Generalized Matryoshka
Computational Design
of Nesting Objects

Alec Jacobson
University of Toronto



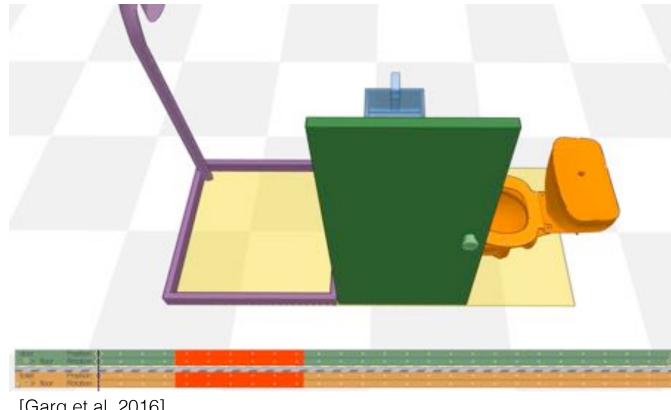




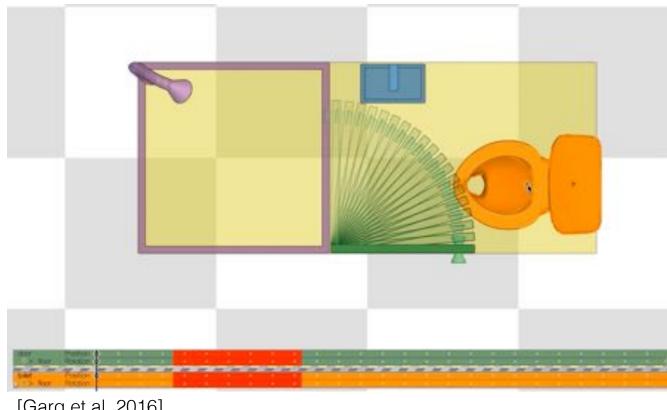




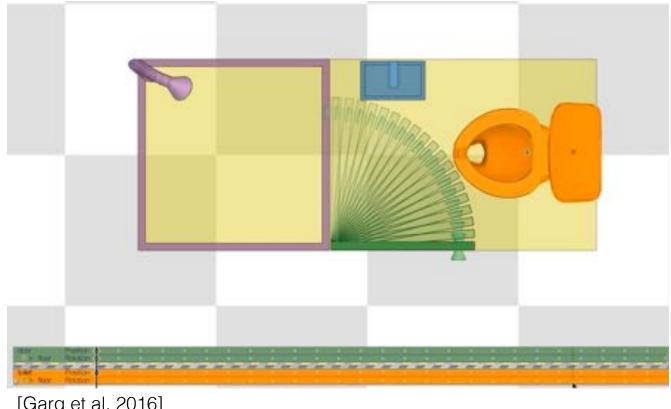
## Previous work enables computational design of reconfigurables



## Previous work enables computational design of reconfigurables



## Previous work enables computational design of reconfigurables





[Zvyozdochkin & Malyutin 1890]

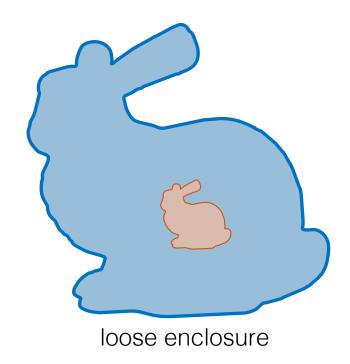
We present a method to generalize Matryoshka to arbitrary shapes



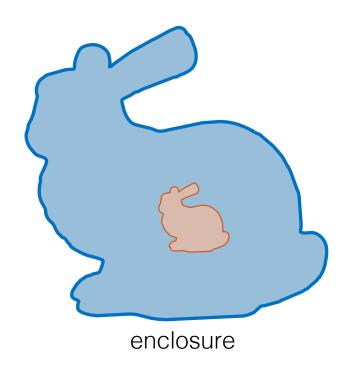
We present a method to generalize Matryoshka to arbitrary shapes

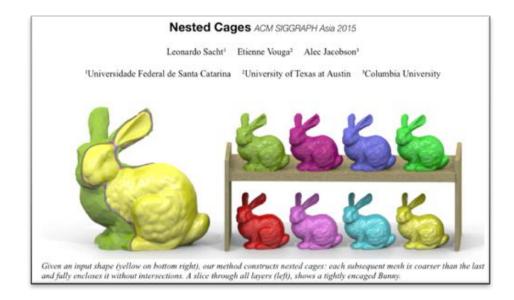


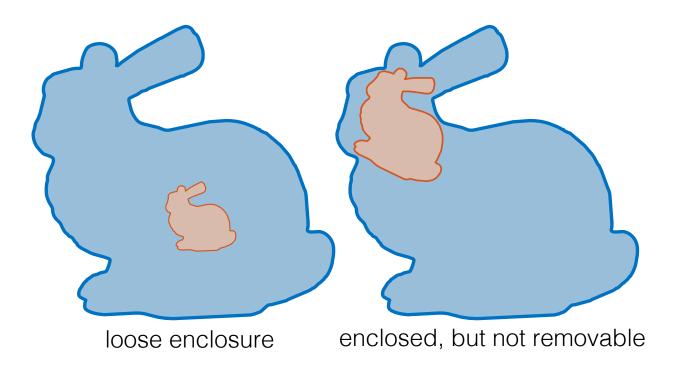
## Nesting requires strict enclosure...

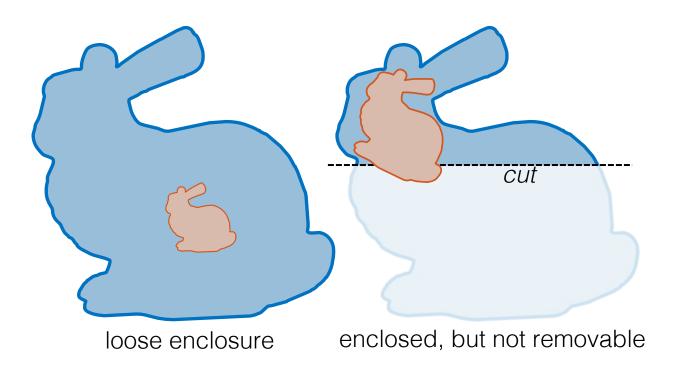


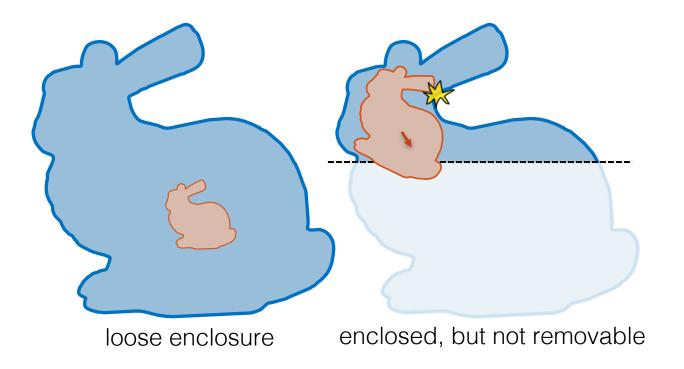
## Nesting requires strict enclosure...

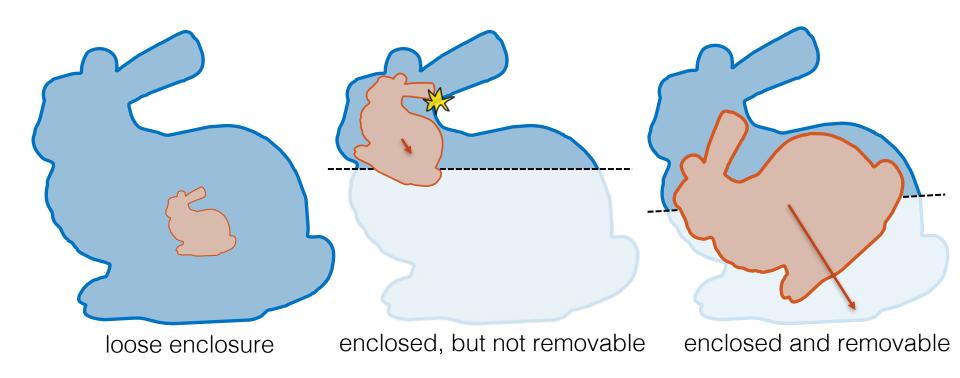












We present highly parallelizable methods to...

determine feasibility of nesting,

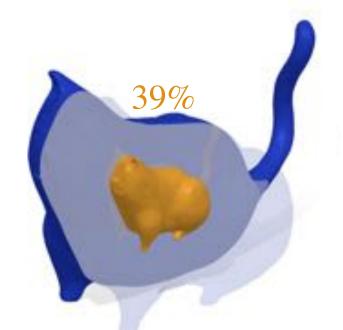
## We present highly parallelizable methods to...

- determine feasibility of nesting,
- find maximum scale,

## We present highly parallelizable methods to...

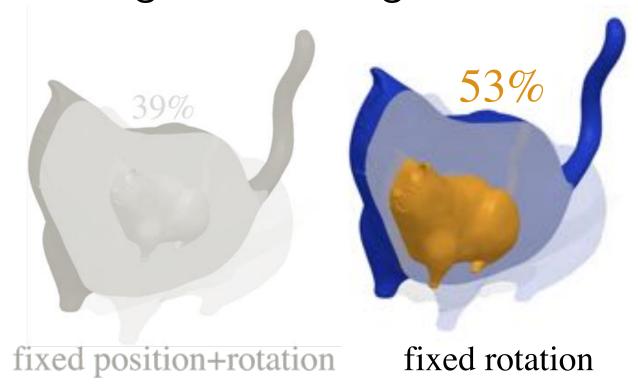
- determine feasibility of nesting,
- find maximum scale, and
- optimize nesting scale over some or all parameters

# Our optimization utilizes rigid motion for tighter nesting

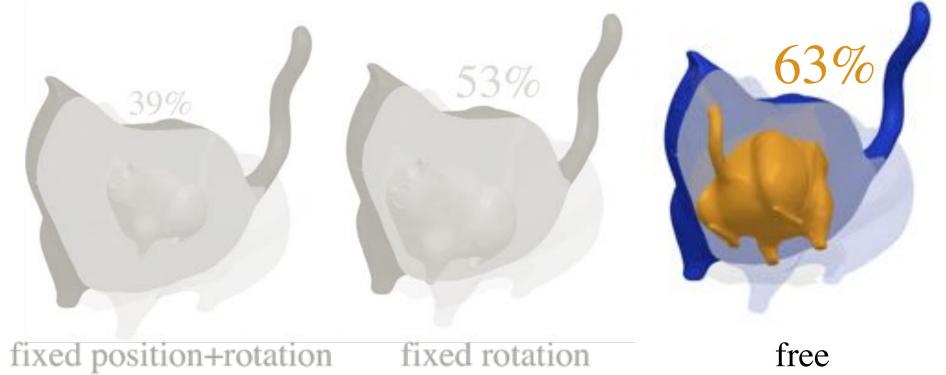


fixed position+rotation

# Our optimization utilizes rigid motion for tighter nesting

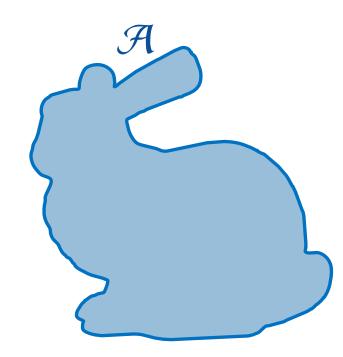


Our optimization utilizes rigid motion for tighter nesting

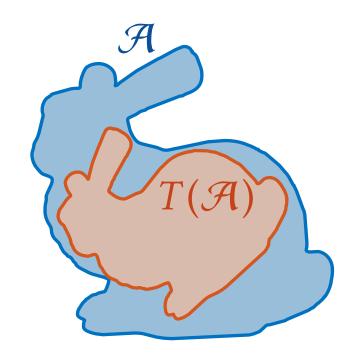


#### Given:

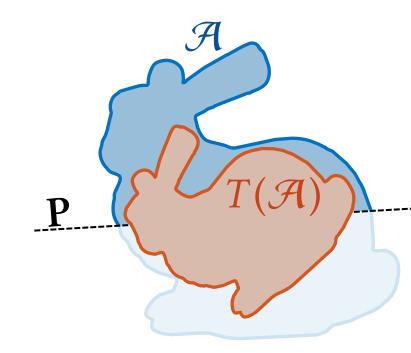
1. shape  $\mathcal{A}$ ,



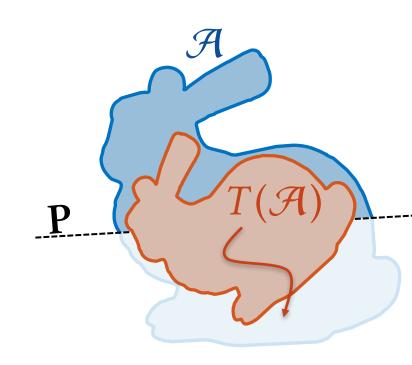
- 1. shape  $\mathcal{A}$ ,
- 2. similarity transform T,



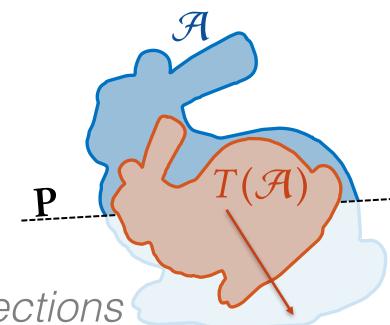
- 1. shape  $\mathcal{A}$ ,
- 2. similarity transform T,
- 3. cut plane P, and



- 1. shape  $\mathcal{A}$ ,
- 2. similarity transform T,
- 3. cut plane P, and
- 4. removal trajectories

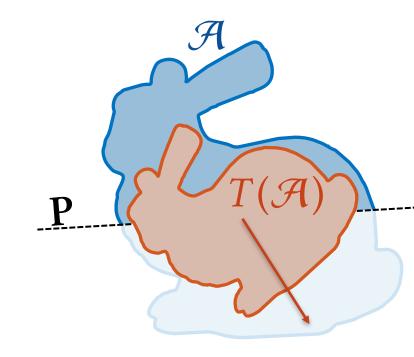


- 1. shape  $\mathcal{A}$ ,
- 2. similarity transform T,
- 3. cut plane P, and
- 4. removal trajectories directions



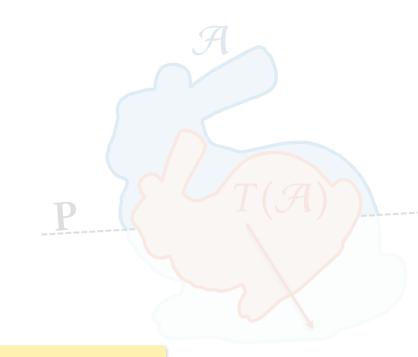
#### Must have:

- 1.  $T(\mathcal{A}) \subset \mathcal{A}$ , and
- 2. no collisions along either direction after cutting  $\mathcal{A}$  by  $\mathbf{P}$



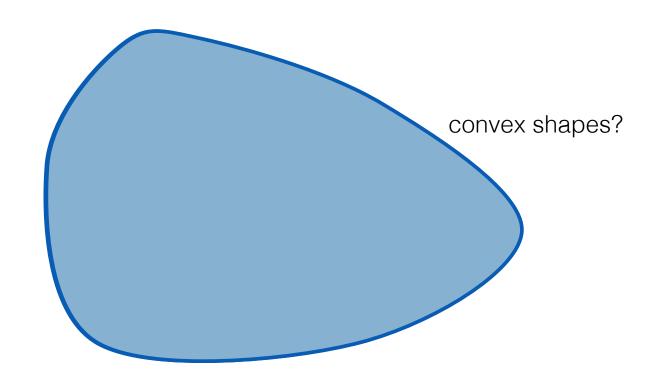
#### Must have:

- 1.  $T(\mathcal{A}) \subset \mathcal{A}$ , and
- no collisions along either direction after cutting A by P

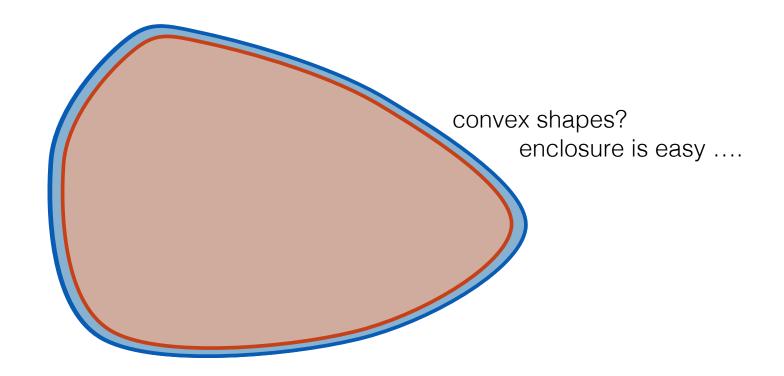


Definition depends on choice of cut plane and removal directions.

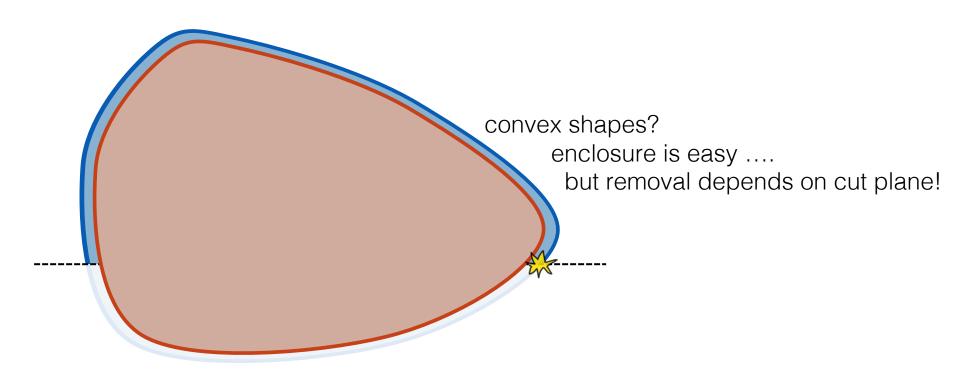
### Some configurations admit perfect self-nesting



## Some configurations admit perfect self-nesting

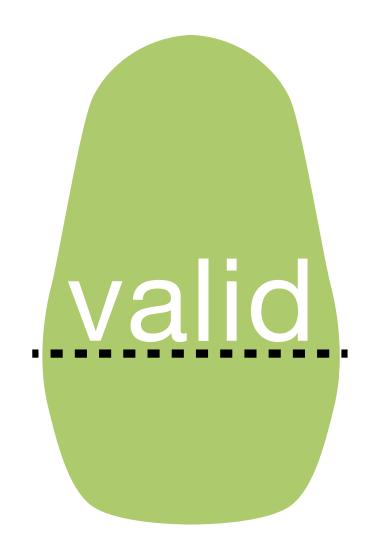


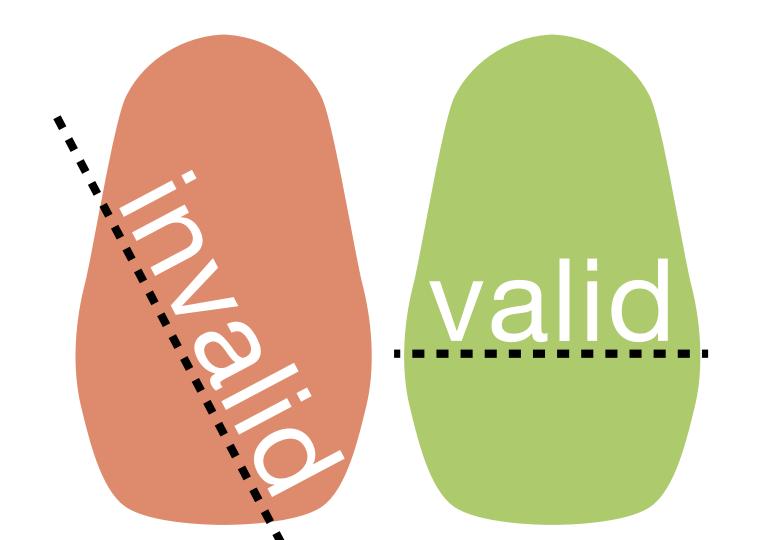
## Some configurations admit perfect self-nesting

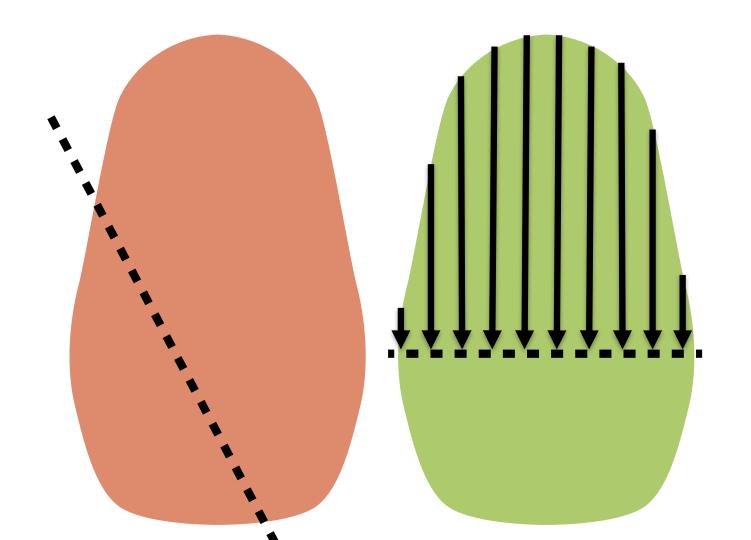


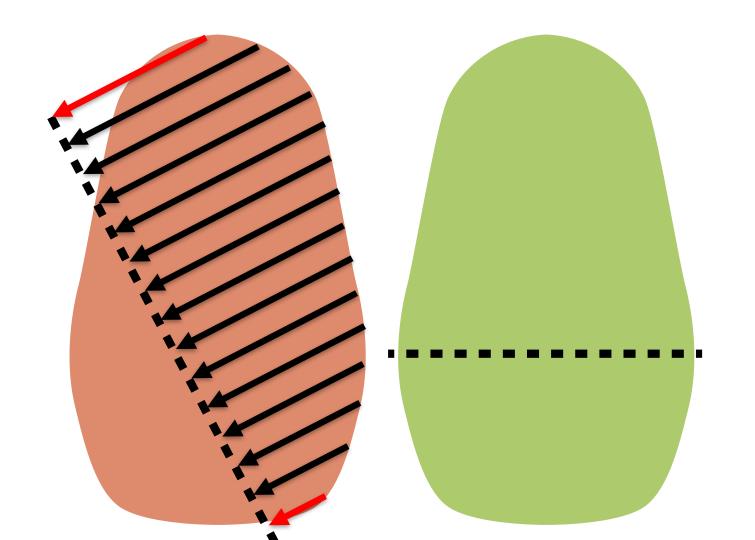


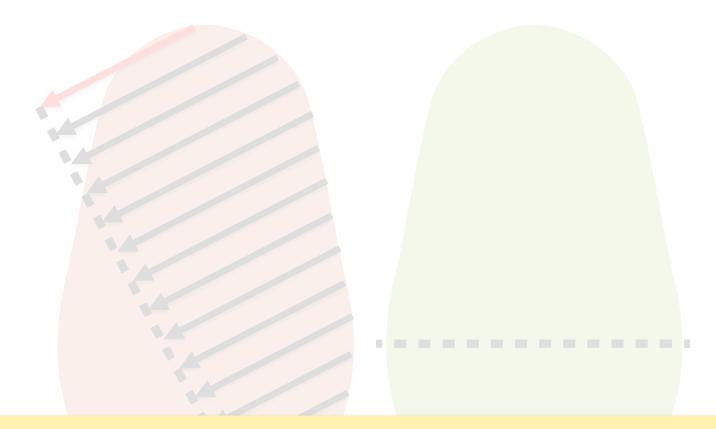
[Zvyozdochkin & Malyutin 1890]











Perfect self-nesting requires *visibility* of cut plane at all points along removal directions

Our tool explores nesting of arbitrary solid 3D shapes



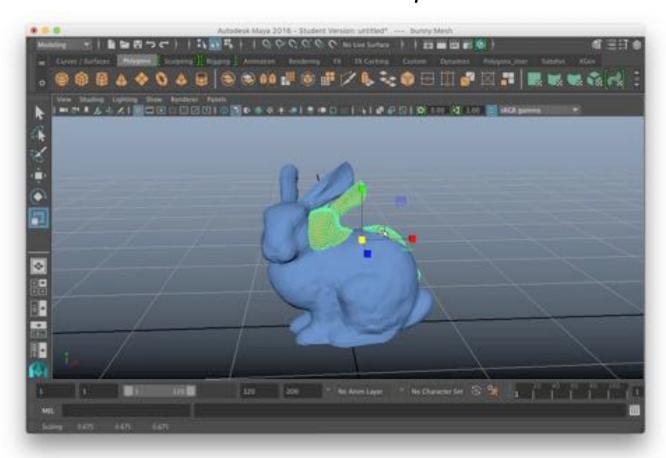
Our tool explores nesting of *arbitrary* solid 3D shapes

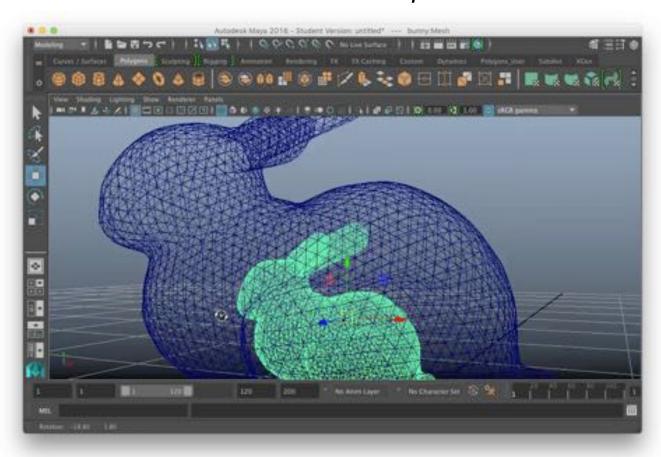


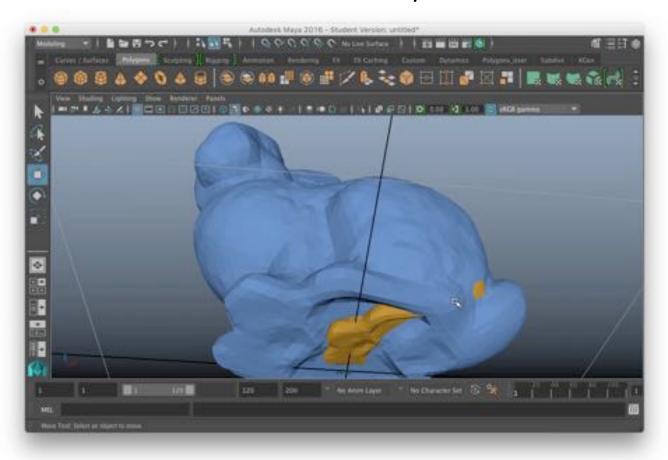
Our tool explores nesting of *arbitrary* solid 3D shapes

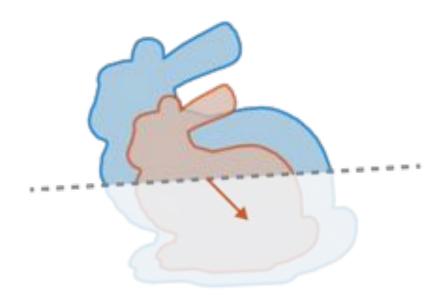




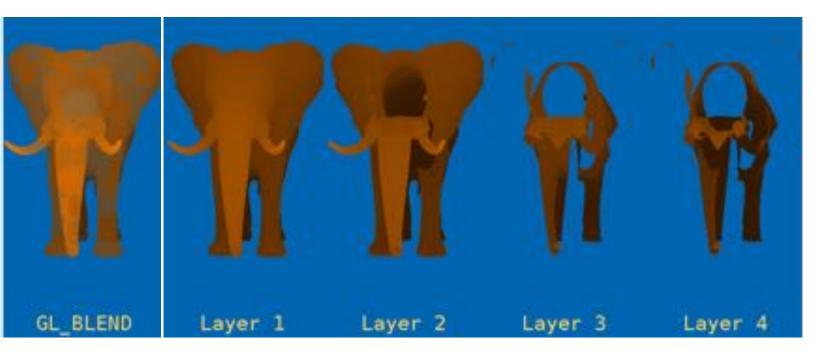


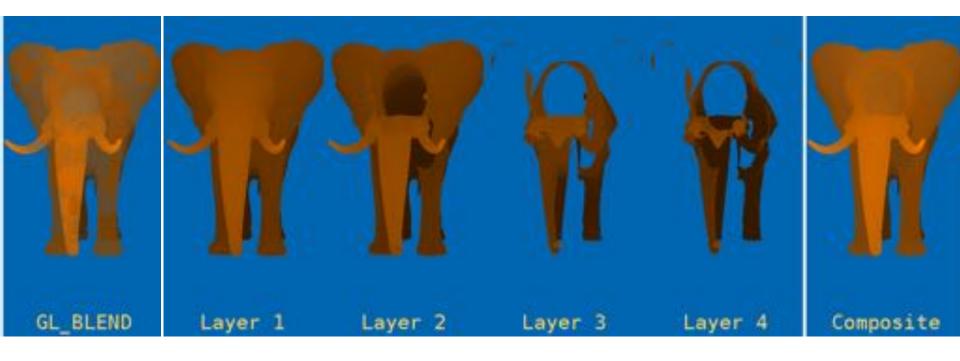












#### a.k.a. K-Buffer, Layered Depth Images

transparency
shape diameter
image-based rendering
CNC milling
intersection volume
swept volumes
collision detection
CSG operations

[Everitt 2001, Bavoil et al. 2007]
[Baldacci et al. 2016]
[Shade et al. 1998]
[Inui & Ohta 2007]
[Faure et al. 2008]
[Kim et al. 2002]

[Myszkowski et al. 1995, Knott & Pai 2003, Heidelberger et al. 2004]

[Goldfeather et al. 1986, Kelley et al. 1994, Hable & Rossignac 2005]

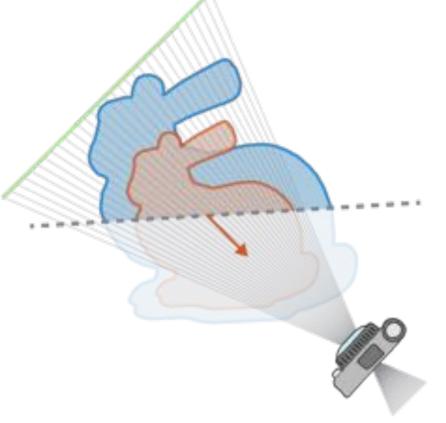
#### a.k.a. K-Buffer, Layered Depth Images

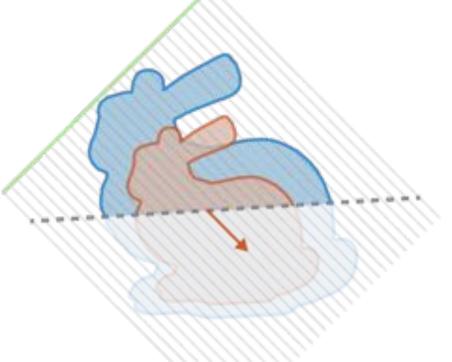
transparency
shape diameter
image-based rendering
CNC milling
intersection volume
swept volumes
collision detection
CSG operations

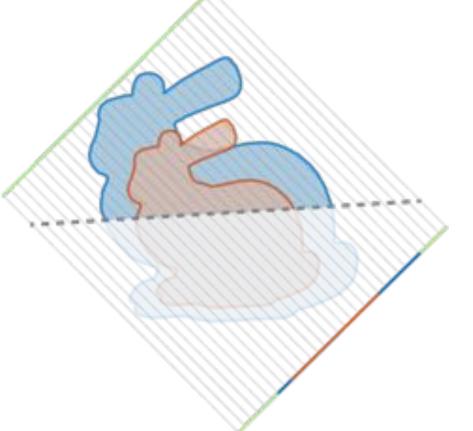
[Everitt 2001, Bavoil et al. 2007]
[Baldacci et al. 2016]
[Shade et al. 1998]
[Inui & Ohta 2007]
[Faure et al. 2008]
[Kim et al. 2002]

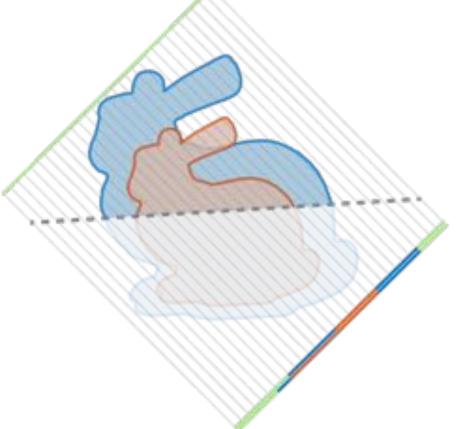
[Myszkowski et al. 1995, Knott & Pai 2003, Heidelberger et al. 2004]

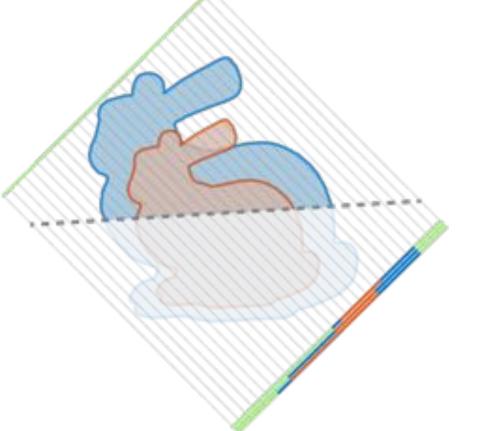
[Goldfeather et al. 1986, Kelley et al. 1994, Hable & Rossignac 2005]

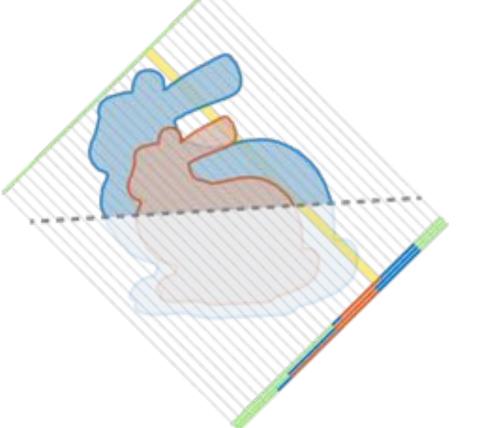


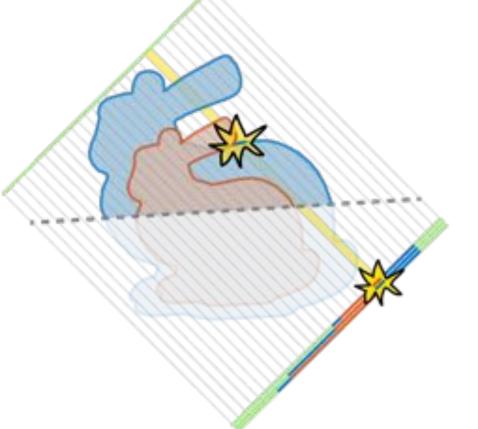


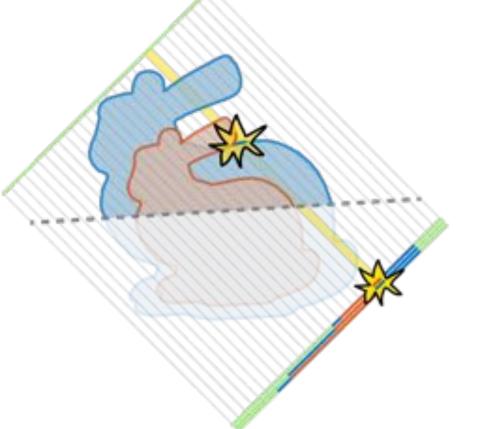






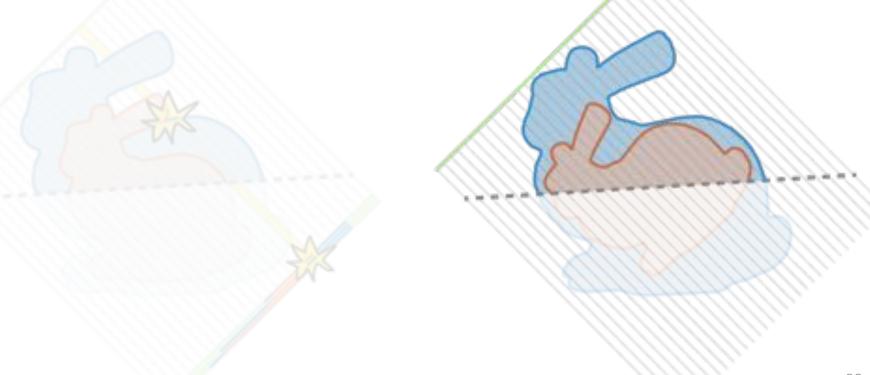


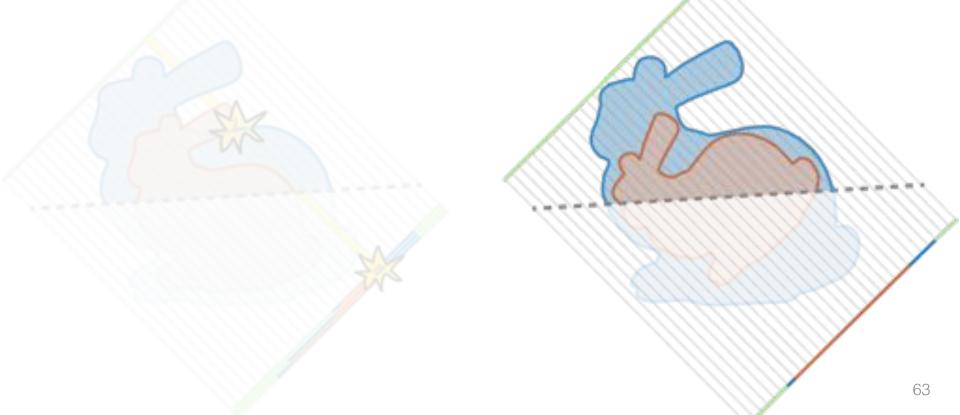


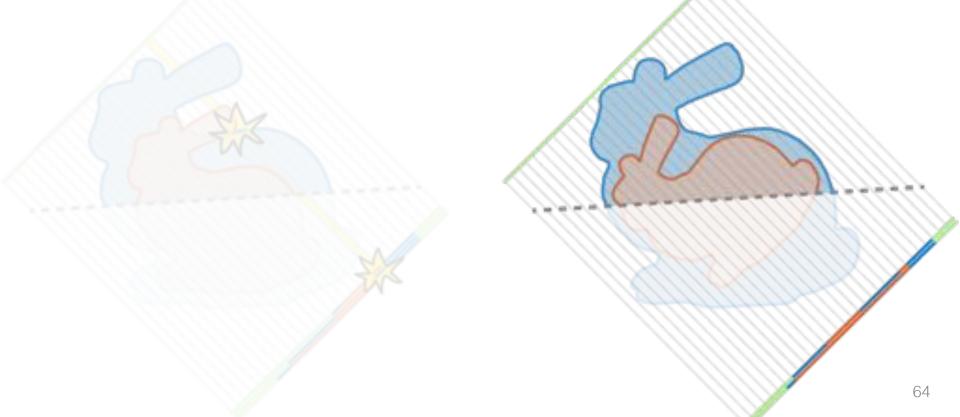


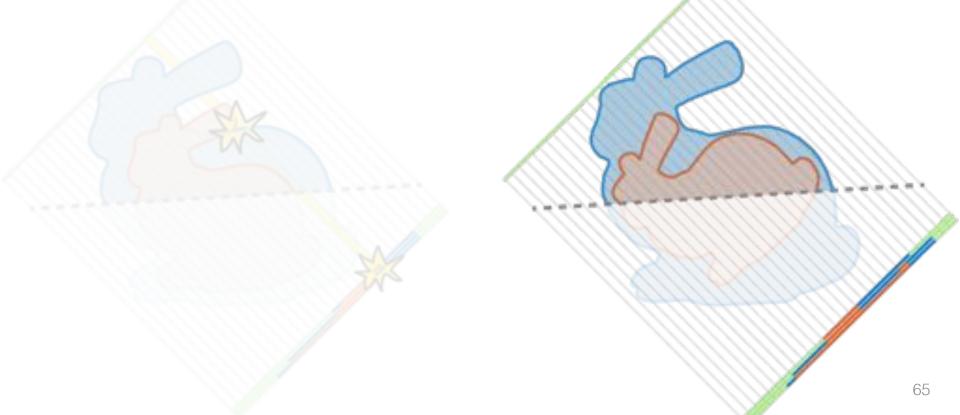
#### Bad "codes":

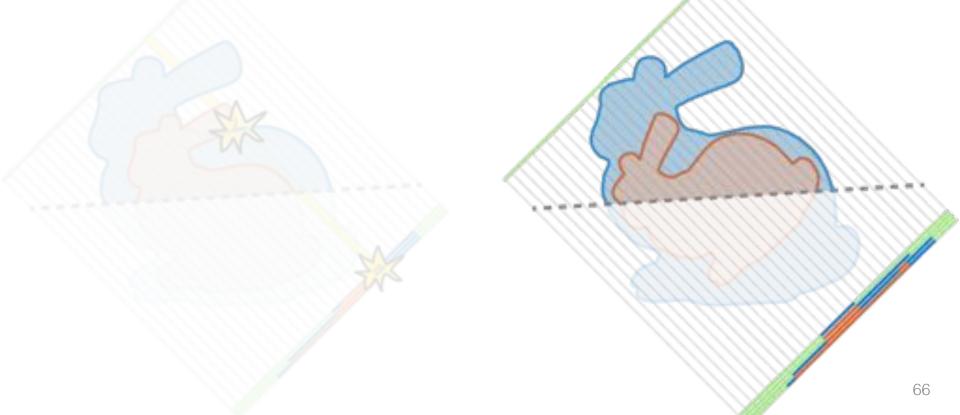
- blue before orange
- orange before green
- orange before front-facing blue

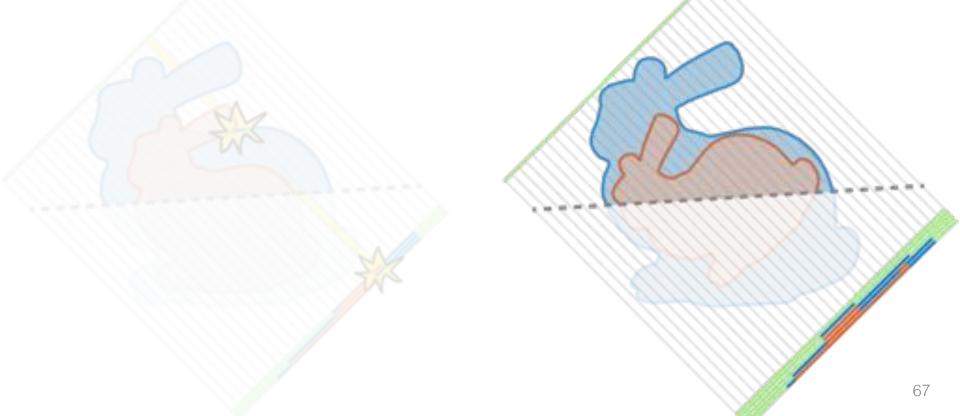








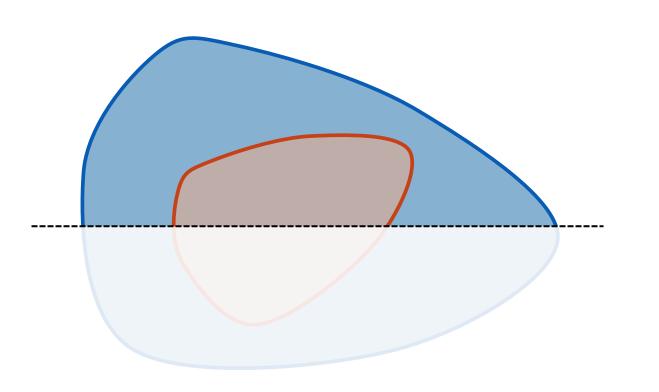






"ping-pong" with 2 buffers GL SAMPLES PASSED Feasible! all green

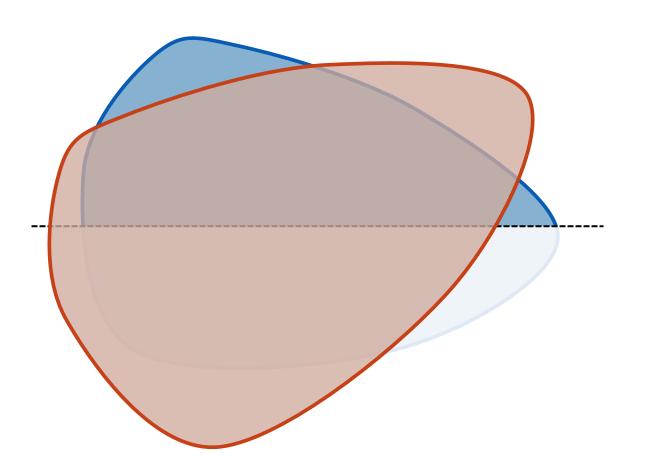
#### Step 2: binary search to maximize scale



Assume *momentarily* that shape is convex

Fix cut plane, center of mass, rotation

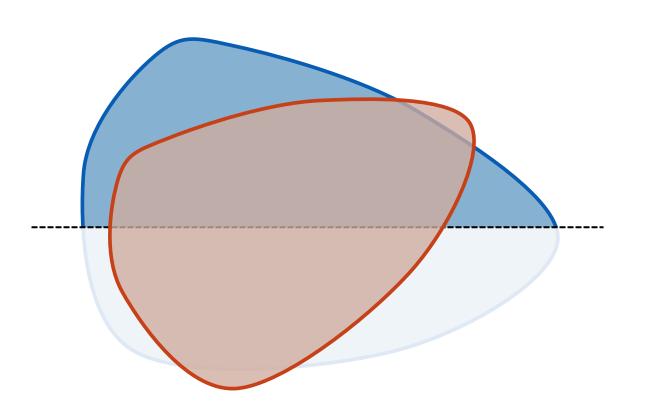
#### Step 2: binary search to maximize scale



Assume *momentarily* that shape is convex

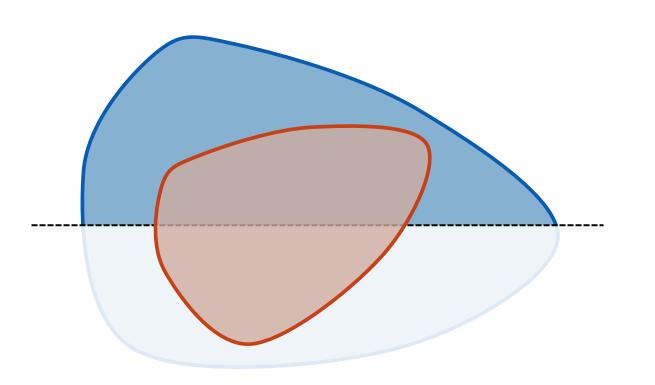
Fix cut plane, center of mass, rotation

#### Step 2: binary search to maximize scale



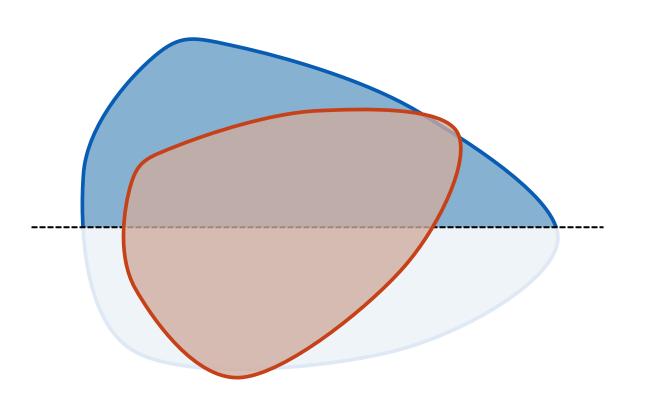
Assume *momentarily* that shape is convex

Fix cut plane, center of mass, rotation



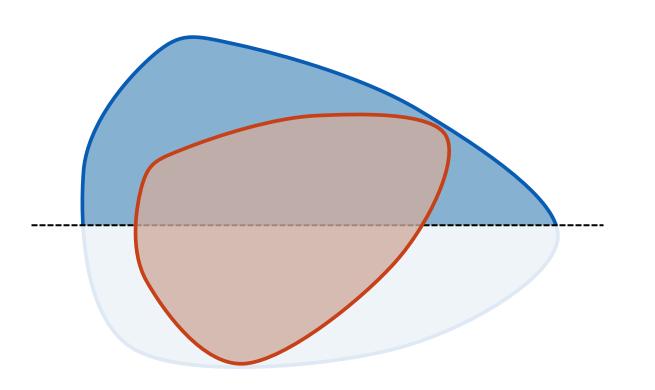
Assume *momentarily* that shape is convex

Fix cut plane, center of mass, rotation



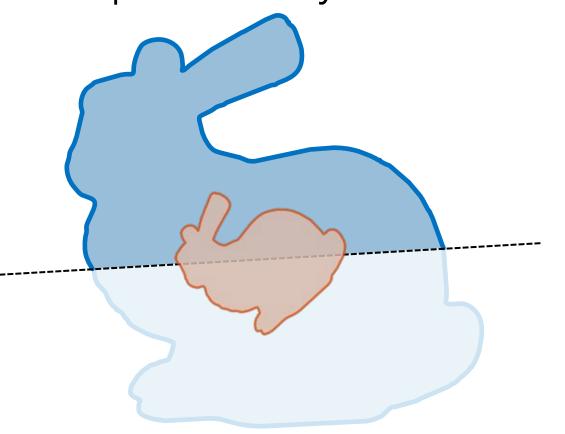
Assume *momentarily* that shape is convex

Fix cut plane, center of mass, rotation

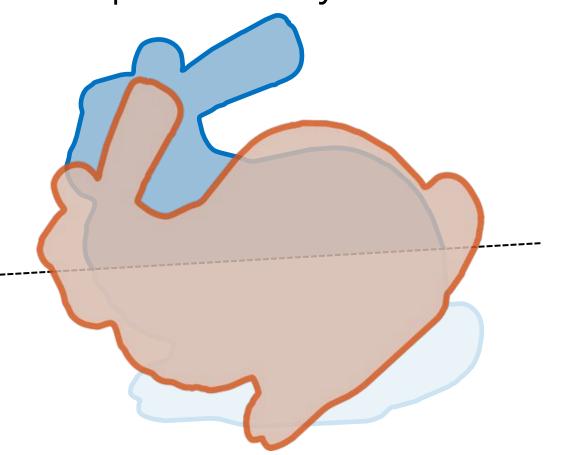


Assume *momentarily* that shape is convex

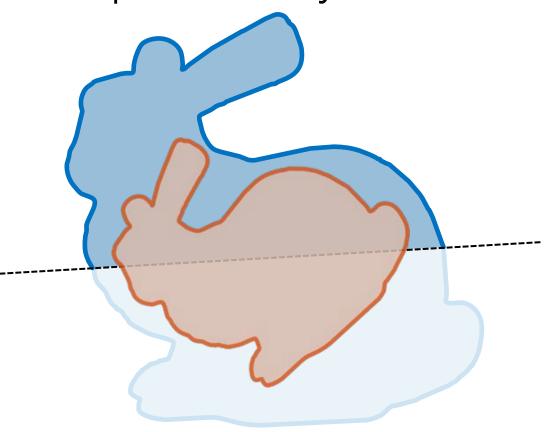
Fix cut plane, center of mass, rotation



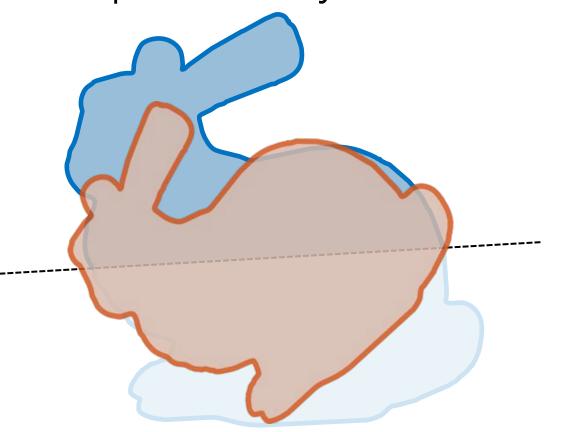
For non-convex shapes binary search is conservative,



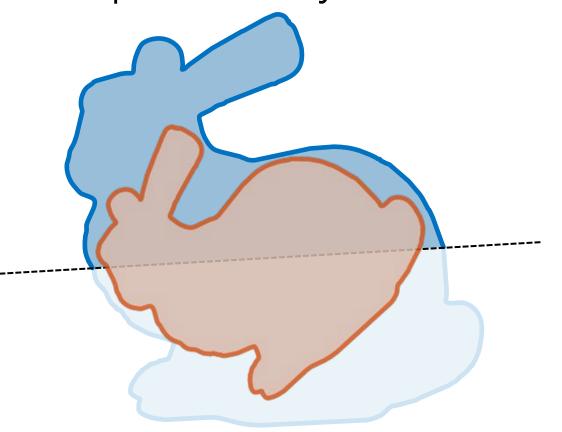
For non-convex shapes binary search is conservative,



For non-convex shapes binary search is conservative,

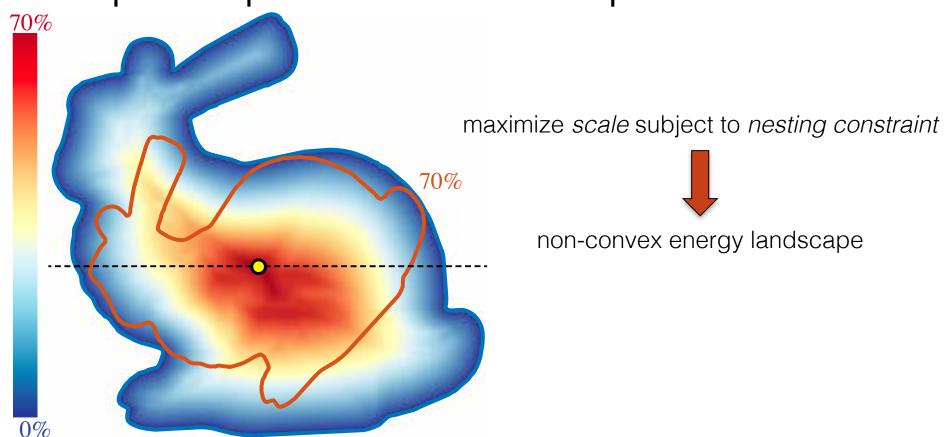


For non-convex shapes binary search is conservative,



For non-convex shapes binary search is conservative,

## Step 3: optimize over all parameters



*k* parameter vector as point in *n*D  $\mathbf{x}_i \in \mathbb{R}^n$ 

*k* parameter vector as point in *n*D  $\mathbf{x}_i \in \mathbb{R}^n$ 

update each iteration according to "velocity"

$$\mathbf{x}_i \leftarrow \mathbf{x}_i + \mathbf{v}_i$$

*k* parameter vector as point in *n*D 
$$\mathbf{x}_i \in \mathbb{R}^n$$

pull velocity toward personal best and global best of swarm

$$\mathbf{v}_i \leftarrow \omega \mathbf{v}_i + \phi_p r_p(\mathbf{x}_i^p - \mathbf{x}_i) + \phi_g r_g(\mathbf{x}^g - \mathbf{x}_i),$$

$$\mathbf{x}_i \leftarrow \mathbf{x}_i + \mathbf{v}_i$$

*k* parameter vector as point in *n*D 
$$\mathbf{x}_i \in \mathbb{R}^n$$

$$\mathbf{v}_i \leftarrow \omega \mathbf{v}_i + \phi_p \mathbf{r}_p (\mathbf{x}_i^p - \mathbf{x}_i) + \phi_g \mathbf{r}_g (\mathbf{x}^g - \mathbf{x}_i),$$
 $\mathbf{x}_i \leftarrow \mathbf{x}_i + \mathbf{v}_i,$ 
random perturbations

# Naive P-Swarm would treat scale as just another parameter (coordinate)...

```
maximize s

s, \mathbf{R}, \mathbf{c}, \mathbf{P}, \mathbf{a}^+, \mathbf{a}^-

such that \mathbf{T}(\mathcal{B}) nests in \mathcal{A} w.r.t. \mathbf{P}, \mathbf{a}^+, \mathbf{a}^-
```

#### ... instead optimize over all others,

$$\begin{array}{c}
\text{maximize} \\
\mathbf{R}, \mathbf{c}, \mathbf{P}, \mathbf{a}^+, \mathbf{a}^-
\end{array}$$
all other parameters

#### ... instead optimize over all others,

maximize 
$$f(\mathbf{R}, \mathbf{c}, \mathbf{P}, \mathbf{a}^+, \mathbf{a}^-)$$
 where 
$$f(\mathbf{R}, \mathbf{c}, \mathbf{P}, \mathbf{a}^+, \mathbf{a}^-) = \underbrace{\text{maximize}}_{s} \quad s$$
 such that  $\mathbf{T}(\mathcal{B})$  nests in  $\mathcal{A}$  w.r.t.  $\mathbf{P}, \mathbf{a}^+, \mathbf{a}^-$ 

## ... instead optimize over all others, and *search* for max scale

maximize 
$$f(\mathbf{R}, \mathbf{c}, \mathbf{P}, \mathbf{a}^+, \mathbf{a}^-)$$
where
$$f \approx \operatorname{search}(\mathbf{R}, \mathbf{c}, \mathbf{P}, \mathbf{a}^+, \mathbf{a}^-)$$

## ... instead optimize over all others, and *search* for max scale

$$\max_{\mathbf{R},\mathbf{c},\mathbf{P},\mathbf{a}^+,\mathbf{a}^-} f(\mathbf{R},\mathbf{c},\mathbf{P},\mathbf{a}^+,\mathbf{a}^-)$$
 where 
$$f \approx \operatorname{search}(\mathbf{R},\mathbf{c},\mathbf{P},\mathbf{a}^+,\mathbf{a}^-)$$
 abort search early if upper bound < best

## Our optimization enables fully automatic Matryoshka generation...



... or partially constrained interactive design

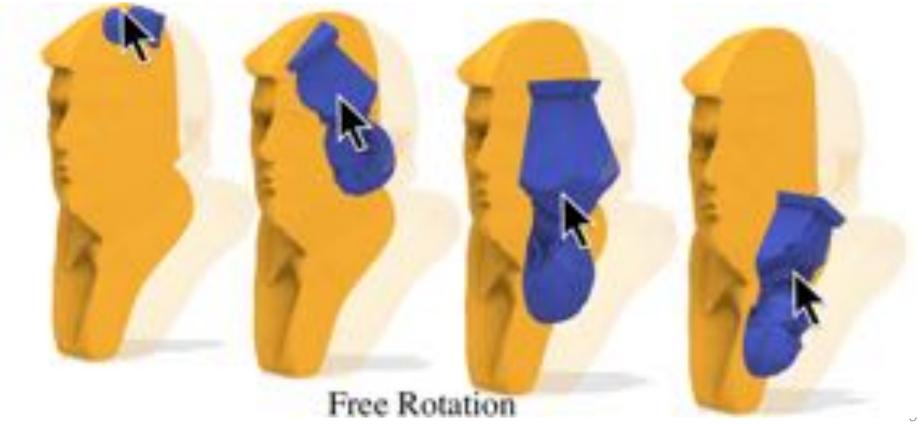


fixed upright orientation

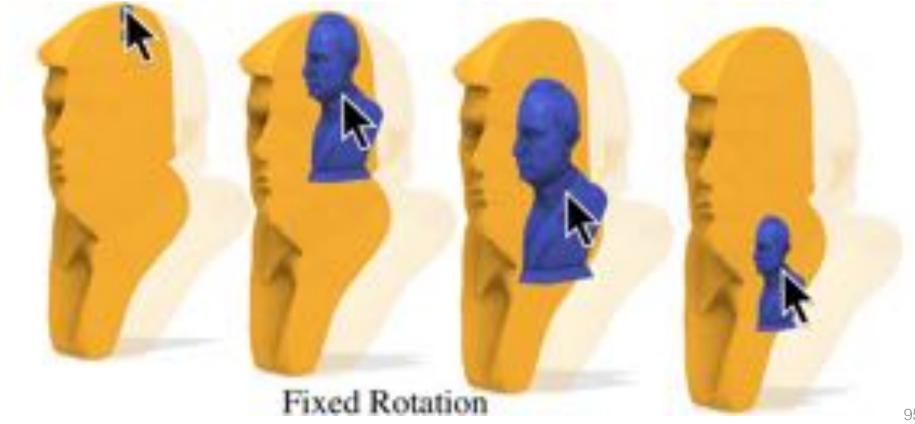
## ... or partially constrained interactive design



#### Tool performs fast enough for interaction



#### Tool performs fast enough for interaction















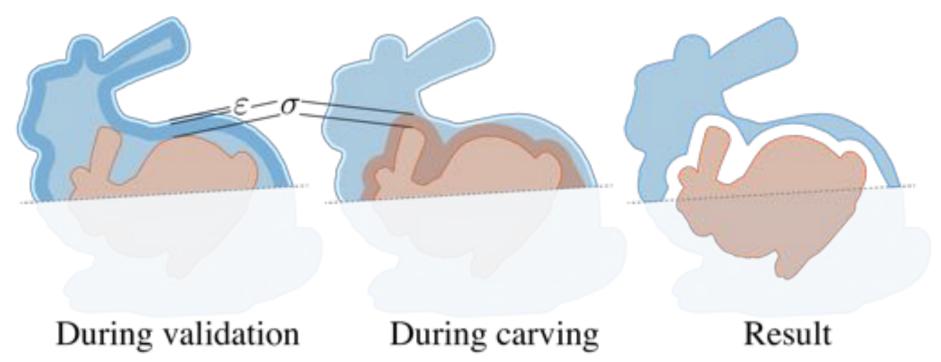








# We accommodate printer tolerances by nesting within an offset surface

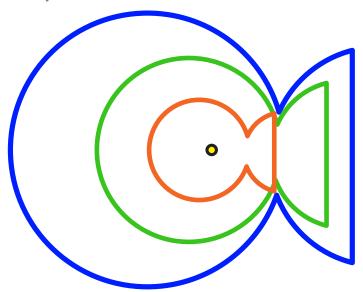


Our tools trivially generalize to nesting disparate shapes



no global optimum guarantee

- no global optimum guarantee
- search assumption too conservative



- no global optimum guarantee
- search assumption too conservative

• thin shapes don't rigidly nest well



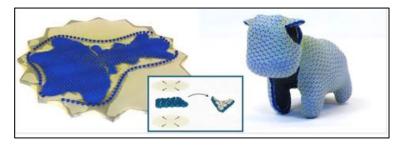
- no global optimum guarantee
- search assumption too conservative
- thin shapes don't rigidly nest well
- deformable nesting?

- no global optimum guarantee
- search assumption too conservative
- thin shapes don't rigidly nest well
- deformable nesting?
  - 1. deform during design



Prevost et al.

- no global optimum guarantee
- search assumption too conservative
- thin shapes don't rigidly nest well
- deformable nesting?
  - 1. deform during design
  - 2. nest soft physical objects



Bickel et al.

#### Acknowledgements...

David Levin

NSERC Discovery Grants (RGPIN-2017-05235 & RGPAS-2017-507938)

Connaught Fund (NR-2016-17)

Adobe Systems Inc.

Kevin Gibson, Masha Shugrina, Michael Tao, and Alex Tessier **Generalized Matryoshka** 

Computational Design of Nesting Objects

Alec Jacobson jacobson@cs.toronto.edu

