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We present a method to generalize Matryoshka
to arbitrary shapes
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Nesting requires strict enclosure...

loose enclosure
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Nesting requires strict enclosure...

enclosure

Nested Cages ACM SIGGRAPH Asia 2015

Leonardo Sacht'  Etienne Vouga®>  Alec Jacobson®

'Universidade Federal de Santa Catarina  ?University of Texas at Austin  *Columbia University

Given an input shape (vellow on bottom right), our method constructs nested cages: each subsequent mesh is coarser than the last
and fully encloses it without intersections. A slice through all layers (left), shows a tightly encaged Bunny.
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Nesting also requires removal

loose enclosure enclosed, but not removable
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Nesting also requires removal

loose enclosure enclosed, but not removable enclosed and removable
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We present highly parallelizable methods to...

« determine feasibility of nesting,
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 fiInd maximum scale,
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We present highly parallelizable methods to...

* Ooptimize nesting scale
over some or all parameters

21



Our optimization utilizes rigid motion
for tighter nesting

39%

fixed position+rotation
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Our optimization utilizes rigid motion
for tighter nesting

63%

fixed position+rotation fixed rotation free
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1. shape A,
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We define valid self-nesting
A

Given:

1. shape A,

2. similarity transform T, P
3. cut plane P, and

4. removal trajeetories directions
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We define valid self-nesting
A

Must have:
1. TA)CA, and

2. no collisions along p
either direction after 7
cutting A by P
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Definition depends on choice of cut plane and removal directions.



Some configurations admit perfect self-nesting

convex shapes?
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Some configurations admit perfect self-nesting

convex shapes?
enclosure is easy ....
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Some configurations admit perfect self-nesting

convex shapes?
enclosure is easy ....
but removal depends on cut plane!
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[Zvyozdochkin & Malyutin 1890]
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Perfect self-nesting requires visibility of cut plane at all points along removal directions



Our tool explores
nesting of arbitrary
solid 3D shapes
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We cast this as a computational design problem

® o Autodesk Maya 2016 - Student Version: untitled*

Manual design with
traditional tools
would be tortuous
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® ® Autodesk Maya 2016 - Student Version: untitled* --- bunny:Mesh
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We cast this as a computational design problem

[ JON ] Autodesk Maya 2016 - Student Version: untitled* --- bun
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We cast this as a computational design problem

® @ Autodesk Maya 2016 - Student Version: untitled

Manual design with
traditional tools
would be tortuous
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Step 1: we determine feasibility in real-time
by exploiting orthographic rendering
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Take a clue from order-independent
transparency by “"depth peeling”
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a.k.a. K-Buffer, Layered Depth Images

transparency

shape diameter
image-based rendering
CNC milling
intersection volume
swept volumes

collision detection

CSG operations
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Step 1: we determine feasibility in real-time
by exploiting orthographic rendering

Bad “codes”:
blue before orange
orange before green
orange before front-facing blue
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Step 1: we determine feasibility in real-time
by exploiting orthographic rendering
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Step 1: we determine feasibility in real-time
by exploiting orthographic render\;\ing

“ping-pong” with 2 buffers
GL SAMPLES PASSED

Feasible!
- all green



Step 2: binary search to maximize scale

Assume momentarily
that shape is convex

Fix cut plane,
center of mass,
rotation
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Step 2: binary search to maximize scale

For non-convex shapes
binary search is conservative,

but in practice optimal
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Step 3: optimize over all parameters

70%

maximize scale subject to nesting constraint

!

non-convex energy landscape

710%
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Step 3: optimize over all parameters
via particle swarm optimization

n
k parameter vector as point in nD Xi 6 R



Step 3: optimize over all parameters
via particle swarm optimization

k parameter vector as point in nD

update each iteration according to “velocity”

X; < X; _|_Vi7



Step 3: optimize over all parameters
via particle swarm optimization

k parameter vector as point in nD

pull velocity toward personal best and global best of swarm

Vi < WV; + Cbpf”p(xf —X;) + Pgrg(X! — x;),
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Step 3: optimize over all parameters
via particle swarm optimization

k parameter vector as point in nD

Vi <= WV + Opp(XS — X;) + dgg(x9 — x;),

random perturbations
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... Instead optimize over all others,
and search tor max scale

maximize f(R,c,P,a™,a”)
R,c,P,at a—

where

f = seasrch(R, c,P.at,a

abort search early if

upper bound < best <
A /\ R



Our optimization enables
fully automatic Matryoshka generation...

fully optimized
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63%

... or partially constrained
interactive design

fixed upright orientation
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Tool performs fast enough for interaction

Free Rotation



Tool performs fast enough for interaction
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Fixed Rotation




We validate our results via 3D printing
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We validate our results via 3D printing
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- We validate our results via 3D printing
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We accommodate printer tolerances
by nesting within an offset surface

During validation During carving Result



Our tools trivially generalize to
nesting disparate shapes
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Limitations & Future Work

* no global optimum guarantee
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Limitations & Future Work

e sSearch assumption too conservative

I v
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Limitations & Future Work

* thin shapes don't rigidly nest well




Limitations & Future Work

deformable nesting?
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Limitations & Future Work

1. deform during design

Prevost et al. 112



Limitations & Future Work

2. nest soft physical objects |3

Bickel et al.
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