ri
∂Ri
∂V ;

V , F ← CleanMesh(V , F );

This generalization works when no individual application of the

iterative filter modifies the image by too much. In our experiments

this is close enough to smoothness to allow for our method to

converge to a geometry that matches the result of the filter from

different views
1
. If a single application of the filter creates a dramatic

effect, then our optimization can accommodate by using a smaller

step size γ . The resulting algorithm is therefore Algorithm 2.

Before demonstrating results (Section 7), we describe the consid-

erations we made when designing our renderer and parameters.

4 DESIGN CONSIDERATIONS
By working with renderings of geometry, image processing tech-

niques may be applied in their native form on the rendered images

of pixels. This allows Paparazzi to immediately generalize to a large

1
When f is an first order explicit Euler over an energy’s gradient this method is

precisely our original method.

, Vol. 1, No. 1, Article . Publication date: September 2018.



Paparazzi: Surface Editing by way of Multi-View Image Processing • 5

family of image processing techniques, but shifts the burden to de-

signing a rendering setup that faithfully captures the geometry and

presents it in a meaningful way to the image processing technique.

Where and how we render the geometry will have a large impact

on the quality of the results.

4.1 Camera Sampling
A good camera placement strategy should “see” every part of the

surface with equal probability. A surface patch that is never seen by

any camera will not be changed. On the other hand, a surface patch

that is visible to too many cameras will be updated faster than other

surface regions and result in discontinuity between surface patches.

According to these two criteria: full

coverage and uniform sampling, Pa-
parazzi uniformly samples cameras on

an offset surface at distance σ , whose
points are at a fixed distance from the

given shape, facing along inward ver-

tex normals. This placement ensures

that we are less biased to certain views,

have smooth camera views around

sharp edges, and have full coverage for most of the shapes. In-

creasing and decreasing σ only affects the near plane because we

use an orthographic camera. We set σ to 5% of the shape’s bounding

box diameter for small-scale deformation and 25% for large-scale

deformation (see Section 6 for values of each experiment).

4.2 Lighting & Shading
Our image-driven surface editor is designed so that inputs and

outputs are both 3D shapes, thus the quality of intermediate ren-

derings are only important insofar as we achieve the desired output

geometry. We propose an as-simple-as-possible default renderer

for Paparazzi, but take special care to avoid lighting and shading

ambiguities that would cause artifacts during optimization.

Shading Ambiguity. It is well-known that a single directional

light is not sufficient to disambiguate convex and concave shapes

and slope directions (see, e.g., [Liu and Todd 2004]). Just as this

shading ambiguity can confuse human observes, it will confuse

Paparazzi’s optimization. One reason is that a single directional

light is not sufficient to disambiguate convex/concave shapes and

slope directions (see Fig. 6).

Our simple solution, inspired by photometric stereo [Woodham

1980], is to increase the complexity of the lighting. By specifying

three axis-aligned direction lights with R, G, B colors respectively,

we effectively render an image of the surface normal vectors. This

avoids the shading ambiguity.

Gouraud Ambiguity. A more subtle, but nonetheless critical am-

biguity appears if we follow the common computer graphics prac-

tice of smoothing and interpolating per-vertex lighting/normals

within a triangle. When rendering a triangle mesh (especially if low-

resolution), Gouraud shading [1971] or Phong shading [1975] will

make the shape appear smoother than the actual piecewise-linear

geometry. While this illusion is convenient for efficient rendering,

its inherent averaging causes an ambiguity. A surface with rough

simple lighting complex lighting

Fig. 6. Shading ambiguity. Convex/concave shapes may result in the same
image under a single directional light (middle). Adding complexity to the
lighting could resolve the shading ambiguity.

Gouraud shading flat shadingoptimization 
using Gouraud

reference sphere

input

Fig. 7. Gouraud ambiguity. Given a bumpy sphere (left), we minimize im-
age Dirichlet energy under Gouraud shading to get the smoothed sphere
(middle). Comparing the renderings of the smoothed region, we observe
Gouraud ambiguity which the rendering of a non-smoothed sphere is very
similar to the rendered smooth sphere (left column), but flat shading reveals
the difference (right column).

geometry can still produce a smooth rendering under Gouraud

shading. We refer to this the Gouraud ambiguity. Using Gouraud

shading during optimization in Paparazzi would immediately in-

troduce a null space, leading to numerical issues and undesirable

bumpy geometries
2
(see Fig. 7). Instead, we propose using flat shad-

ing. This is, in a sense, the most honest rendering of the triangle

mesh’s piecewise-linear geometry.

4.3 MeshQuality
So far, our rendering choices are sufficient for Paparazzi to make

small changes to the surface geometry but as the mesh continues

to deform, the quality of individual triangles will degrade and even

degenerate. Furthermore, local and global self-intersections may

occur. For many of the image processing filters we consider, we

2
We use a fast finite difference approach for the optimization under Gouraud shading.

, Vol. 1, No. 1, Article . Publication date: September 2018.



6 • Hsueh-Ti Derek Liu, Michael Tao, Alec Jacobson

with El Topo

without El Topo

0.08

0.06

0.04

0.02

iterations

L2 Pixel Differencevalue

without El Topo

with El Topo

Fig. 8. Shape optimization without El Topo (bottom) may cause self-
intersections (red), despite the fact that the rendering is similar to the
one with El Topo (top). Besides, optimization with El Topo results in lower
error (left). Note that the peaks in the plot are where we perform El Topo.

would like sharp creases and corners to emerge during surface

deformation which may not be possible without re-meshing.

These challenges and specifications bear resemblance to re-meshing

needed during surface-tracking fluid simulation. We borrow a state-

of-the-art tool from that community, El Topo [Brochu and Bridson

2009], a package for robust explicit surface tracking with trian-

gle meshes. It enables Paparazzi to generate manifold watertight

meshes without self-intersections and refines the mesh in areas of

high curvature which allows us to introduce sharp features without

worrying about mesh locking. In Fig. 8, we can see that shape opti-

mization requires El Topo to abate issues with bad mesh quality and

self-intersections, even though the rendered results are comparable.

El Topo handles two types of operations essential to the success

of Paparazzi: those that are critical for maintaining manifold, non-

intersecting meshes and those associated with triangle quality. We

feed El Topo the current non-self-intersecting mesh vertices and

faces as well as the new desired vertex locations. El Topo checks for

whether triangles will collide or become too close together through-

out the continuous motion from the current positions to the desired

positions. This can either result in repulsive forces or in topological

changes depending on user-defined thresholds. In order to improve

the quality of the mesh, which improves the robustness of collision

detection, El Topo does standard mesh improvement operations

such as edge splitting and edge flipping, which improve the aspect

ratios of triangles without affecting the overall topology of the mesh.

El Topo also subdivides and decimates meshes to improve the qual-

ity of the mesh near high and low curvature regions respectively

by keeping edge angles between a user-defined interval.

Remeshing and collision handling are essential for maintaining

high-qualitymeshes during and after optimization, but it is also time-

consuming — especially compared to our derivative computation.

This is visible in Fig. 9, where we can see that El Topo dominates

the total runtime. Because deformations between any individual

iteration are generally small, in practice we invoke El Topo every

30 iterations, providing an empirically determined balance between

computation time and optimization performance.

5 DIFFERENTIABLE RENDERER
So far, we have discussed the design considerations of Paparazzi. As
intermediate renderings are not the outputs, we have the flexibility

time (sec.)

number of vertices

10-2

10-1

100
Runtime Decomposition (log-log)

104 10510-3

103

El Topo time/30 derivative

Fig. 9. We show the decomposition of our total runtime, excluding the image
processing part. The top half is the time for the derivative computation; The
bottom half shows 1/30 of the El Topo runtime.

in designing a suitable renderer which addresses the aforementioned

challenges and, more importantly, is differentiable. In particular

we present a differentiable renderer that allows us to analytically

compute ∂R/∂V , and to generalize image processing to 3D geometry.

5.1 Visibility
The rendering of a triangle mesh with flat shading is continuous

away from silhouettes and occluding contours. It is differentiable

almost everywhere: at all points on the image plane lying inside a

triangle, but not across triangle edges or vertices (a set with measure

zero). Therefore, we assume infinitesimal changes of surface points

will not change the visibility because in practice we only have finite

image resolution on computers.

Visibility may change under large vertex perturbations eventually

incurred in our optimization loop. Fortunately, due to the efficiency

of z-buffering in the real-time rendering engine OpenGL, updating

visibility can be handled efficiently by re-rendering the shape once

every iteration.

5.2 Analytic derivative
Given our design choices of local illumination and Lambertian sur-

face, we renderm directional lights pointed by directions
ˆℓi (a unit

vector in R3) with corresponding RGB colors {cRi , c
G
i , c

B
i } ∈ [0, 1],

the output color {rRp , r
G
p , r

B
p } ∈ [0, 1] at a pixel p is computed by

rRp = n̂j ·
m∑
i=1

ˆℓic
R
i , rGp = n̂j ·

m∑
i=1

ˆℓic
G
i , rBp = n̂j ·

m∑
i=1

ˆℓic
B
i ,

where n̂j is a unit vector in R3 representing the normal of the jth
face of the triangle meshV , and the jth face is the nearest face under

pixel p.
Without the loss of generality, we only write the red component

rRp in our derivation as rGp , r
B
p share the same formulation. We can

analytically differentiate this formula with respect to the vertex

positions to form each row ∂rRp/∂V ∈ R3 |V | of the sparse Jacobian
matrix. Only the position of each vertex vk ∈ R3 at a corner of the
jth triangle contributes:

∂rRp

∂vk
=




∂n̂j
∂vk

m∑
i=1

ˆℓic
R
i if vertex k is corner of triangle j,

0 otherwise.

Finally, the 3×3 Jacobian of face normals n̂j over triangle vertices vk ,

, Vol. 1, No. 1, Article . Publication date: September 2018.



Paparazzi: Surface Editing by way of Multi-View Image Processing • 7

nj
^ hjk

vk

∂n̂j/∂vk , can be computed analytically. Note
that moving vk in the triangle’s plane will

not change n̂j . Also, in the limit, moving

along n̂j only changes n̂j in the hjk direc-

tion where hjk ∈ R3 is the “height” vector: the shortest vector to
the corner vk from the line of the opposite edge. This implies that

the Jacobian must be some scalar multiple of hjk n̂Tj . This change is
inversely proportional to ∥hjk ∥, the distance of vk to the opposite

edge, which means:

∂n̂j
∂vk

=
hjk n̂Tj
∥hjk ∥2

.

6 IMPLEMENTATION
In our experiments, we normalize shapes to fit in a unit-radius cube

centered at the origin and upsample shapes to reach 10
5
-10

6
vertices

in order to capture geometric detail. By default, we use a square,

orthographic camera with a 0.5-wide field of view placed at an

offset of σ = 0.1, where the units are those of the OpenGL canonical

view volume. The offset surface meshes have 10
3
-10

4
vertices. By

default we use three directional lights in red, green, and blue colors

respectively along each local camera axis, which is equivalent to

rendering the surface normals in the camera frame.

We implement our derivative computation in Python using vec-

torized Numpy operations and calls to OpenGL for rendering and

rasterization. We use libigl [Jacobson et al. 2016] and the Mesh-

mixer [Schmidt and Singh 2010] for mesh upsampling and offset

surface computation. We test our implementation on a Linux work-

station with an Intel Xeon 3.5GHz CPU, 64GB of RAM, and an

NVIDIA GeForce GTX 1080 GPU.

6.1 Off-the-Shelf Image Processing Filters
We have designed Paparazzi to plug-and-play with existing image

processing filters. We are able to use open, readily available, imple-

mentations of image-space filters with minimal effort. To evaluate

our method we used a handful of off-the-shelf image filters. We use

a Python implementation of the fast guided filter [He and Sun 2015],

found at github.com/swehrwein/python-guided-filter. For SLIC su-

perpixels [Achanta et al. 2012] we use the implementation in the

popular Python image processing library, Skimage. We translated

a Matlab implementation of image smoothing with L0-smoothing

[Xu et al. 2011] from github.com/soundsilence/ImageSmoothing into

L0 smoothsuperpixelguided filt. quantizationoriginal

Fig. 10. Paparazzi allows direct generalization of image processing to 3D,
thus different image editing effects can be directly transfered to 3D shapes.

Python. For neural style transfer [Gatys et al. 2016], we followed

the corresponding PyTorch [Paszke et al. 2017] tutorial with minor

modification to extract the ∂E/∂Ri gradient. We implemented sim-

ple image quantization with a fixed palette ourselves (see review in

[Ozturk et al. 2014]).

Applying these filters to 3D geometry requires no modification

of the Paparazzi algorithms. The caller either provides the ∂E/∂Ri
gradient to use Algorithm 1 for energy-based methods or provides

the filter f as a function handle to use Algorithm 2 for iterative

methods. From a user’s prospective, trying various filters is quite

effortless. In Fig. 10 we demonstrate how Paparazzi produces differ-
ent results for the various smoothing-type filters we tested. Each

result respects the intent of the particular image processing filter,

but now applied to a 3D surface.

7 EVALUATION & DISCUSSION
In Table 1, we decompose our runtime in terms of subroutines:

derivative computation, image processing, and mesh cleaning us-

ing El Topo. Our differentiation is orders of magnitude faster than

previous methods (see Fig. 2). Mesh cleaning is the bottleneck for

high-resolution meshes (see Fig. 9). Because our multi-view opti-

mization processes the rendering of local patches multiple times,

the runtime performance of the particular input image processing

method is amplified by our approach (e.g., simple quantization is

much faster than neural style transfer).

va
lu

e
iteration

Sampled Multi-View Energy For energy-based filters, eval-

uating the integrated multi-

view energy would require ren-

dering and evaluating from all

possible camera views. Even ap-

proximating this with a finite

number of views every iteration

would be too expensive. Instead, to evaluate convergence behavior

we can set up a camera at a fixed view and evaluate its visible energy

as the multi-view optimization stochastically decreases the (unmea-

sured) integrated energy. The energy of the particular rendering

does not represent the value of multi-view energy, but the conver-

gence behavior implies the convergence of multi-view energy. In the

inset, we show the convergence of the neural style transfer energy.

Example |V | |R | Iters. ∆R El Topo ∂R/∂V Tot.
Guided 26K 128 3K 1.03s 0.13s 0.08s 64m

L0 40K 256 3K 0.45s 0.17s 0.12s 40m

SLIC 43K 256 3K 0.10s 0.28s 0.14s 28m

Quant. 48K 256 1K 0.12s 0.27s 0.16s 11m

Neural 143K 128 10K 0.03s 1.73s 0.48s 390m

Table 1. For each Example image-processing filter on a mesh with |V |
vertices, rendering |R |2 pixels for Iters. iterations, we list average seconds
per iteration to call the image processing filter or gather its gradient ∆R ,
invoking El Topo (slowest), and computing ∂R/∂V (bold; fastest). Finally,
we report Total time to make a result in minutes.

, Vol. 1, No. 1, Article . Publication date: September 2018.

http://github.com/swehrwein/python-guided-filter
http://github.com/soundsilence/ImageSmoothing


8 • Hsueh-Ti Derek Liu, Michael Tao, Alec Jacobson

V P R(P) V’

Fig. 11. We transfer geometric details from the input point cloud P to the
input shape V through rendering R (P ) the point cloud.

7.1 Evaluation on Image Filters
We evaluate Paparazzi according to its ability to reproduce the

effect of 2D filters on 3D shapes, instead of its domain-specific

success for any specific application (e.g., denoising). In Fig. 10 we

see that changing the image processing filter indeed changes the

resulting edited shape. Guided filter correctly achieves an edge-

preserving smoothing effect; quantization makes surface patches

align with predefined normals
3
; superpixel creates super-faces; and

L0-smoothing results in piecewise planar geometry. We can see that

these filters are correctly transferred to 3D geometry in a plug-and-

play fashion. All the while, our remeshing ensures the output mesh

is watertight.

We start by considering a simple yet powerful differentiable en-

ergy – the L2 pixel difference. Because its derivatives ∂E/∂R are

known, we apply Algorithm 1 to generalize this energy to 3D shapes.

By caching the rendering of one geometry we can use this energy

minimization to transfer its appearance to another geometry. Com-

pared to dedicated mesh transfer tools (e.g., [Takayama et al. 2011])

we do not require the source geometry to be another triangle mesh:

simply anything we can render. In Fig. 11 we can transfer details

from point cloud P to a triangle meshV by minimizing the L2 image

difference ∥R (P ) − R (V )∥2. We use a simple splat rendering but this

example would immediately fit from more advanced point cloud

rendering (see, e.g., [Kobbelt and Botsch 2004]).

The source geometry could be a mesh with defects such as self-

intersections and holes. In Fig. 12, we transfer a triangle soup’s

appearance on top of a smooth surface reconstruction created using

robust signed distance offsetting [Barill et al. 2018]. The result is

a new watertight mesh with the appearance of the messy input,

which previous mesh repairing methods have difficulty preserving

[Attene 2010, 2016]. This mesh is now fit for 3D printing.

In the following Figures 13–17, the images on the left are given

as a reference to show the corresponding image processing and

are not used to make the surface editing results. By construction

our 3D inputs and outputs mirror the “analogies” of Hertzmann

et al. [2001], but unlike that method we have direct access to the

underlying image processing algorithm.

We now explore a more complicated energy — the Neural Style

energy. Recently, inspired by the power of Convolutional Neural

Network (CNN) [Krizhevsky et al. 2012], Neural Style Transfer has
been a popular tool for transferring artistic styles from painting to

other images [Gatys et al. 2016]. The goal is to generate a stylized

image given a content image and a reference style image. Gatys et al.

3
A palette containing the edge and face normals of a cube.

input defects [Attene 10] [Attene 16] ours 3D print

Fig. 12. We can repair a mesh with disconnected parts and self-intersections
by creating a coarse proxy and then applying detail transfer. These defects
are visualized by MeshmMixer [Schmidt and Singh 2010] and proved chal-
lenging for dedicated mesh cleaning methods.

[2016] define the total energy to be the summation of content and

style energies, where the content energy encourages the stylized

output image to have similar image structure with the content image

and the style energy encourages the output to have similar features

with the reference style image. Note that the features are defined

using the filter responses of a CNN across different layers.

Transferring artistic styles to 3D geometries is challenging be-

cause the redefinition of 2D painting styles on 3D is unclear. With

Paparazzi, we can generalize it by applying the image neural style

transfer on the renderings. Because the image gradient can be com-

puted by differentiating the CNN, we can use Algorithm 1 to gen-

erate stylized shapes. In Fig. 13, Paparazzi transfers the style of

2D paintings to 3D via growing geometric textures (we provide

implementation detail about image neural style in Appendix A).

A large portion of image processing algorithms are not based

on energy minimization but applying iterative procedures. These

algorithms may not have a well-defined energy or, even if they do,

may not have an easily computable gradient. Fortunately, Paparazzi
provides an effortless way to generalize a variety of iterative image

filters using Algorithm 2. The high-level idea is to perform image

update on the rendering once, and update the shape once based on

how the image change due to the image update.

Guided filters [He et al. 2010] compute the filtered image output

by considering the content of a guidance image, the guidance image

can be another image or the input itself. He et al. [2010] shows

Neural Style Transfer [Gatys et al. 2016]

Fig. 13. We generalize the neural style transfer to 3D by minimizing the
style energy of local renderings through manipulating vertex positions.

, Vol. 1, No. 1, Article . Publication date: September 2018.



Paparazzi: Surface Editing by way of Multi-View Image Processing • 9

Fast Guided Filter [He and Sun 2015]

Fig. 14. We generalize the fast guided filter to 3D and achieve edge-
preserving smoothing effect.

Quantization [Ozturk et al. 2014]

Fig. 15. Image quantization is applied to geometries and make surface
patches facing toward pre-defined color palettes.

that the guided filter is effective in a variety of image processing

applications including edge-aware smoothing, detail enhancement,

image feathering, and so on. In Fig. 14 we apply the edge-aware

smoothing guided filter with the acceleration proposed in [He and

Sun 2015]. We set the guidance image to be the input and the filter

parameters to be r = 4, ϵ = 0.02. By plugging this filter to the filter

function f in Algorithm 2, we can see that the guided filter smooths

3D shapes and preserves sharp features.

In addition to edge-preserving smoothing, we are interested in

utilizing image filters to create different visual effects on geometry.

A simple by stylistic choice is image quantization, an image com-

pression technique compressing a range of color values to a single

value and representing an image with only a small set of colors

[Ozturk et al. 2014]. Again, by changing the filter f in Algorithm 2,

we can quantize 3D shapes with pre-define color set
4
(see Fig. 15).

Note that these colors are encoded in the world coordinate, thus the

shape quantization is orientation dependent and requires rendering

normals in world coordinates, which is different from other filters

that render normals in local coordinates.

Another pixel segmentation approach, but based on both color

and spatial information, is the superpixel. In Fig. 16, we use Simple

Linear Iterative Clustering (SLIC) [Achanta et al. 2012] which adapts

k-means to segment pixels to create "super-faces" on shapes.

Last but not least, we consider a filter that minimizes the L0 norm
of image gradient [Xu et al. 2011]. L0 norm has been a popular tool

4
The pre-defined color set are the color of 20 face normals of a icosahedron

SLIC Superpixel [Achanta et al. 2012]

Fig. 16. The SLIC superpixel method is applied to 3D objects, results in
small surface patches appearing on the shape

Smoothing with L0 Gradient Regularization [Xu et al. 2011]

Fig. 17. We minimize the L0 norm of image gradients and encourage the
output shapes (blue) to be piece-wise planar.

for image and signal processing for decades because it is a direct

measure of signal sparsity. However, L0 norm can be difficult to

optimize due to its discrete, combinatorial nature. Xu et al. [2011]

present an iterative image optimization method to minimize L0 gra-
dient and generate edge-preserving, piecewise constant filtering

effects. With Algorithm 2 we can simply apply such iterative proce-

dures to generalize the effect of L0 norm to a 3D shape and make it

piecewise planar which is the 3D analogue of piecewise constant in

images (see Fig. 17).

8 LIMITATIONS & FUTURE WORK
Paparazzi samples a precomputed off-

set surface for camera locations. This

means heavily occluded or tight in-

ner cavities of a surface will not re-

ceive edits (e.g., inside an alligator’s

mouth). It also means the shape is im-

plicitly trapped inside its original offset

surface cage. Removing this cage con-

straint and predicting the change of visibility would aid to creating

large shape deformations. For a stricter and more deterministic

image energy, it would be important to align the cameras’ orien-

tation to encourage consistency across views in the overlapped

regions. Meanwhile, we only present analytic derivatives for flat-

shaded triangle meshes; similar derivatives could be derived for

other representations such as subdivision surfaces or NURBS mod-

els. Paparazzi’s differentiation is orders of magnitude faster than

, Vol. 1, No. 1, Article . Publication date: September 2018.



10 • Hsueh-Ti Derek Liu, Michael Tao, Alec Jacobson

previous work. In future work, we would like to further improve

the performance of Paparazzi by exploiting the parallelism of the

stochastic multi-view optimization and improving the collision-

detection needed for dynamic meshing (currently, El Topo — used

as a black-box — dominates our runtime, see Fig. 9).

At its core, Paparazzi is a differentiable renderer with a stochastic

multiview gradient-descent procedure that can back propagate im-

age changes to a 3D surface. Paparazzi imposes a 3D interpretation

of a 2D filter, but could be an useful tool for studying other filters

that have no straightforward 3D interpretation. Extending Paparazzi
to operate with global illumination and textures as well as more so-

phisticated lighting models could be beneficial for applications that

require realistic renderings, such as image classification. In our neu-

ral style transfer examples, we show only a small indication of the

larger possibility for Paparazzi’s usefulness to transfer the success

of image-based deep learning to 3D surface geometry. Paparazzi
demonstrates the utility of rendering not just for visualization, but

also as a method for editing of 3D shapes. It is exciting to consider

other ways Paparazzi can influence and interact with the geometry

processing pipeline.

ACKNOWLEDGMENTS
Thiswork is funded in part byNSERCDiscoveryGrants (RGPIN2017-

05235 & RGPAS-2017-507938 & RGPIN-2017-05524), NSERC DAS

(RGPAS-2017-507909), Connaught Funds (NR2016-17), the Canada

Research Chairs Program, and gifts by Adobe Systems Inc, Autodesk

Inc, and Fields Institute. We thank members of Dynamic Graphics

Project, including R. Abdrashitov, R. Arora, G. Barill, E. Corman, L.

Fulton, T. Jeruzalski, J. Kenji, S. Kushner, D. Levin, J. Li, V. Modi, D.

Moore, R. Schmidt, M. Wei, for early feedback and draft reviews;

D. Nowrouzezahrai and M. McGuire for discussions about differen-

tiable renderers and their applications.

REFERENCES
Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and

Sabine Süsstrunk. 2012. SLIC superpixels compared to state-of-the-art superpixel

methods. IEEE transactions on pattern analysis and machine intelligence 34, 11 (2012),
2274–2282.

Marco Attene. 2010. A lightweight approach to repairing digitized polygon meshes.

The visual computer 26, 11 (2010), 1393–1406.
Marco Attene. 2016. As-exact-as-possible repair of unprintable STL files. arXiv preprint

arXiv:1605.07829 (2016).
Gavin Barill, Neil Dickson, Ryan Schmidt, David I.W. Levin, and Alec Jacobson. 2018.

Fast Winding Numbers for Soups and Clouds. ACM Transactions on Graphics (2018).
Jonathan T Barron and Jitendra Malik. 2015. Shape, illumination, and reflectance from

shading. IEEE transactions on pattern analysis and machine intelligence 37, 8 (2015),
1670–1687.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. 2016. Optimization methods for

large-scale machine learning. arXiv preprint arXiv:1606.04838 (2016).
Tyson Brochu and Robert Bridson. 2009. Robust topological operations for dynamic

explicit surfaces. SIAM Journal on Scientific Computing 31, 4 (2009), 2472–2493.

Gyeongmin Choe, Jaesik Park, Yu-Wing Tai, and In So Kweon. 2017. Refining Geometry

from Depth Sensors using IR Shading Images. Inter. Journal of Computer Vision
(2017).

Amaël Delaunoy and Emmanuel Prados. 2011. Gradient flows for optimizing triangular

mesh-based surfaces: Applications to 3d reconstruction problems dealing with

visibility. International journal of computer vision 95, 2 (2011), 100–123.

Timothy Dozat. 2016. Incorporating nesterov momentum into adam. (2016).

Jérémie Dumas, An Lu, Sylvain Lefebvre, JunWu, and Christian Dick. 2015. By-example

synthesis of structurally sound patterns. ACM Transactions on Graphics (TOG) 34, 4
(2015), 137.

Jihad El-Sana, Elvir Azanli, and Amitabh Varshney. 1999. Skip strips: maintaining

triangle strips for view-dependent rendering. In Proceedings of the conference on
Visualization’99: celebrating ten years. IEEE Computer Society Press, 131–138.

Pau Gargallo, Emmanuel Prados, and Peter Sturm. 2007. Minimizing the reprojection

error in surface reconstruction from images. In Computer Vision, 2007. ICCV 2007.
IEEE 11th International Conference on. IEEE, 1–8.

Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. 2016. Image Style Transfer

Using Convolutional Neural Networks. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016. 2414–2423.

Kyle Genova, Forrester Cole, Aaron Maschinot, Aaron Sarna, Daniel Vlasic, and

William T. Freeman. 2018. Unsupervised Training for 3D Morphable Model Regres-

sion. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
Yotam Gingold and Denis Zorin. 2008. Shading-based surface editing. ACM Transactions

on Graphics (TOG) 27, 3 (2008), 95.
Ioannis Gkioulekas, Shuang Zhao, Kavita Bala, Todd Zickler, and Anat Levin. 2013.

Inverse volume rendering with material dictionaries. ACM Transactions on Graphics
(TOG) 32, 6 (2013), 162.

Henri Gouraud. 1971. Continuous shading of curved surfaces. IEEE transactions on
computers 100, 6 (1971), 623–629.

Xianfeng Gu, Steven J Gortler, and Hugues Hoppe. 2002. Geometry images. ACM
Transactions on Graphics (TOG) 21, 3 (2002), 355–361.

Kaiming He and Jian Sun. 2015. Fast Guided Filter. CoRR abs/1505.00996 (2015).

http://arxiv.org/abs/1505.00996

Kaiming He, Jian Sun, and Xiaoou Tang. 2010. Guided image filtering. In European
conference on computer vision. Springer, 1–14.

Lei He and Scott Schaefer. 2013. Mesh denoising via L 0 minimization. ACM Transactions
on Graphics (TOG) 32, 4 (2013), 64.

Aaron Hertzmann, Charles E Jacobs, Nuria Oliver, Brian Curless, and David H Salesin.

2001. Image analogies. In Proceedings of the 28th annual conference on Computer
graphics and interactive techniques. ACM, 327–340.

Hugues Hoppe. 1997. View-dependent refinement of progressive meshes. In Proceedings
of the 24th annual conference on Computer graphics and interactive techniques. ACM
Press/Addison-Wesley Publishing Co., 189–198.

Alec Jacobson, Daniele Panozzo, et al. 2016. libigl: A simple C++ geometry processing

library. (2016). http://libigl.github.io/libigl/.

Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. 2017. Neural 3D Mesh Renderer.

CoRR abs/1711.07566 (2017). arXiv:1711.07566 http://arxiv.org/abs/1711.07566

Bertrand Kerautret, Xavier Granier, and Achille Braquelaire. 2005. Intuitive shape

modeling by shading design. In International Symposium on Smart Graphics. Springer,
163–174.

Felix Knöppel, Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2015. Stripe Patterns

on Surfaces. ACM Trans. Graph. (2015).
Leif Kobbelt and Mario Botsch. 2004. A survey of point-based techniques in computer

graphics. Computers & Graphics 28, 6 (2004), 801–814.
Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-

tion with deep convolutional neural networks. In Advances in neural information
processing systems. 1097–1105.

Y-K Lai, S-M Hu, DX Gu, and Ralph R Martin. 2005. Geometric texture synthesis and

transfer via geometry images. In Proc. SPM.

Eric Landreneau and Scott Schaefer. 2010. Scales and Scale-like Structures. Comput.
Graph. Forum (2010).

Peter Lindstrom and Greg Turk. 2000. Image-driven simplification. ACM Transactions
on Graphics (ToG) 19, 3 (2000), 204–241.

Baoxia Liu and James T Todd. 2004. Perceptual biases in the interpretation of 3D shape

from shading. Vision research (2004).

Guilin Liu, Duygu Ceylan, Ersin Yumer, Jimei Yang, and Jyh-Ming Lien. 2017. Material

Editing Using a Physically Based Rendering Network. In 2017 IEEE International
Conference on Computer Vision (ICCV). IEEE, 2280–2288.

Matthew M Loper and Michael J Black. 2014. OpenDR: An approximate differentiable

renderer. In European Conference on Computer Vision. Springer, 154–169.
David Luebke and Carl Erikson. 1997. View-dependent simplification of arbitrary

polygonal environments. In Proceedings of the 24th annual conference on Computer
graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co.,

199–208.

David Luebke and Benjamin Hallen. 2001. Perceptually driven simplification for inter-

active rendering. In Rendering Techniques 2001. Springer, 223–234.
Stephen R. Marschner and Donald P. Greenberg. 1997. Inverse Lighting for Photography.

In Color and Imaging Conference.
Roy Or-El, Rom Hershkovitz, Aaron Wetzler, Guy Rosman, Alfred M. Bruckstein, and

Ron Kimmel. 2016. Real-Time Depth Refinement for Specular Objects. In Proc. CVPR.
Celal Ozturk, Emrah Hancer, and Dervis Karaboga. 2014. Color image quantization: a

short review and an application with artificial bee colony algorithm. Informatica 25,
3 (2014), 485–503.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary

DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. 2017. Auto-

matic differentiation in PyTorch. (2017).

Bui Tuong Phong. 1975. Illumination for computer generated pictures. Commun. ACM
18, 6 (1975), 311–317.

, Vol. 1, No. 1, Article . Publication date: September 2018.

http://arxiv.org/abs/1505.00996
http://arxiv.org/abs/1711.07566
http://arxiv.org/abs/1711.07566


Paparazzi: Surface Editing by way of Multi-View Image Processing • 11

Emmanuel Prados and Olivier Faugeras. 2006. Shape from shading. Handbook of
mathematical models in computer vision (2006), 375–388.

Ravi Ramamoorthi and Pat Hanrahan. 2001. A Signal-processing Framework for Inverse

Rendering. In Proc. SIGGRAPH.
Nadia Robertini, Dan Casas, Edilson Aguiar, and Christian Theobalt. 2017. Multi-view

Performance Capture of Surface Details. Int. J. Comput. Vision (2017).

Sebastian Ruder. 2016. An overview of gradient descent optimization algorithms. arXiv
preprint arXiv:1609.04747 (2016).

Ryan Schmidt and Karan Singh. 2010. Meshmixer: an interface for rapid mesh compo-

sition. In ACM SIGGRAPH 2010 Talks. ACM, 6.

Christian Schüller, Daniele Panozzo, and Olga Sorkine-Hornung. 2014. Appearance-

mimicking Surfaces. ACM Trans. Graph. (2014).
Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks for

large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).
Kenshi Takayama, Ryan Schmidt, Karan Singh, Takeo Igarashi, Tamy Boubekeur, and

Olga Sorkine. 2011. Geobrush: Interactive mesh geometry cloning. In Computer
Graphics Forum, Vol. 30. Wiley Online Library, 613–622.

Elif Tosun, Yotam I Gingold, Jason Reisman, and Denis Zorin. 2007. Shape optimization

using reflection lines. In Proc. SGP.
Greg Turk. 1991. Generating textures on arbitrary surfaces using reaction-diffusion.

Siggraph (1991).

Stefan Van der Walt, Johannes L Schönberger, Juan Nunez-Iglesias, François Boulogne,

Joshua DWarner, Neil Yager, Emmanuelle Gouillart, and Tony Yu. 2014. scikit-image:

image processing in Python. PeerJ 2 (2014), e453.
CWAM Van Overveld. 1996. Painting gradients: Free-form surface design using shading

patterns.. In Graphics Interface, Vol. 96. 151–158.
Li-Yi Wei and Marc Levoy. 2001. Texture synthesis over arbitrary manifold surfaces.

Siggraph (2001).

Martin Weier, Michael Stengel, Thorsten Roth, Piotr Didyk, Elmar Eisemann, Martin

Eisemann, Steve Grogorick, André Hinkenjann, Ernst Kruijff, Marcus Magnor, et al.

2017. Perception-driven Accelerated Rendering. In Computer Graphics Forum, Vol. 36.

Wiley Online Library, 611–643.

Nathaniel Williams, David Luebke, Jonathan D Cohen, Michael Kelley, and Brenden

Schubert. 2003. Perceptually guided simplification of lit, textured meshes. In Pro-
ceedings of the 2003 symposium on Interactive 3D graphics. ACM, 113–121.

Robert J Woodham. 1980. Photometric method for determining surface orientation

from multiple images. Optical engineering 19, 1 (1980), 191139.

Chenglei Wu, Kiran Varanasi, Yebin Liu, Hans-Peter Seidel, and Christian Theobalt.

2011. Shading-based Dynamic Shape Refinement from Multi-view Video Under

General Illumination. In Proc. ICCV.
Chenglei Wu, Michael Zollhöfer, Matthias Nießner, Marc Stamminger, Shahram Izadi,

and Christian Theobalt. 2014. Real-time shading-based refinement for consumer

depth cameras. ACM Transactions on Graphics (TOG) 33, 6 (2014), 200.
Julie C Xia and Amitabh Varshney. 1996. Dynamic view-dependent simplification for

polygonal models. In Proceedings of the 7th conference on Visualization’96. IEEE
Computer Society Press, 327–ff.

Li Xu, Cewu Lu, Yi Xu, and Jiaya Jia. 2011. Image smoothing via L 0 gradient minimiza-

tion. In ACM Transactions on Graphics (TOG), Vol. 30. ACM, 174.

Ruo Zhang, Ping-Sing Tsai, James Edwin Cryer, and Mubarak Shah. 1999. Shape-from-

shading: a survey. IEEE transactions on pattern analysis and machine intelligence 21,
8 (1999), 690–706.

Wangyu Zhang, Bailin Deng, Juyong Zhang, Sofien Bouaziz, and Ligang Liu. 2015.

Guided mesh normal filtering. In Computer Graphics Forum, Vol. 34. Wiley Online

Library, 23–34.

Shuang Zhao. 2014. Modeling and rendering fabrics at micron-resolution. Cornell

University.

A NEURAL STYLE IMPLEMENTATION DETAILS
In this section, for the purpose of describing the parameters we used

for the image neural style transfer[Gatys et al. 2016], we briefly

summarize its key ingredients. Because we use this application to

introduce surface details rather than change the large-scale geomet-

ric appearance of an input we have to change some of the lighting

and camera parameters used in Paparazzi.
The goal of image style transfer is to, given a content image Ic

and a reference style image Is , generate an It that both looks similar

to Ic in the style of Is . This is performed by finding the image that

minimizes an energy ENSE, which is defined as a weighted sum of a

content energy and style energy, which are in turn defined on the

feature maps (i.e activations) in each layer of a convolutional neural

network (CNN):

ENSE = w
∑
ℓ

αℓE
ℓ
content

+ (1 −w )
∑
ℓ

βℓE
ℓ
style
,

where w controls the weighting between content and style ener-

gies, αℓ , βℓ correspond to content and style weights for layer ℓ.

The feature maps of It , Ic , Is at layer ℓ of the CNN are denoted by

Tℓ ,Cℓ , Sℓ ∈ RNℓ×Mℓ
respectively, where Nℓ is the number of fea-

tures in the layer ℓ andMℓ is the size of a feature image on the ℓth

layer.

Eℓ
content

is the squared difference between the feature maps of the

target and content images at layer ℓ:

Eℓ
content

=
1

2

Nℓ∑
i=1

Mℓ∑
j=1

(T ℓ
i j −C

ℓ
i j )

2.

Eℓ
style

is squared error between the features correlations expressed

by the Gram matrices over features G of content and style images

at layer ℓ:

Eℓ
style
=

1

4N 2

ℓ
M2

ℓ

Nℓ∑
i=1

Nℓ∑
j=1

(
(Gt )

ℓ
i j − (Gs )

ℓ
i j

)
2

,

Gℓ ∈ RNℓ×Nℓ
for a feature map F ℓ is explicitly written as

Gℓ
i j =

Mℓ∑
k=1

F ℓikF
ℓ
jk .

Both the style of strokes and colors contribute to the image style

energy ENSE but we omit the color style transfer because our focus

is on the 3D geometry, instead of texture. In particular, we capture

the style of strokes from a painting by perturbing vertex positions

in order to create the shading changes required to decrease the style

energy.

To eliminate the influence of the color component, we make both

the style image and the rendered image gray-scale, we use one white

directional light along the y-axis of the camera space to render the

geometry. We also use offset σ = 0.02 and field of view of 0.1,

OpenGL canonical view volume, to zoom in the mesh in order to

generate surface details rather than affect the large-scale geometric

features. We set αℓ , β1 to be 1 for layer conv1_1, conv2_1, conv3_1,
conv4_1, conv5_1 and 0 for the other layers in the VGG network

[Simonyan and Zisserman 2014]. We omit the content energy by

setting w = 0. In our experiments, we can still transfer the style

without losing the original appearance.

, Vol. 1, No. 1, Article . Publication date: September 2018.


	Abstract
	1 Introduction
	2 Related Work
	3 Overview
	3.1 Energy-Based Image Filters
	3.2 Stochastic Multi-view Optimization
	3.3 Iterative Image Filters

	4 Design Considerations
	4.1 Camera Sampling
	4.2 Lighting & Shading
	4.3 Mesh Quality

	5 Differentiable Renderer
	5.1 Visibility
	5.2 Analytic derivative

	6 Implementation
	6.1 Off-the-Shelf Image Processing Filters

	7 Evaluation & Discussion
	7.1 Evaluation on Image Filters

	8 Limitations & Future Work
	Acknowledgments
	References
	A Neural Style Implementation Details

