Generalized Matryoshka
Computational Design
of Nesting Objects

Alec Jacobson
University of Toronto

Previous work enables

computational design of reconfigurables
\ 4

Previous work enables
computational design of reconfigurables

..........................

[Garg et al. 2016]

Previous work enables
computational design of reconfigurables

[Garg et al. 2016]

[Zvyozdochkin & Malyutin 1890]

We present a method to generalize Matryoshka
to arbitrary shapes

11

We present a method to generalize Matryoshka

to arbitrary shapes ‘

12

Nesting requires strict enclosure...

loose enclosure

13

Nesting requires strict enclosure...

enclosure

Nested Cages ACM SIGGRAPH Asia 2015

Leonardo Sacht' Etienne Vouga®> Alec Jacobson®

'Universidade Federal de Santa Catarina ?University of Texas at Austin *Columbia University

Given an input shape (vellow on bottom right), our method constructs nested cages: each subsequent mesh is coarser than the last
and fully encloses it without intersections. A slice through all layers (left), shows a tightly encaged Bunny.

14

Nesting also requires removal

loose enclosure enclosed, but not removable

15

Nesting also requires removal

loose enclosure enclosed, but not removable

16

Nesting also requires removal

loose enclosure enclosed, but not removable

17

Nesting also requires removal

loose enclosure enclosed, but not removable enclosed and removable

18

We present highly parallelizable methods to...

« determine feasibility of nesting,

19

We present highly parallelizable methods to...

 fiInd maximum scale,

20

We present highly parallelizable methods to...

* Ooptimize nesting scale
over some or all parameters

21

Our optimization utilizes rigid motion
for tighter nesting

39%

fixed position+rotation

22

Our optimization utilizes rigid motion
for tighter nesting

fixed position+rotation fixed rotation

23

Our optimization utilizes rigid motion
for tighter nesting

63%

fixed position+rotation fixed rotation free

24

We define valid self-nesting
A

Given:
1. shape A,

25

We define valid self-nesting
A

Given:
1. shape A,
2. similarity transform T,

26

We define valid self-nesting
A

Given:

1. shape A,
2. similarity transform T, p (¢ 1A N
3. cut plane P, and

27

We define valid self-nesting
A

Given:

1. shape A,
2. similarity transtorm T, p (¢ STT(A) N
3. cut plane P, and

4. removal trajectories

28

We define valid self-nesting
A

Given:

1. shape A,

2. similarity transform T, P
3. cut plane P, and

4. removal trajeetories directions

29

We define valid self-nesting
A

Must have:
1. TA)CA, and

2. no collisions along p
either direction after 7
cutting A by P

30

Definition depends on choice of cut plane and removal directions.

Some configurations admit perfect self-nesting

convex shapes?

32

Some configurations admit perfect self-nesting

convex shapes?
enclosure is easy

33

Some configurations admit perfect self-nesting

convex shapes?
enclosure is easy
but removal depends on cut plane!

34

[Zvyozdochkin & Malyutin 1890]

36

37

38

39

Perfect self-nesting requires visibility of cut plane at all points along removal directions

Our tool explores
nesting of arbitrary
solid 3D shapes

Our tool explores
nesting of arbitrary
solid 3D shapes

42

Our tool explores
nesting of arbitrary
solid 3D shapes

42

We cast this as a computational design problem

® o Autodesk Maya 2016 - Student Version: untitled*

Manual design with
traditional tools
would be tortuous

44

We cast this as a computational design problem

® ® Autodesk Maya 2016 - Student Version: untitled* --- bunny:Mesh

> B % S @& [77 g O EE
#n" 7 s >3 §F LI ‘,,;3‘ L] gm

Manual design with
traditional tools
would be tortuous

g
[
i
[~ |

o5
[+]

45

We cast this as a computational design problem

[JON] Autodesk Maya 2016 - Student Version: untitled* --- bun
4 EEdEoc Qe O G G @ No Live Surface i

Polygons

Lighting Show Renderer Panels

EBoELBEEIES

Manual design with
traditional tools
would be tortuous

46

We cast this as a computational design problem

® @ Autodesk Maya 2016 - Student Version: untitled

Manual design with
traditional tools
would be tortuous

47

Step 1: we determine feasibility in real-time
by exploiting orthographic rendering

48

Take a clue from order-independent
transparency by “"depth peeling”

GL_BLEND

Take a clue from order-independent
transparency by “"depth peeling”

GL_BLEND Layer 1 Layer 2 Layer 3

Take a clue from order-independent
transparency by “"depth peeling”

GL_BLEND Layer 1 Layer 2 Layer 3 Composite

a.k.a. K-Buffer, Layered Depth Images

transparency

shape diameter
image-based rendering
CNC milling
intersection volume
swept volumes

collision detection

CSG operations

a.k.a. K-Buffer, Layered Depth Images

transparency

shape diameter
image-based rendering
CNC milling
intersection volume
swept volumes

collision detection

CSG operations

Step 1: we determine feasibility in real-time
by exploiting orthographic rendering

54

Step 1: we determine feasibility in real-time
by exploiting orthographic rendering

55

Step 1: we determine feasibility in real-time
by exploiting orthographic rendering

56

Step 1: we determine feasibility in real-time
by exploiting orthographic rendering

57

Step 1: we determine feasibility in real-time
by exploiting orthographic rendering

58

Step 1: we determine feasibility in real-time
by exploiting orthographic rendering

59

Step 1: we determine feasibility in real-time
by exploiting orthographic rendering

60

Step 1: we determine feasibility in real-time
by exploiting orthographic rendering

Bad “codes”:
blue before orange
orange before green
orange before front-facing blue

61

Step 1: we determine feasibility in real-time
by exploiting orthographic rendering

\\\\\\\\\\\\\\\\\

62

Step 1: we determine feasibility in real-time
by exploiting orthographic render\;\ing

\\\\\

\\\\\\\\\\\\\\\\\\\

\\\\\\\\\\\\\\\\\\\\\

Step 1: we determine feasibility in real-time
by exploiting orthographic rendering

Step 1: we determine feasibility in real-time

by exploiting orthographic rendering

Step 1: we determine feasibility in real-time

by exploiting orthographic rendering

Step 1: we determine feasibility in real-time

by exploiting orthographic rendering

Step 1: we determine feasibility in real-time
by exploiting orthographic rende(j\ng

Feasible!
- all green

Step 1: we determine feasibility in real-time
by exploiting orthographic render\;\ing

“ping-pong” with 2 buffers
GL SAMPLES PASSED

Feasible!
- all green

Step 2: binary search to maximize scale

Assume momentarily
that shape is convex

Fix cut plane,
center of mass,
rotation

Step 2: binary search to maximize scale

Assume momentarily
that shape is convex

Fix cut plane,
center of mass,
rotation

Step 2: binary search to maximize scale

Assume momentarily
that shape is convex

Fix cut plane,
center of mass,
rotation

Step 2: binary search to maximize scale

Assume momentarily
that shape is convex

Fix cut plane,
center of mass,
rotation

Step 2: binary search to maximize scale

Assume momentarily
that shape is convex

Fix cut plane,
center of mass,
rotation

Step 2: binary search to maximize scale

Assume momentarily
that shape is convex

Fix cut plane,
center of mass,
rotation

Step 2: binary search to maximize scale

For non-convex shapes
binary search is conservative,

but in practice optimal

/6

Step 2: binary search to maximize scale

For non-convex shapes
binary search is conservative,

but in practice optimal

77

Step 2: binary search to maximize scale

For non-convex shapes
binary search is conservative,

but in practice optimal

/8

Step 2: binary search to maximize scale

For non-convex shapes
binary search is conservative,

but in practice optimal

79

Step 2: binary search to maximize scale

For non-convex shapes
binary search is conservative,

but in practice optimal

80

Step 3: optimize over all parameters

70%

maximize scale subject to nesting constraint

!

non-convex energy landscape

710%

81

Step 3: optimize over all parameters
via particle swarm optimization

n
k parameter vector as point in nD Xi 6 R

Step 3: optimize over all parameters
via particle swarm optimization

k parameter vector as point in nD

update each iteration according to “velocity”

X; < X; _|_Vi7

Step 3: optimize over all parameters
via particle swarm optimization

k parameter vector as point in nD

pull velocity toward personal best and global best of swarm

Vi < WV; + Cbpf”p(xf —X;) + Pgrg(X! — x;),

84

Step 3: optimize over all parameters
via particle swarm optimization

k parameter vector as point in nD

Vi <= WV + Opp(XS — X;) + dgg(x9 — x;),

random perturbations

Naive P-Swarm wou

L

d treat sca

st another parame

maximize S
s,R,c,P.at a—

er (coordir

e as
ate)...

such that T(B) nests in A w.r.t. P,a™,a”

... Instead optimize over all others,

maximize f(R,¢,P,a",a”)
R,c,P,at,a—

all other parameters

. Instead optimize over all others,

maximize f(R,c,P,a™,a”)
R,c,P,at a—

where

f(R,c,P,a",a”) = maximize s
S

such that T(B) nests in A w.r.t. P,a™,a”

... Instead optimize over all others,
and search tor max scale

maximize f(R,c,P,a™,a”)
R,c,P,at a—

where

f ~ search(R, c, P, a’, a”)

... Instead optimize over all others,
and search tor max scale

maximize f(R,c,P,a™,a”)
R,c,P,at a—

where

f = seasrch(R, c,P.at,a

abort search early if

upper bound < best <
A /\ R

Our optimization enables
fully automatic Matryoshka generation...

fully optimized

91

63%

... or partially constrained
interactive design

fixed upright orientation

92

... or partially constrained
interactive design

60%
63%

Tool performs fast enough for interaction

Free Rotation

Tool performs fast enough for interaction

I 95

Fixed Rotation

We validate our results via 3D printing

N ¥]

We validate our results via 3D printing

\ | 3}

TGS = e
A S IR Lo P
> ‘

We validate our results via 3D printing

T P YO 7 g
. .
Qud 4
_—

We validate our results via 3D printing

We validate our results via 3D printing

We validate our results via 3D printing

We validate our results via 3D printing

We validate our results via 3D printing

We validate our results via 3D printing

- We validate our results via 3D printing

\,
—

We accommodate printer tolerances
by nesting within an offset surface

During validation During carving Result

Our tools trivially generalize to
nesting disparate shapes

107

Limitations & Future Work

* no global optimum guarantee

108

Limitations & Future Work

e sSearch assumption too conservative

I v

109

Limitations & Future Work

* thin shapes don't rigidly nest well

Limitations & Future Work

deformable nesting?

111

Limitations & Future Work

1. deform during design

Prevost et al. 112

Limitations & Future Work

2. nest soft physical objects |3

Bickel et al.
113

Acknowledgements...

David Levin

NSERC Discovery Grants (RGPIN-2017-
05235 & RGPAS-2017-507938)

Connaught Fund (NR-2016-17)
Adobe Systems Inc.

Kevin Gibson, Masha Shugrina,
Michael Tao, and Alex Tessier

114

Generalized Matryoshka
Computational Design
of Nesting Objects

Alec Jacobson
jacobson@cs.toronto.edu

