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Nesting requires strict enclosure…
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We present highly parallelizable methods to…

• determine feasibility of nesting,
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We present highly parallelizable methods to…

• determine feasibility of nesting,
• find maximum scale, and
• optimize nesting scale 

over some or all parameters
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Our optimization utilizes rigid motion
for tighter nesting
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fixed position+rotation fixed rotation free
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We define valid self-nesting

Must have:
1. , and
2. no collisions along 
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Definition depends on choice of cut plane and removal directions.



Some configurations admit perfect self-nesting
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convex shapes?
enclosure is easy ….
but removal depends on cut plane!
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Perfect self-nesting requires visibility of cut plane at all points along removal directions



Our tool explores
nesting of arbitrary 
solid 3D shapes
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Step 1: we determine feasibility in real-time
by exploiting orthographic rendering 
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Take a clue from order-independent 
transparency by “depth peeling”

[Everitt 2001, Bavoil et al. 2007]
[Baldacci et al. 2016]

[Shade et al. 1998]
[Inui & Ohta 2007]
[Faure et al. 2008]

[Kim et al. 2002]
[Myszkowski et al.1995, Knott & Pai 2003, Heidelberger et al. 2004]

[Goldfeather et al. 1986, Kelley et al. 1994, Hable & Rossignac 2005]

a.k.a. K-Buffer, Layered Depth Images
transparency
shape diameter
image-based rendering
CNC milling
intersection volume
swept volumes
collision detection
CSG operations
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Step 1: we determine feasibility in real-time
by exploiting orthographic rendering 

Feasible!
• all green

“ping-pong” with 2 buffers
GL_SAMPLES_PASSED
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Step 3: optimize over all parameters 
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70%

0%

70%

maximize scale subject to nesting constraint 

non-convex energy landscape



Step 3: optimize over all parameters
via particle swarm optimization
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k parameter vector as point in nD

update each iteration according to “velocity”



Step 3: optimize over all parameters
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Step 3: optimize over all parameters
via particle swarm optimization
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random perturbations

k parameter vector as point in nD



Naive P-Swarm would treat scale as 
just another parameter (coordinate)…
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… instead optimize over all others, 
and search for max scale
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… instead optimize over all others, 
and search for max scale
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abort search early if 
upper bound < best



Our optimization enables 
fully automatic Matryoshka generation…
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Automatic Upright Custom Cut Plane

63%
60% 56%

fully optimized



… or partially constrained 
interactive design
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Automatic Upright Custom Cut Plane

63%
60% 56%fixed upright orientation



… or partially constrained 
interactive design
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Automatic Upright Custom Cut Plane

63%
60% 56%

+ fixed cut plane



Tool performs fast enough for interaction
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We validate our results via 3D printing
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We accommodate printer tolerances 
by nesting within an offset surface
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Our tools trivially generalize to 
nesting disparate shapes
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Limitations & Future Work
• no global optimum guarantee
• search assumption too conservative
• thin shapes don’t rigidly nest well
• deformable nesting?

1. deform during design
2. nest soft physical objects

113
Bickel et al.
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