
Mandoline: Robust Cut-Cell Generation for Arbitrary Triangle Meshes

MICHAEL TAO, University of Toronto, Canada
CHRISTOPHER BATTY, University of Waterloo, Canada
EUGENE FIUME, Simon Fraser University, Canada and University of Toronto, Canada
DAVID I.W. LEVIN, University of Toronto, Canada

Fig. 1. Various cut-cell meshes generated by our method based on surface geometries drawn from both graphics and engineering. To visualize the cut-cells, we
slice the meshes along user-defined cut planes, omitting empty background grid cells except in the adaptive case.

Although geometry arising “in the wild” most often comes in the form
of a surface representation, a plethora of geometrical and physical appli-
cations require the construction of volumetric embeddings either of the
geometry itself or the domain surrounding it. Cartesian cut-cell-based mesh
generation provides an attractive solution in which volumetric elements
are constructed from the intersection of the input surface geometry with
a uniform or adaptive hexahedral grid. This choice, especially common in
computational fluid dynamics, has the potential to efficiently generate ac-
curate, surface-conforming cells; unfortunately, current solutions are often
slow, fragile, or cannot handle many common topological situations. We
therefore propose a novel, robust cut-cell construction technique for triangle
surface meshes that explicitly computes the precise geometry of the inter-
section cells, even on meshes that are open or non-manifold. Its fundamental
geometric primitive is the intersection of an arbitrary segment with an axis-
aligned plane. Beginning from the set of intersection points between triangle
mesh edges and grid planes, our bottom-up approach robustly determines
cut-edges, cut-faces, and finally cut-cells, in a manner designed to guarantee
topological correctness. We demonstrate its effectiveness and speed on a
wide range of input meshes and grid resolutions, and make the code available
as open source.

CCS Concepts: • Mathematics of computing → Mesh generation; •
Computing methodologies→ Volumetric models.

Authors’ addresses: Michael Tao, mtao@dgp.toronto.edu, University of Toronto,
Toronto, Canada; Christopher Batty, christopher.batty@uwaterloo.ca, University of
Waterloo, Waterloo, Canada; Eugene Fiume, efiume@sfu.edu, Simon Fraser Univer-
sity, Burnaby, Canada, University of Toronto, Toronto, Canada; David I.W. Levin,
diwlevin@cs.toronto.edu, University of Toronto, Toronto, Canada.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2019 Association for Computing Machinery.
0730-0301/2019/11-ART179 $15.00
https://doi.org/10.1145/3355089.3356543

Additional Key Words and Phrases: cut-cells, volumetric meshing

ACM Reference Format:
Michael Tao, Christopher Batty, Eugene Fiume, and David I.W. Levin. 2019.
Mandoline: Robust Cut-Cell Generation for Arbitrary Triangle Meshes. ACM
Trans. Graph. 38, 6, Article 179 (November 2019), 17 pages. https://doi.org/
10.1145/3355089.3356543

1 INTRODUCTION
Mesh generation is a fundamental geometric problem with broad
applications. Its task is to subdivide a given spatial domain, de-
scribed by its boundary, into a set of non-overlapping elements
or cells. The resulting mesh is typically employed as the basis for
discretizations of partial differential equations drawn from diverse
application domains such as solid mechanics, thermodynamics, elec-
tromagnetism, or fluid dynamics. A plethora of geometric tasks also
exploit volumetric discretizations, such as skinning weights [Dionne
and de Lasa 2013], functional maps [Ovsjanikov et al. 2012], topol-
ogy optimization [Lian et al. 2017], and surface tracking [Wojtan
et al. 2010].
One popular mesh generation strategy, particularly common in

fluid dynamics, is the use of Cartesian cut-cell meshes. These are
constructed by clipping the cells of a uniform Cartesian grid against
the given input boundary geometry, which in many cases can be de-
scribed by a triangle mesh. This ensures that every strictly interior
cell is a perfect cube, which is convenient for memory efficiency
and discretization accuracy; at the same time, the surface geometry
of the input domain is preserved by the boundary-conforming poly-
hedral cut-cells created by the clipping process. There exists today
a wide variety of discretization strategies appropriate for cut-cell
or polyhedral meshes, including traditional embedded/immersed

ACM Trans. Graph., Vol. 38, No. 6, Article 179. Publication date: November 2019.

https://doi.org/10.1145/3355089.3356543
https://doi.org/10.1145/3355089.3356543
https://doi.org/10.1145/3355089.3356543


179:2 • Michael Tao, Christopher Batty, Eugene Fiume, and David I.W. Levin

boundary/interface methods [Lee and LeVeque 2003; Mittal and Iac-
carino 2005], polyhedral (dis)continuous Galerkin methods [Antoni-
etti and Mazzieri 2018; Martin et al. 2008], and structure-preserving
mimetic methods [Lipnikov et al. 2014], among many others.
While the basic task of cut-cell mesh generation is simple to

describe, designing an ideal algorithm is highly non-trivial due to
several conflicting criteria. It should be robust to degenerate and
near-degenerate situations that arise frequently in real-world ge-
ometry, such as input vertices, edges, or faces coinciding with com-
ponents of the uniform grid. It should be fast, since many practical
use cases involve time-dependent domains and therefore require
that mesh generation be performed at every time step. It should
be general, in the sense that relatively few requirements should be
placed on the input triangle mesh and its relationship to the regu-
lar grid. Our definition of generality includes support for: (1) open
meshes whose boundaries yield partial cuts, (2) non-manifold trian-
gle meshes, (3) meshes with small or infinitesimal thickness leading
to fully split cells, and (4) meshes with relatively fine topological
features, leading to sub-cell tunneling, nesting, and branching.
The tension among these requirements has led to a variety of

algorithms and codes that make compromises on one criterion or
another. For example, converting the input geometry to a signed
distance field reduces the problem to marching cubes cases [Mittal
and Iaccarino 2005] but destroys geometric detail and precludes
open/non-manifold meshes. Adopting expensive but robust Boolean
routines designed for intersecting arbitrary triangle meshes [Zhou
et al. 2016] fails to exploit the inherent axis-aligned planar structure
of uniform grids, while placing conditions on the winding num-
ber of the input mesh. Circumventing the challenges of geometric
degeneracies by random numerical perturbations of the grid has
been suggested in the past [Edwards and Bridson 2014; Kim and
Tautges 2010], but this provides no guarantees and cannot avoid
many topologically challenging cases we consider.

1.1 Contribution
Our contribution is Mandoline, a cut-cell generation algorithm that
is empirically robust, fast, and general. It partitions input triangle
mesh geometry agnostic of input topology and uses only local planar
structures to produce valid cut-cell meshes with correct connectivity.
We demonstrate its efficacy by generating cut-cells from thousands
of input meshes including geometrically complex open and closed
surfaces at various grid resolutions. To further both the use of, and
research into, cut-cell methods, we will release the source code for
Mandoline under a permissive software license.
Our bottom-up approach is demonstrated to be robust despite

being completely implemented with floating point numbers and
arithmetic. This is achieved through a design that minimizes depen-
dency on numerical vertex positions and the geometric structure of
the mesh, and instead relies on the combinatorial mesh structure
wherever possible. Core to this approach is a local vertex representa-
tion that includes bitmasks identifying whether vertices lie precisely
on grid vertices, edges, or faces. Early in our algorithm this vertex
representation allows the identification of redundant vertices when
evaluating mesh intersections along different axis-aligned planes,

and later on helps to safely accelerate additional collinearity, copla-
narity, and redundancy checks. In our broad testing, Mandoline
always generated consistent and correct geometry.

2 RELATED WORK
While unstructured and semi-structured meshes of tetrahedra [Hu
et al. 2018; Si 2015] or hexahedra [Ray et al. 2018] are popular for
a wide range of graphical and scientific computing needs, cut-cell
meshes are also widely used for applications such as fluid mechan-
ics [Azevedo et al. 2016; Edwards and Bridson 2014], isogeometric
analysis [Safdari et al. 2016], and elasticity simulation [Patterson
et al. 2012; Theillard et al. 2013]. Cut-cells are particularly attrac-
tive for application domains (like fluids) in which meshes must be
quickly regenerated in order to track moving features of a simulated
material. The cut-cell approach means the mesh generation effort is
concentrated near the moving boundary while interior cells main-
tain a convenient structured arrangement. Berger [2017] provides a
useful recent review of this methodology. Cut-cell approaches can
be characterized based on their basic cut-cell representation along
with the types of input they can reliably digest (Table 1).

Cell Geometry: Modern cut-cell approaches use a variety of bound-
ary representations. Some use only hexahedral cells [Kim and Taut-
ges 2010] at the boundary and represent the cut itself implicitly via
either cut edge lengths or area/volume fractions. Others reduce the
boundary to a single planar segment [Colella et al. 2014], or allow
only marching cubes-type cell structures [Ferstl et al. 2014; Meinke
et al. 2013]. Still other methods, including Mandoline, explicitly split
or clip the underlying hexahedral grid cells against the boundary,
storing detailed, boundary-conforming cells [Azevedo et al. 2016;
Edwards and Bridson 2014]. In these cases, ensuring robustness is a
perennial challenge; for example, Edwards and Bridson resort to per-
turbing the underlying grid at each simulation step to circumvent
degeneracies.

In the context of surface triangulations, intrinsic Delaunay trian-
gulations [Fisher et al. 2007] require data structures that augment
a coarse discretization of a domain with a second, finer one. Man-
doline’s intrinsic cut-vertex representation shares similar qualities
with the signpost data structures used in recent work on these trian-
gulations [Sharp et al. 2019].
Several discretization schemes, such as virtual node algorithms

and extended finite element methods, use quadrature based on du-
plicated/virtual tetrahedra for each cut-cell (e.g., [Koschier et al.
2017]) by multiplying each tetrahedral basis function by a charac-
teristic function for the cut-cell. Like the regular grid case, various
restrictions on valid cuts have been considered, from requiring each
cut-cell to include an input vertex [Molino et al. 2004] to fully gen-
eral cutting of tetrahedra with triangle soups [Sifakis et al. 2007]. In
particular, the method of Sifakis et al. shares some broad similarities
with Mandoline. However, it assumes manifold cut geometry, does
not benefit from our axis-aligned plane structure, and omits details
of the complex topological stitching process (“boundary tracking” )
needed to produce a valid final cut-mesh.

Non-ManifoldMeshes: General non-manifold configurations, such
as an edge shared by several surrounding triangles, can readily arise

ACM Trans. Graph., Vol. 38, No. 6, Article 179. Publication date: November 2019.



Mandoline: Robust Cut-Cell Generation for Arbitrary Triangle Meshes • 179:3

Table 1. Algorithms for cut-cell mesh generation and their support for important features. “Not Done” denotes features that are not demonstrated in publication
but are theoretically achievable. “?” denotes that the feature was not demonstrated or discussed in literature. “Open” denotes support for open input meshes.
“Non-manifold” indicates the code directly accepts non-manifold inputs. “Intersect” indicates that the code handles intersecting (component-wise) inputs.

Algorithm Cell Data Split Cells Tunnels Adaptive Open Non-Manifold Intersect Code
Cart3D [Aftosmis et al. 1998] Polygons Yes No Yes No No Yes No
EB-Chombo [Colella et al. 2014] Hex Yes No Yes No No No Yes
EB-Mesh [Kim and Tautges 2010] Hex No? No? Not Done No Yes Yes Yes
Edwards/Bridson [2014] Triangles No No? No No No No No
Arrangements [Zhou et al. 2016] Triangles Yes Yes Yes No Yes Yes Yes
Azevedo et al. [2016] Triangles Yes No? No Yes No No No
Mandoline Polygons Yes Yes Yes Yes Yes Yes Yes

in practical settings. One source of such problems are component-
wise CADmodels; before the advent of robust mesh Booleans [Zhou
et al. 2016] some cut-cell packages implemented their own mesh-
mesh intersection routines to merge component-based triangulated
CAD models [Aftosmis et al. 1998] into a single input mesh. Man-
doline relies on existing robust mesh-intersection tools [Jacobson
et al. 2016] to merge component-based inputs in a preprocess.

Open Meshes: Many simulation tasks require the ability to sim-
ulate both volumetric objects and thin shells, such as fluid flow
around a deforming cloth [Guendelman et al. 2005]. Such thin ob-
jects are most compactly represented by their medial surface, often
parameterized as an open (or closed) surface mesh (e.g., [Grinspun
et al. 2003]), and are a common source of partial cuts and split cells.

 Split Cell Tunneling

Geometry
Cut Cell

Fig. 2. Split cells and tunneling are common problem cases encountered
during cut-cell generation. Split cells occur when surface geometry divides
a cell into two or more disconnected parts, while tunneling occurs when the
geometry encloses a region that crosses only through the faces of a cell.

Split Cells and Tunnels: A split cell is created when input geome-
try splits a grid cell into multiple distinct components. Tunneling
occurs when a topologically distinct tube of geometry passes en-
tirely through a cell without intersecting the cell’s edges or vertices.
These cases, illustrated in 2D in Figure 2, occur routinely for shells
and open triangle meshes, near thin or sharp geometric features, and
when the size of the grid cells is large compared to geometric feature
size. A related challenge in deformable simulation considered by
Li and Barbič [2018] is constructing topologically-correct immer-
sions of detailed triangle meshes into coarse tetrahedra; however,
their approach is restricted to closed, orientable triangle meshes and
focuses on mesh embedding rather than generating clipped cells.

Adaptivity: Some cut-cell approaches allow the use of spatially
adaptive grids to improve accuracy at the boundary or other re-
gions of interest. Adaptive approaches are most commonly used to
reduce the local complexity of input geometry relative to a single
grid cell, in hopes of circumventing the need to store detailed sub-
grid geometry (e.g., sharp features) and/or topology (e.g., split cells
and tunnels) [Aftosmis et al. 1998; Colella et al. 2014]. Mandoline
maintains a uniform resolution for cells that intersect the input, but
allows octree-style coarsening away from it.

Code: The implementation of cut-cell algorithms is challenging,
and as such there are few examples of readily accessible software.
Unfortunately, some of the most widely used [Aftosmis et al. 1998]
and state-of-the-art [Azevedo et al. 2016; Edwards and Bridson 2014]
are not readily accessible for general use.

Context: Mandoline is the first algorithm for cut-cell mesh gen-
eration that meets all the requirements for both high resolution
engineering simulations and state-of-the-art coarse grid methods
(Table 1). Aspects of Mandoline are related to work on robust Mesh
Arrangements [Zhou et al. 2016], but Mandoline offers significant
improvements in generality and speed in the cut-cell context, for
example, by allowing open surface geometry and exploiting the un-
derlying hexahedral lattice. We will show in Section 5.7 that, for the
closed, manifold meshes that Mesh Arrangements can handle, Man-
doline is substantially faster. When compared to previous research
and commercial algorithms, Mandoline offers a higher fidelity rep-
resentation of cut-cell boundaries and correctly handles split cells
and tunneling, which permits the generation of extremely coarse
cut-cell meshes. Figure 1 shows some examples of detailed cut-cell
geometries generated using Mandoline.
The computational fluid dynamics (CFD) community has tradi-

tionally preferred to “fully resolve” boundary geometry with fine
grids, while graphics researchers have instead pushed the limits of
detail offered by topologically correct coarse cells [Azevedo et al.
2016; Edwards and Bridson 2014]. However, even in CFD settings,
refinement alone will not eliminate all cases of split cells: they can
easily be created by sharp input features [Meinke et al. 2013] and
on coarser levels of geometric multigrid schemes [Crockett et al.
2011; Dick et al. 2016].

Lastly, advanced finite element schemes are beginning to support
general non-convex polytopal elements (including holes!) [Jaśkowiec
et al. 2016], which can allow, for example, topology optimization

ACM Trans. Graph., Vol. 38, No. 6, Article 179. Publication date: November 2019.



179:4 • Michael Tao, Christopher Batty, Eugene Fiume, and David I.W. Levin

tasks to be computed with intricate Escher-tile elements [Paulino
and Gain 2015]. Such modern discretization methods suggest a
pathway towards fast, accurate, and flexible physical simulation,
provided they are paired with the robust arbitrary cut-cell meshes
generated by Mandoline. Indeed, NASA’s recent CFD Vision 2030
study [Slotnick et al. 2014] highlighted the demand for robust and
scalable meshing capabilities for complex geometry, noting that
“paradigm shifts inmeshing technology (i.e., cut-cellmethods, strand
grids, meshless methods) may lead to revolutionary advances in simu-
lation capabilities.”

3 OVERVIEW
Given an input triangle mesh, our algorithm should output a cut-cell
mesh comprised of simply-connected cells, each having a piecewise-
constant winding number. Our algorithm strives to minimize de-
pendence on vertex positions and geometric structure, focusing
instead on the combinatorial mesh structure. In particular, we seek
to avoid floating point operations as much as possible, ensuring that
the overall method can robustly generate appropriate cut-elements
despite near-degenerate polyhedra.

From a high level, our pipeline involves generating cut-elements
(i.e., vertices, edges, faces, and cut-cells induced by intersections)
from the bottom up, using different sub-complexes of the input
triangulation. The new vertices can be computed from the triangles’
edges and vertices, the planarity of the input triangles enables us to
robustly produce the intersection-induced edges and faces, and the
normals of the input triangles aid us in discerning the final cut-cells.
Pseudocode for our algorithm is given in Algorithm 1 and a visual
summary is provided in Figure 3.

Algorithm 1: Overview of our algorithm
igl::remesh_self_intersections();
removeDegenerateTriangles();
for e ∈ E do

Ve , Ee ← findEdgeIntersections(e); # Sections 3.3 and 4.1.1
end
F ← {};
for each face f do

EH ← computeHybridEdges(f , {Ve }e∈∂f ); # Section 4.1.2
for each edge e in EH do

V h
e , Ehe ← findEdgeIntersections(e);

end
Vf ← collectAndUnifyVertices({V H

e }); # Section 4.2
Ef ← collectEdges(Vf , {EHe });
Ff ← computeFaces(∂F ,{Ef } ); # Section 3.4

end
E ← collectEdges({Ee }e , {Ef }f );
for each plane on axis d and coordinate c ∈ Z do

Ê ← getEdgesInPlane(E, d , c ); # Section 4.2.1
Fd ,c ←computeFaces(Ê); # Section 3.4

end
F ← collectFaces({Ff }f , {Fd ,c }d ,c );
C ← computeCells(F); # Section 3.5
return C

3.1 Notation
We first outline some nomenclature. For clarity and brevity, we will
refer to the input triangle mesh as the tri-mesh, the regular cubic
lattice grid as the grid, and the output polyhedral cut-cell structure
as the cut-mesh. Wherever possible, we will follow a simple naming
structure of prefixing quantities of interest (vertex, edge, face) with
the type of mesh that they belong to or within (tri-, grid-, cut-),
except where it is irrelevant or unambiguous. The squares that
define the faces of our regular grid each sit on an axis-aligned plane
defined by an implicit equation of the form {xd = c ∈ Z}, where
x ∈ R3, c is a constant integer, and the superscript d indicates the
component of x ; we call these axial planes.
In the overview below we describe our algorithm’s key stages

while considering only cut-cells which we refer to as simple; that is,
cells whose set of bounding cut-edges consists of a single connected
component. Then, in Section 4, we will investigate the details for
generalizing the algorithm to arbitrary inputs. Some additional edge
cases are enumerated in Appendix A.

3.2 Cut-Vertices
Cut-Vertex Types. Our input provides two types of vertices: tri-
vertices, which come from our input tri-mesh, and grid-vertices,
which sit exactly where grid-edges meet each other (Figure 4, left
pair). Both types are also cut-vertices, since they will necessarily
be present in the final cut-mesh. The clipping process, discussed
momentarily, yields two new types of cut-vertices: (A) points where
grid-edges pierce tri-faces and (B) points where tri-edges pierce grid-
faces (Figure 4, right pair). Every involved edge and face will store
a reference to the corresponding cut-vertices resulting from the in-
tersections. Both of these cut-vertex types involve one grid element
and one tri-mesh element. To avoid ambiguity, we identify them by
the element of the tri-mesh involved, as in tri-face-intersections (A)
and tri-edge-intersections (B).

Fig. 4. Types of Vertices

Cut-Vertex Representation. Key to our dicing strategy is the ability
to represent any position p ∈ R3 in terms of integer grid-cell indices
c , cell-local trilinear coordinates q, and a bitmask b:

(c,q,b) ∈ Z3 × [0, 1)3 × Z32. (1)

We can reconstruct the corresponding world position as

p = dx (c + q) , (2)

wheredx is the grid resolution. The additional bitmaskb is a length-3
vector of binary flags used to track when p lies exactly on grid-faces,
grid-edges, or grid-vertices. Specifically, an x/y/z bit is 1 if the
point in question lies exactly on the corresponding axial plane. For
example, b = 011 indicates that a point sits exactly on both a y and

ACM Trans. Graph., Vol. 38, No. 6, Article 179. Publication date: November 2019.



Mandoline: Robust Cut-Cell Generation for Arbitrary Triangle Meshes • 179:5

1. Intersect Mesh Edges  
with Grid (3.2, 4.1.1)

2. Construct Hybrid Edges
(3.3, 4.1.2) 

3. Intersect Hybrid Edges  
with Grid (4.1.2)

4. Merge Intersections
(3.3, 4.2)

5. Generate Cut-Faces on  
Mesh Triangles (3.4, 4.3, 4.6)

6. Generate Cut-Faces 
on Grid (3.4, 4.3, 4.4, 4.5)

7. Merge all Cut-Faces 
into Cut-Cells (3.5, 4.4) 

Fig. 3. A Visual Overview of Mandoline (2D Projection): Starting from input triangles, we find intersection points of triangle edges with the grid’s axial planes.
These define the endpoints of new hybrid-edges lying within each triangle (i.e., triangle-plane intersection lines). Hybrid-edges subdivide the triangles into a
collection of cut-edges. Cut-edges per triangle are traversed and assembled into cut-faces (orange). The initial triangle intersection stages produce additional
edges lying strictly within the axial planes; these can be processed similarly and in parallel to produce in-plane cut-edges and cut-faces. Finally, the full
collection of cut-faces from both triangles and grid planes is traversed to assemble the cut-cells. (Parenthesized numbers refer to relevant sections of the paper.)

a z axial plane, i.e., on an x grid-edge. Our input tri-vertices are
easily converted into this representation in a preprocess, where for
a given axis d , the bd value is set active if qd = 0 (superscript d
indicates the component of the vector). When we later compute
intersections that give rise to cut-vertices, the grid structure ensures
that their associated bitmasks can be determined unambiguously. As
we will discuss later, this data is important for robustly and exactly
identifying and handling redundant elements, and will also allow us
to quickly determine the type of grid-intersection that a given vertex
corresponds to. Although the bitmasks are in theory a redundant
structure defined bybi = 1↔ qi = 0 and therefore could potentially
be elided in implementation, maintaining an explicit representation
simplifies implementation by both acting as a cache when handling
redundancies and allowing a consistent, unified treatment with
respect to bitmasks on edges and faces.

3.3 Cut-Edges

Fig. 5. Types of Parent Edges

Our cut-edge representation is simply an ordered pair of cut-
vertex indices. Cut-edges are created by subdividing existing “parent”
edges. Figure 5 shows the three kinds of parent edges that will give

rise to cut-edges in the output cut-mesh: input tri-edges, input grid-
edges, and new edges generated at lines of intersection between
tri-faces and grid-faces, which we denote as hybrid-edges. Parent
edges are subsequently subdivided into one or more final cut-edges
based on their endpoints and the intersection points (cut-vertices)
that lie along them.

Dividing Parent Edges into Cut-Edges. Observe that tri-edge-intersections
(recall these are points where a tri-edge pierces a grid-face) necessar-
ily interpolate their parent tri-edge’s endpoint positions (Figure 6);
by sorting the tri-edge-intersections by their interpolation value
along the parent, we can derive the adjacency information that de-
termines the cut-edges. Exactly the same procedure can be applied
in an analogous way to subdivide both grid-edges and hybrid-edges
into cut-edges based on the tri-face-intersection points lying along
them.

ty1

ty2

ty3

tx1

tx2

tx4

tx3

ty1

ty2
tx3

ty3
tx4

tx3t
x
3

tx2

ty1tx1

Fig. 6. Tri-edge-intersections are sorted along their parent tri-edge to de-
termine the resulting cut-edge connectivity, illustrated in 2D. (In 3D, the
tri-edge will also have intersections with z-planes.)

ACM Trans. Graph., Vol. 38, No. 6, Article 179. Publication date: November 2019.



179:6 • Michael Tao, Christopher Batty, Eugene Fiume, and David I.W. Levin

Bitmasks on Cut-Edges. Each of the tri-edge-intersections has at least
one active bitmask entry bd , as each corresponds to the intersection
of an edge and an axial plane. When we compute these intersections,
if an intersection is determined by a d-axial plane then we can safely
set bd = 1. Next consider tri-face-intersections. Since a hybrid-edge,
defined by a vertex-pair (i, j), is already the result of intersecting
a triangle with an axial plane (Figure 5, right), it lies entirely in
that plane and therefore every point on it initially has at least one
bitmask entry active (i.e., for some d̂,bd̂i = b

d̂
j = 1). This means that

every tri-face-intersection, where a hybrid-edge crosses a second
plane, has at least two bd active: one for the d̂ that created the
hybrid-edge and another for the second plane that the hybrid-edge
intersects (see bottom of Figure 7).

x -plane (10) y-plane (01) combined (11) in 3D

Fig. 7. The same intersection is found when tracing along both an x -plane
(green) and a y-plane (red). Our system of bitmasks lets us identify and
unify these redundancies.

Resolving Redundant Cut-Vertices. An important challenge for ro-
bustness is that processing the intersections of hybrid-edges arising
from a particular tri-face can result in redundant vertices. For in-
stance, consider a pair of hybrid-edges arising from the same tri-face.
Projected to a plane, as seen in Figure 7, each hybrid-edge finds its
own edge-intersections but floating point equality cannot always
determine whether vertices on two different hybrid-edges represent
the same point. In this example, when we process the intersections
(i.e., cut-vertices) along the green x-hybrid-edge we will find the
intersection of the tri-face with the grid-edge going through the
blue dot, which is located at the intersection of the green and red
hybrid-edges. When processing the intersections along the red y-
hybrid-edge, we will find the orange intersection, once again located
at the intersection of the two hybrid-edges. Although these two
intersections are evoked by different parent hybrid-edges and their
numerical realizations are constructed independently, they are really
the same vertex.
We use our bitmask data to robustly merge them as follows. As

discussed above, any tri-face-intersection along a hybrid-edge must
have at least two nonzero bd entries, i.e., the point has two coordi-
nates specified exactly. Naturally it also lies within the plane of the
input tri-face. Now, if we find two intersections created by the same
tri-face with at least two matching (cd ,bd ) pairs then they must
represent the same vertex. This is a straightforward consequence
of the implicit function theorem: if two coordinates of a point on
a given plane in R3 are known, the third coordinate is uniquely
determined.

3.4 Assembling Cut-Faces
Cut-Faces as Planar Subdivisions. The preceding cut-vertices and
cut-edges, together with the existing planar surfaces of the grid
and tri-mesh, are sufficient for reconstructing the entire cut-mesh
decomposition. Our next task is to gather this data into topologically
consistent cut-faces (and later cut-cells) through appropriate traver-
sals. Cut-faces are polygons that each lie entirely within a single
planar surface present in our input data. These planar surfaces are
of two types: the tri-faces from the input mesh, and the axial planes
of our regular grid. Therefore, we will conceptually project our
cut-vertices and cut-edges into two-dimensional parameterizations
of the planes (axial planes or tri-faces) that they reside on, so we
can depend on planar embeddings of our edge-graphs to discern
cut-face topology. The collection of cut-edges for each input plane
partitions that plane into polygonal regions; these are our cut-faces.

Reconstructing Faces by Polar Ordering Edges. The connectivity of
each planar partition can be determined by looking at the edges
incident to each vertex: two edges that share a vertex lie on the
boundary of the same face only if there are no other edges lying
between them in rotational order around the shared vertex. More
specifically, consider a vertex pi and its incident edges within the
same plane, and choose an arbitrary basis on the plane. We can
represent the edges (i, j) as outward-facing vectors pj − pi in polar
coordinates (r ij , θ

i
j ) around the chosen vertex. Any two edges with

adjacent angles θ ij are part of the same face.

(a) (b) (c) (d)

Fig. 8. We begin with half-edges that are only aware of their dual half-edge
(a). Half-edges’ next pointers are determined by rotational ordering around
vertices, (b), which completes the half-edge mesh structure (c). Faces are
constructed by ordered boundary loops of half-edges (d).

This fact can be used to recover any planar face encapsulated by
a single planar closed curve, by walking from edge to edge (Figure
8); this applies to all our cut-faces, since each lies either in a planar
tri-face or an axial plane. For cut-faces lying in the axial planes of
the grid, we can use the two coordinates of that plane as the local
basis for ordering of edges. For cut-faces on the tri-mesh, we collect
the cut-edges on each tri-face and use that tri-face’s barycentric
coordinates as a local basis to again determine the polar coordinates
needed for ordering. Note that this “projection” to the plane of
each tri-face simply requires reading off the natural barycentric
coordinates and requires nominal floating point computation: tri-
face-intersections are stored with barycentric coordinates, tri-edge-
intersections with line coordinate t have barycentric coordinates of
the form (t, 1 − t, 0), and tri-vertices have barycentric coordinates
of the form (1, 0, 0).

ACM Trans. Graph., Vol. 38, No. 6, Article 179. Publication date: November 2019.



Mandoline: Robust Cut-Cell Generation for Arbitrary Triangle Meshes • 179:7

It is also possible for an input tri-mesh to
produce cut-faces whose boundaries are not
a single closed boundary curve, as we have
assumed thus far. For example, in the inset
figure, a tetrahedron protrudes through two
grid-faces without crossing any grid-edges. On

each intersected grid-face, the boundary of the resulting (outer) cut-
faces consist of two disjoint boundary curves. This sort of situation is
what is commonly called tunneling. We defer a thorough discussion
of these challenges to Section 4.5.

3.5 Assembling Cut-Cells
Cut-cells are constructed in a manner much like cut-faces, but in-
stead of ordering edges radially around vertices, we order faces
around edges. For now, we limit ourselves to the case of cut-
faces that consist of planar simply-connected curves with no self-
intersections. For every directed cut-edge in the cut-mesh, we can
collect the oriented cut-faces sharing the cut-edge, identify the cut-
faces’ associated normal vectors, and project those vectors to a
plane orthogonal to the edge using an arbitrary basis for the plane,
visualized as light blue in Figure 9. We then order the incident faces
based on polar coordinate representations of their normals, and let
adjacent faces belong to the same cell.
In practice, polar ordering can be performed on any plane that

projects vectors bijectively with respect to the desired orthogonal
plane. Therefore, in order to minimize floating point operations, for
an edge with tangent vector T , we instead use the axial plane that
is most-orthogonal to T : argmini |Ti |. Coordinates of the normal
vectors in that plane can then be used rather than generating new
floating point coordinates in an orthogonal plane.
A normal vector for each planar cut-face is induced by the ori-

entation of its boundary curve. The cut-face normals are all ori-
ented in the same direction around the edge because cut-faces
derived from an input triangle (tri-cut-faces) are constructed in
the same orientation as the triangle, and cut-faces derived from
grid-faces (grid-cut-faces) are clockwise curves on R2 through the
projection πd (p) =

(
p(d+1) mod 3,p(d+2) mod 3

)
where d is the axis

of the grid-face that the cut-face lies on. Clockwise-normals for
tri-cut-faces are therefore given by the clockwise-normals of the
tri-faces that they lie within. For grid-cut-faces we use the normal
e(d+1) mod 3 × e(d+2) mod 3. The above definitions are defined locally
to each individual triangle, so we can easily support non-manifold
input triangle meshes with arbitrary edge-face valences.

Perhaps a more intuitive ordering approach, similar to our edge-
ordering step, would be to construct for each face a vector perpen-
dicular to the shared edge and lying in the plane of that face, and use
these vectors for ordering. With convex polygonal faces, as is the
case in the work of Zhou et al. [2016], we could construct the vector
by simply picking any vertex in the face that does not lie in the line
of the chosen edge, such as another vertex. However, our faces are
not necessarily convex. Our alternative solution given above uses
the normal of each incident face for ordering because these nor-
mals are all an identical in-plane π

2 rotation from the corresponding
outward-pointing vectors (see Figure 9).

~R90

Fig. 9. To compute cells we need to order faces around a plane orthogonal to
an edge. Rather than doing cell-plane intersections to find outward-facing
tangent vectors we use oriented normals, which are a 90-degree rotation
from the these tangent vectors.

Given the orderings of cut-faces around cut-edges, we unify ori-
ented cut-faces into cut-cells by discerning which half-faces are
the boundaries of the same cut-cell and using a union-find data
structure to identify unique cut-cells. A variety of degeneracies can
occur, which we discuss later (Section 4.6).

4 TECHNICAL DETAILS
Having outlined the algorithm’s general flow, we can now describe
the finer details as well as degeneracies that can occur and our
corresponding solutions. To simplify intersection computation, our
methodology takes advantage of two facts. First, triangles and edges
are strictly convex. Second, viewing a triangle mesh as a collection
of vertices, open edges, and open triangles produces a unique par-
tition of points on the triangle mesh. This approach ensures that
intersections are uniquely defined on a single object (such as an
edge) rather than on multiple elements (such as redundantly on two
triangles that share the edge).

Fig. 10. We decompose the input geometry into the open elements to com-
pute intersections on open sets.

4.1 Grid-Mesh Intersections
Given the input collection of non-intersecting triangles with non-
zero volume, our first task is to determine the set of cut-vertices and
cut-edges on the interior of the tri-faces and grid-faces. The primi-
tive operation we adopt for finding cut-vertices and cut-edges is the
intersection of an arbitrary open segment and an axial plane, rather
than axis-aligned raycasts against arbitrary triangles (as adopted by
some previous meshing tools [Kim and Tautges 2010; Müller 2009]).
The former operation is sufficient for finding the cut-vertices that
arise when parent tri-edges and hybrid-edges cross axial planes, but
what about cut-vertices that arise at grid-line intersections with
triangles? These do not need to be (re-)computed separately because
they are the exact same cut-vertices already found when a hybrid-
edge crosses an axial plane; segment vs. axial plane tests therefore

ACM Trans. Graph., Vol. 38, No. 6, Article 179. Publication date: November 2019.



179:8 • Michael Tao, Christopher Batty, Eugene Fiume, and David I.W. Levin

suffice. Given all the cut-vertices, cut-edges are simply the spaces
between cut-vertices on the parent edges.
An important issue is that a cut-vertex on a hybrid-edge can

be redundant with respect to a cut-vertex generated by a hybrid-
edge lying within a different axial plane (see Figure 7). In especially
rare situations, numerical inaccuracies can even result in vertices
that are found to belong to the interior of a simplex through one
computation path, and to its boundary through another. Rather than
remove redundant vertices, we keep all redundant vertices from
every line and annotate equivalence classes among intersection
points (Section 4.2). Thus we can leave the various data structures
alone and preserve all metadata that any given vertex may have,
including the type and index of the simplex that it was spawned by,
as well as its local coordinates with respect to its parent simplex.

4.1.1 Computing Edge-Intersections. We first compute tri-edge-
intersections, which are generated by the intersection of tri-edges
with axial planes (grid-faces). Later on, for tri-face-intersections we
will use this same procedure on hybrid-edges.

Input: The two endpoint positions of a parent edge, given in the
(c,q,b) representation from (1).
Output: The set of intersection points of the parent edge with all
axial planes and the associated set of cut-edges.

Algorithm: For parent edge (i, j), for each axis, we compute the
integers in the interval (cdi + q

d
i , c

d
j + q

d
j ), where we assume i < j.

For every such integer value z, we get an intersection with line
coordinate

t =
z − (cdi + q

d
i )

(cdj + q
d
j ) − (c

d
j + q

d
i )

(3)

and activate the bitmask entry for that intersection’s axis: bd = 1.
We use the t values to sort these edge-intersections and thereby
construct the child cut-edges generated by this parent edge.

4.1.2 Computing Hybrid Edges. We will next want to compute tri-
face-intersections, induced by the intersection of tri-faces with axial
lines (grid-edges). However, as noted earlier, we prefer to compute
them using our edge-vs.-axial-plane primitive operation, as inter-
sections of hybrid-edges with the grid’s axial planes. This requires
a method to find hybrid-edges; we can then use the procedure from
Section 4.1.1 to subdivide them.

Input: A tri-face, its tri-vertices, and the tri-edge-intersections of
its edges.
Output: The hybrid-edges belonging to the tri-face.

Algorithm: Convexity tells us that a line that crosses through the
interior of a convex domain will intersect its boundary twice. A
hybrid-edge is a line (lying within an axial plane), and a triangle
is a convex domain; as such, finding a hybrid-edge is equivalent to
finding two points on the boundary of a tri-face that lie on a single
axial plane. Recall that we have already found all the points on
tri-face boundaries that lie within axial planes: these are either our
tri-edge-intersections or input tri-vertices. Hybrid-edges, therefore,
terminate at tri-vertices or tri-edge-intersections on the tri-face’s
boundary edges. We need only identify the appropriate point-pairs.

Fig. 11. Hybrid-edges (green and red lines) are the intersections of axial
planes (light green, light red) and triangle faces (grey); their endpoints are ei-
ther tri-edge-intersections (pure orange and pure blue points) or tri-vertices.
Tri-face-intersections along hybrid-edge are shown in mixed orange/blue.

For each tri-face, we bin the tri-vertices and tri-edge-intersections
that have mask entries bdi active according to a hash (d, cdi ), where d
is a coordinate with an active mask. For every bin containing two of
these cut-vertices we create a hybrid-edge that connects them and
subdivide it into cut-edges as we did for tri-edges. The endpoints of
each hybrid-edge are known to have at least one integral coordinate
based on the plane that contains it (the cdi from the bin); therefore,
tri-face-intersections computed along each hybrid-edge must have
at least two integral coordinates, since they lie on grid-lines.
Depending on how a tri-face penetrates through a given axial

plane, there are a variety of potential hybrid-edge cases that may
occur, as detailed in Figure 12. For any given bin (d, i) we only want
to create hybrid-edges that lie on the interior of the given tri-face.
While using bins with precisely two elements suffices for finding
non-degenerate hybrid edges on closed triangles, we only want
the hybrid edges that lie on open triangles. We therefore only use
bins that contain two tri-edge-intersections or contain one tri-edge-
intersection and one tri-vertex. This ensures that any hybrid-edges
we create are strictly on the interior of tri-faces as desired, and as a
result, we do not introduce new hybrid-edges that are redundant
with respect to existing tri-edges that happen to lie in an axial plane.

Our bitmasks help us coalesce the cut-vertices that belong on
grid-edges: any cut-vertex with exactly two active entries lies on a
grid-edge. We collect such cut-vertices onto the grid-edges they lie
on and generate cut-edges according to how they subdivide their
grid-edges.

ACM Trans. Graph., Vol. 38, No. 6, Article 179. Publication date: November 2019.



Mandoline: Robust Cut-Cell Generation for Arbitrary Triangle Meshes • 179:9

Fig. 12. The different types of intersections between an axial plane (black
horizontal line) and a triangle, shown in a 2D projection.

4.2 Reducing Redundancies
Our collection of hybrid-edges intersects with axial planes to form
our set of tri-face-intersections. However, this set may contain re-
dundant vertices, as seen in Figure 7. With only floating point posi-
tions it can be difficult to identify these redundancies due to numer-
ical artifacts. Likewise, we may have the same sorts of redundant
intersections on tri-edges. For these reasons we developed a process
to robustly identify these redundancies, using the inverse function
theorem and our bitmasks bi .

Input: Intersection points on the interior of a tri-element (i.e., tri-
edge or tri-face).
Output: An exact identification of equivalent vertices in that ele-
ment.

Algorithm: Consider the k-plane (i.e., infinite plane or line) that
contains a given k-element (i.e., finite face or edge, respectively) and
temporarily assume that the k-plane is not parallel to any axial lines.
Then we know that if k − 1 coordinates of two points on the k-plane
are identical, it follows by the inverse function theorem that they
are the same point. In our setting, when we have two points p,q
with k − 1 matching active bitmask entries and integer coordinates
(i.e., k − 1 values of d for which bdp = 1, bdq = 1, cdp = cdq ), we know
that these are indeed the same point. If we have a k-plane that is
parallel to one or more axial edges, we simply increase the required
number of matching bitmask coordinates by the number of axial
planes intersected (i.e., we need k + a − 1 shared masks, where a is
the number of parallel axes).

However, as a side effect of numerical imprecision, it is also pos-
sible for a redundant intersection pair to erroneously have different
numbers of active bitmask entries. Consider Figure 13, in which a
tri-edge cuts diagonally through a grid-vertex; the X-intersection
is found to lie on both axes, while the Y-intersection is identified
as lying only on the adjacent edge. Without proper handling, these
masking differences can lead to the creation of unnecessary and
nearly degenerate edges. Fortunately, we can resolve this ambiguity
by selecting the vertex with the larger number of masked entries
and uniting the other with it. This choice reduces the total number

of vertices and edges that we process and removes some infinitesi-
mal cut-cells. We will now mathematically formalize this procedure
to deterministically remove all such redundancies.

Fig. 13. We opportunistically upgrade intersections by their bitmasks to
create better elements. Here we see that computing the intersection of a
Y -plane finds a grid-edge, while intersecting with an X -plane finds a grid-
vertex. The bitmask partial ordering identifies that these two points should
be the same point and merges them.

4.2.1 Bitmask Partial Ordering. Each point’s bitmask and integer
coordinates specify the particular grid-cell, -face, -edge, or -vertex
that it lies within. However, cut-vertices lying close to the boundaries
of the grid-cells they reside within raise the concern that they may
in fact lie on the boundary. Equivalently, we can say that such a cut-
vertex may need at least one more active bitmask entry. When we
have a collection of cut-vertices that we know must sit on a single
plane, we will show that we can discern redundant vertices with a
least upper bound operation on the directed acyclic graph (DAG)
induced by adding active bitmask entries. This DAG is geometrically
related to the boundary operator, and the induced partial ordering is
determined by the number of bitmask entries, which is geometrically
equivalent to the dimension of the grid elements being considered.

More formally, consider the map ρ : R→ Z∅ for Z∅ = {∅} ∪ Z
given by

ρ(x) =

{
x, x ∈ Z
∅, otherwise (4)

This map specifies that a real coordinate x is mapped to∅ if it is not
on a grid-plane (integer). With a healthy distrust of floating point
computations we think of ∅ as values that may in fact be integral,
but we do not yet have the confidence to claim so. We express this
confidence with a partial ordering by saying for u,v ∈ Z∅,

u ≤ v ⇔ [u = v or (u = ∅ and v , ∅)] . (5)

This partial ordering is naturally extended to vectors with the map
ρ : Rn → Zn∅ where we apply the scalar map to each component,
adopting the product (coordinatewise) order. The dimension of the
geometry holding x can be incorporated by defining the semi-norm
|ρ(x)| : Zn∅ → Z to be the number of non-∅ components of ρ(x).
In order to extend this concept to tri-edges and tri-faces we define
this map on sets S ⊂ R3 as the minimal value of ρ according to this
semi-norm:

ρ(S) = min
z∈S

ρ(z). (6)

ACM Trans. Graph., Vol. 38, No. 6, Article 179. Publication date: November 2019.



179:10 • Michael Tao, Christopher Batty, Eugene Fiume, and David I.W. Levin

We can efficiently evaluate ρ on polygons by taking the greatest
lower bound of its vertices (i.e., ρ(S)d = ∅ if ρ(v)d = ∅ or ρ(x)d ,
ρ(y)d for any x,y ∈ S).
Because we represent our cut-vertices as triplets (c,q,b) rather

than simple vectors in R3, this is implemented using

ρ(x)d = ρ(c,q,b)d =

{
cd , bd

∅, ¬bd
, (7)

ρ(x) =
∑
d

bd . (8)

4.2.2 Removing Redundancies. Now that we have formalized our
vertices as a DAG we can discuss how this DAG structure removes
redundancies. Note that when formalizing cut-vertices of a k-plane
Pk , taking into account collinearity of Pk with axial planes requires
a modification to ρ

ρPk (x)
d =

{
ed ·TP

k , 0 ρ(x)d

o.w ∅. (9)

where the dot product records the axes that Pk varies on, by check-
ing that its tangent plane utilizes basis element ed . A cut-vertex on
Pk is therefore any vertex x such that |ρPk (x)| ≥ k .
Although ρPk will be convenient for a quick derivation in a

moment, it is worth noting that we do not need to explicitly compute
it; in implementationwewill only need inequality comparisons. This
can be seen as follows: for any d̂ such that ρPk (x)

d̂ , ρ(x)d̂ we know
that for everyy ∈ Pk , ρ(y)d̂ = ρ(x)d̂ because Pk , by definition, does
not vary in that axis. That implies that ρ(x) < ρ(y) ⇔ ρPk (x) <
ρPk (y).

Our main claim is that every cut-vertex on a k-plane Pk is a local
maximum according to this DAG.

∀x,y s.t |ρPk (x)| ≥ k & |ρPk (y)| ≥ k ⇒ ρ(x) ≮ ρ(y). (10)

This claim allows us to say that for any potential cut-vertices x,y
where ρ(x) ≤ ρ(y) we know that x = y. We implement this by
filtering potential cut-vertices from each input triangle for redun-
dancies by checking each pair of vertices for whether ρ(x) < ρ(y)
and removing vertices x whenever we find them.

The proof is fairly straightforward: the implicit function theorem
implies that if x,y share k constraints when projected to the k-plane
then they are indeed the same point. Say ρ(x) ≤ ρ(y); then for any
d , ρPk (x)

d , ∅ implies ρPk (y)
d = ρPk (x)

d , ∅ so x,y share at
least k entries, and so x = y; therefore for any cut-vertices x,y,
ρ(x) ≮ ρ(y).

4.3 Constructing Cut-Faces using Half-Edges
We use a collection of half-edge meshes to represent our cut-faces:
one half-edge mesh for cut-edges on each axial plane in use and one
half-edge mesh for cut-edges on each tri-face of our tri-mesh. Each
half-edge mesh comprises a collection H of half-edges hi , which
are objects hi ∈ H with connectivity defined by a set of functions

(n,d,v, f ) : H → H2 × Z2. (11)

Applied to a particular half-edgeh, n gives the half-edge that follows
h; v gives the vertex that the half-edge h points towards; d gives the
dual half-edge ofh that stores the vertex at its other end; and f gives

the face that h belongs to. A full directed edge (i.e., ordered vertex
pair) can be constructed from a half-edgeh using (v(d(h)),v(h)). The
convenience of this representation is that, although it is typically
used for triangle meshes, it can support simple polygons. As we
discuss in Section 4.5, it can also be extended to support the more
complex faces needed for tunneling.

Input: The set of edges in a closed simple polygon.
Output: A collection of open simple polygons that may contain
one another.

Algorithm: Every tri-face holds its own half-edge mesh structure,
as does each axial plane. Each cut-edge e is placed in the half-edge
meshes of every face it is contained by and every axial plane it lies
within. We generate cut-faces by first defining the results of the
next operator n(h). After creating a counterclockwise ordering of
the N edges {hi }Ni=1 around the face, as described in Section 3.4, we
unify adjacent half-edges by setting next pointers as:

n(hi ) := d
(
h(i+1) mod N

)
.

In order to create simple closed curves from open planar surfaces,
we follow this procedure even for vertices with only one neighbor,
which we call dangling edges. Handling dangling edges turns out
to be required for computing cut-cell meshes, even for closed input
tri-meshes. This is because dangling edges are created by tri-edges
that lie on an axial plane, particularly when the two incident faces
to that edge lie entirely on one side of the axial plane (Figure 14).

Fig. 14. A tri-edge that sits on an axial plane forms a non-manifold planar
mesh.

After we have constructed the n operator, we can construct the
faces, creating equivalence classes

f (h) ≡ f (n(h)).

We perform this same procedure for every axial plane and every
tri-face.

4.3.1 Boundary Faces. To combine our cut-cell mesh with other,
more regular, hexahedral mesh structures (e.g., uniform staggered
grids or octrees), we only want to create a cut-mesh in a narrow sten-
cil of grid-cells containing the tri-mesh surface, just large enough
so that its boundary faces are all unaltered squares. While our in-
tersection routines generate data only on or inside stencil cells, our
mechanism for assembling the half-edge meshes has no notion of
embedding; it will therefore generate spurious cut-faces (i.e., exte-
rior boundary loops) that span interior gaps in the stencil or traverse

ACM Trans. Graph., Vol. 38, No. 6, Article 179. Publication date: November 2019.



Mandoline: Robust Cut-Cell Generation for Arbitrary Triangle Meshes • 179:11

around the outer boundary of the stencil (see Figure 15). These must
be explicitly identified and discarded.

Input: A collection of simple closed cut-faces.
Output:A subset of the input cut-faces such that every cell’s interior
is inside the stencil.

Fig. 15. Our face-creation algorithm identifies and discards infinite-volume
exterior faces (blue) and spurious interior faces lying outside the cut-mesh
stencil (green).

Algorithm:We discern and remove unnecessary faces by first an-
notating the grid-vertices that lie on stencil boundaries as boundary
vertices on each axial plane. What we would ideally like to do is
define boundary-edges as edges comprised of only boundary ver-
tices, and remove cut-faces that are entirely comprised of boundary-
edges. However, stencils that are a single grid-cell wide disallow
this straightforward algorithm, since their faces would be be erro-
neously discarded. We correct for this by additionally retaining a
face if its grid-edges form the boundary of a single grid-face and
the face is in the stencil.

4.4 Cut-Cell Construction
We combine cut-faces into cut-cells by examining edges shared
by multiple cut-faces. Similar to the technique we applied with
half-edges, we split each cut-face into halves, each with opposing
normals, and collect half-faces to form cut-cells.

Input: A collection of simple closed polygons with appropriate
face-normals.
Output: A collection of cut-cells.

Algorithm: Our cut-faces are defined by oriented boundary curves
and we let each half-face correspond to one of the two orderings of
those boundary curves (i.e., one is the original cut-face orientation,
the other is the same boundary curve reversed).

Each face is planar and we assign it a normal
N orthogonal to it. In turn, each half-face is as-
signed either N or −N as its normal according to
the orientation of the outermost boundary curve (it
must form a counter-clockwise loop on the plane
orthogonal to the normal). We collect half-faces

onto every oriented edge and use the half-faces’ normals to deter-
mine their ordering about that edge.

4.4.1 Face Normals. It is crucial to accurately compute an appro-
priate normal for each half-face. Rather than construct new normals
for polygonal cut-faces, we keep track of the underlying plane that
a given cut-face comes from (i.e., an axial plane or a tri-face) and
use its normal instead. This ensures that if the normals of the input
geometry are well-defined, so too are those assigned to the cut-faces.
This cell construction strategy is necessarily contingent on the input
having reasonable normals, which could be achieved in practice by
pre-processing the mesh to remove (near-)zero-area triangles. In
our examples we only remove zero-area triangles.

4.5 Tunneling
Tunneling occurs when a cut-cell passes entirely through a grid-cell
without intersecting any of its grid-edges. Support for this feature
is equivalent to supporting cut-faces with holes, which can only
occur on axial planes.Without support for tunneling the existing cut-
faces result in overlapping faces, whileMandoline’s cell construction
procedure depends on having non-overlapping cut-faces.

Keeping with our boundary loop representation of cut-faces, han-
dling tunneling requires detecting and representing faces whose set
of boundary edges consists of multiple distinct loops. Each valid
cut-face should have one outer loop enclosing all other inner loops,
and the inner loops must not contain one another (i.e., the interior
of the face is a single continuous component with holes). Assuming
directed boundary loops, the outer loop has winding numberw = 1
on its interior and every inner loop has winding number w = −1
on its interior.

Input: A collection of simple closed polygons with possibly over-
lapping interiors.
Output: A collection of polygons with holes and no overlapping
interiors.

Algorithm: We compute the required non-simple cut-faces by, for
each axial plane, finding an ordering of oriented closed boundary
curves that contain one another and finding, for each w = −1
boundary loop γn , a “parent”w = 1 boundary loop γp .
This interior check can be performed by confirming that every

point on a loop γ has constant winding number with respect to
a potential parent, i.e., ∀p ∈ γ ,wγ (p) = C,C ∈ {−1, 1}. Because
the boundary loops do not intersect one another, we need only
evaluate the winding number on the vertices of γn and the midpoint
of at most one edge, as explained in Figure 16. We therefore check
whether one curve subsumes another’s vertex set, find the novel
edge, and check if its midpoint is on the interior or exterior of the
other.
Having a collection of intersection-free curves for input here is

advantageous for identifying tunneled faces within tunneled faces.
This is because being intersection-free implies that the DAG of
simple curves (loops) that contain one another is in fact a tree, i.e.,
boundary loops are uniquely contained by one another, so a bottom-
up traversal of loops guarantees that merging loops into non-simple
polygons yields the true cut-face topology. We therefore repeatedly
find the smallest-area γp and join it with every unused γn contained
within it, where area here denotes the hole-free simple polygon that
the loop bounds, until we have gone through every γp .

ACM Trans. Graph., Vol. 38, No. 6, Article 179. Publication date: November 2019.



179:12 • Michael Tao, Christopher Batty, Eugene Fiume, and David I.W. Levin

Fig. 16. Here we have three boundary loops: two w = 1 curves, the green
loop γ дp and the triangle γ tp , and a w = −1 boundary loop in magenta, γn .
Each vertex of γn lies on the loop γ дp , so in order to determine that γn is
not nested inside γ дp we must check the winding number of the midpoint
of an unshared edge (red square).

4.6 Degenerate Edges in Face Creation
Support for open tri-meshes implies that faces may have boundary
edges with no opposing face; i.e., both “halves” of an edge refer
to the same face. This is trivially supported by allowing our cell-
construction algorithm to run on edges with only one adjacent face,
as seen in the inset.

However, even without open meshes, degenerate
cases such as Figure 14 are also an issue as our face-
to-cell construction algorithm will generate multiple
half-faces for each directed face around the problem-
atic edge. Without careful treatment these redundant
half-faces would disrupt our face-ordering process. Oc-
casionally, directed edges i → j and j → i will both

appear in a single face, which represents somewhere the face is
“pinched” to have zero thickness; the offending edges need to be
removed and the face subdivided. This process, although mathemat-
ically simple, can result in the creation of new boundary curves that
must be stitched together from multiple components. Without this
process, as seen in Figure 17, the claw in Figure 21 would not have
individual fingers.

Input: The boundary of an open polygon.
Output: The boundary of degeneracy-free open polygons whose
union is the input.

Algorithm: If we take our input boundary curve to be an open
polygon these degenerate edges are equivalent to sets of points that
would disappear under the closure operator.

Given that we represent boundary curves by an array of indices,
this means we have to separate this array into multiple smaller
arrays. Our method for removing such degeneracies is to identify
the non-degenerate edges, create an adjacency list from those non-
degenerate edges, and then traverse the adjacency list to fill new
arrays of indices. We can easily avoid making redundant boundary
loops by popping visited entries in the adjacency list.

With degenerate edges removed

Boundary curve with degeneracies Topologically equivalent boundary

Resulting faces

Fig. 17. A single boundary curve can have degeneracies that affect cell
creation. We remove such degeneracies.

4.7 Triangulation
For the purposes of rendering we must triangulate the polygonal
cut-faces that make up our cut-mesh. To triangulate faces with
holes due to tunneling we call upon Triangle [Shewchuk 1996]. To
improve performance we use traditional ear-clipping on faces that
are simple polygons. Finally, cut-faces lying on input tri-faces are
guaranteed to be convex (they are the result of triangles clipped
against planes) so for these we simply use triangle fans.

5 RESULTS
We have used Mandoline to generate cut-cell meshes for a wide
variety of geometries, as illustrated in Figures 1, 23, and in the
supplement. Below we take a closer look at some of Mandoline’s
features and performance.

5.1 Split Cells and Tunneling
Figure 18 shows examples of split cells and tunnels created by Man-
doline. Here we generate tunnels using a hollow, closed Hilbert
curve and split cells using a wavy hexahedron. Mandoline resolves
cases of multiple splits and multiple tunnels, and is robust to small
geometric features that may result from “almost” split cells. We are
unaware of any other cut-cell generation method that demonstrates
this type of reliability.

5.2 Effect of Grid Resolution
Figure 19 shows two cut-cell meshes of the same Dragon surface
generated at different resolution. Notice that both coarse and fine
cut-cells generated by Mandoline conform perfectly to the input
surface geometry and that small features, like the Dragon’s toes,
are handled correctly.

5.3 Adaptive Meshes
Nontrivial cut-cells are only generated in grid cells in a local neigh-
borhood around the input triangle mesh. For simulation purposes,
we typically fill the remainder of the desired domain with cubes.
However, for a given cut-cell grid resolution we can also pair the
generated cut-cell mesh with a standard octree to create an adaptive
mesh; this handles the common case in which a uniform finest grid
scale is desired around the input surface, with coarser cells further
away from it. We show a few examples of this feature in Figure 23.

ACM Trans. Graph., Vol. 38, No. 6, Article 179. Publication date: November 2019.



Mandoline: Robust Cut-Cell Generation for Arbitrary Triangle Meshes • 179:13

Geometry Selected Grid Cells Cut-Cells

A

C

C

D
DE

E

A

B

B

Fig. 18. Mandoline handles both tunneling (top) and split cells (bottom).
Cutting a Hilbert curve (top) produces cut-cells with multiple tunnels (A,B).
Using a wavy plane (bottom) to cut through the background grid produces
cells that are partially (C,E) and fully (D) split. Note the narrow cell geometry
in (E) caused by the small gap between grid and geometry.

Fig. 19. Mandoline can produce cut-cells using a wide range of background
grid resolutions. The cut-cells produced using a coarse background grid
(left) are often more complex than their fine conterparts (right) because they
contain more of the surface geometry. Of note is how Mandoline robustly
handles small cells produced by the dragon’s toes.

5.4 Open Meshes
Figure 20 shows an example of a cut-cell mesh generated from an
open surface. Here special care must be taken at the open boundary
where the surface may not fully split the cell. In these cases Mando-
line generates topologically correct partially cut-cells, embedding a
double-sided portion of the open mesh into such cells.

5.5 Difficult Cases
Mandoline handles several types of challenging degenerate situa-
tions. In this section we outline a few exemplars, as seen in Figure 21.

Wedge (a). This case has two grid-cells with a tetrahedron cut
out of them through a boundary. This presents a case where, on
the boundary face between the two cells, using pointwise winding
number computations presents an ambiguity between whether a

negative winding number boundary curve is included within a
positive winding number boundary curve, as seen in Figure 16. This
is resolved by finding a point on the negative winding number
curve that isn’t shared with the positive winding number curve, as
discussed in Section 4.5.

Empty cone (b). The input mesh for the Empty cone test is the
difference of two nested tetrahedra that share their top face. This
shared face forms the opening of the cone and lies exactly on an
axial plane. Despite the triangle on the top grid cell being tangent
to the axial plane, Mandoline successfully constructs the original
geometry, a single interior cell, and an exterior cell surrounding the
cone.

Claw (c). The Claw test represents a case where a single boundary
curve, which traces around each of the claws and over the webbing
between the claws, must be separated into three distinct bound-
ary curves forming the base of each claw. This is the case seen in
Figure 17; in order to identify the base of each claw as a separate
polygon we must remove degenerate edges and discern the three
separate boundary loops.

Oscillator (d). The Oscillator presents a case of tunneling (Sec-
tion 4.5) where the axial plane between two grid cells contains many
embedded boundary curves. The input geometry is a cylinder whose
top oscillates several times in the radial direction, with the final
oscillation ending exactly on the middle axial plane. The cut-faces
along this axial plane are a series of punctured disks, which create
a collection of embedded cells for both the input geometry and the
exterior space.

5.6 Validation
We depended on a few metrics to determine whether our cut-cell
meshes incorporated the input triangle mesh and grid in a lossless
fashion and created well-defined volumetric elements. For every
mesh from the Thingi10K dataset, we checked that the following
conditions were satisfied.

Grid cell isolation. Cut-cells should be fully containedwithin a single
grid cell.

Piecewise-constant winding number (PWN). Cells should
have piecewise-constant winding number using libigl’s
piecewise_constant_winding_number function on triangulated
faces. We removed cut-faces corresponding to partial cuts for this
computation because they are only implicitly known to represent
two faces glued together with opposite orientation, which would
generate a PWN value of 0.

Surface area. The cut-faces generated should produce a partitioning
subdivision of the input mesh. We computed the area fractions of
tri-cut-faces relative to their parent triangles, and confirmed that
the sum of the weights were uniformly 1 for each triangle.

Input Volume. For closed inputs without self-intersections, the vol-
ume of the cells on the interior of the input geometry should be
identical to the volume of the input geometry.

ACM Trans. Graph., Vol. 38, No. 6, Article 179. Publication date: November 2019.



179:14 • Michael Tao, Christopher Batty, Eugene Fiume, and David I.W. Levin

Open Geometry

Split Cell

Partial Cut

Select Cut-Cells Non-Trivial Cells

Fig. 20. Cut-cells generated for an open surface. At the boundary, some grid cells will not be split completely. In such cases Mandoline correctly identifies and
produces proper partially cut-cells.

(a)

(b)

(c)

(d)

Fig. 21. Examples of a few challenging cases, described in Section 5.5.

5.7 Performance
Mandoline performs well on a wide range of examples and at a wide
range of grid resolutions (Table 2). Even for complicated meshes
such as the Ogre (Figure 20), it only takes ∼9 seconds to generate
a result. We also compared with the only comparable open source
alternative to Mandoline: libigl’s mesh arrangements [Zhou et al.
2016]. However, mesh arrangements is much slower thanMandoline

even for small grid sizes. For instance, Mandoline generates a (5 ×
5 × 5) dragon cut-cell mesh in ∼5 seconds while libigl takes over 40
seconds. We coerced mesh arrangements to generate cut-cells for
this experiment by triangulating a grid of cubes and intersecting
them with the dragon mesh.

We ran performance tests to check the scalability of our method
using the Thingi10K dataset [Zhou and Jacobson 2016], the results
of which are available in our supplemental document. We found
that Mandoline’s performance was roughly linear with respect to
the number of grid cells and number of input triangles.

6 CONCLUSIONS AND FUTURE WORK
We have presented Mandoline, a robust algorithm for rapidly gener-
ating hexahedral cut-cell meshes suitable for applications in engi-
neering and computer graphics. We have demonstrated that Mando-
line can generate well-formed cut-cells from both open and closed
surfaces described by potentially non-manifold triangle meshes at
arbitrary grid resolution. The code for Mandoline is readily available
at github.com/mtao/mandoline. This includes the mesh generator,
supporting all desired cut-cell features (Table 1), and the tools to
reproduce our tests.

For isolated tri-mesh geometry, enclosed entirely within one grid
cell (such as an air bubble falling inside a single liquid cell in a
fluid simulation), Mandoline will generate two identical cut-cells,
with winding numbers of opposing signs. The appropriate duplicate
cell needs to be removed as a post-process. A potential avenue
for resolving these floating cut-cells is to utilize the same winding
number strategy we apply for tunneling in cut-faces in Section 4.5.
Mandoline also makes no attempt to eliminate relatively small

cells with negligible volume that may be generated. For some down-
stream applications small cells may be problematic; e.g., they can
induce stability issues for certain CFD schemes, although a range
of possible treatments have been proposed [Berger 2017]. An inter-
esting extension would be to develop a geometric post-process that
can robustly provide a practical lower bound on cell sizes, perhaps
via a cell-merging strategy.

However, the most exciting avenues of future work are those
unlocked by the availability of a tool like Mandoline. In the context
of physical simulation, for example, we look forward to investi-
gating Mandoline’s use in concert with modern high-order finite

ACM Trans. Graph., Vol. 38, No. 6, Article 179. Publication date: November 2019.

github.com/mtao/mandoline


Mandoline: Robust Cut-Cell Generation for Arbitrary Triangle Meshes • 179:15

Table 2. Run-times of Mandoline for various inputs as a function of the number of grid cells (indicated by column headings). All times are given inmilliseconds.
Benchmarks were run on an Intel Xeon E5-2630 (2.4 Ghz) with 64 GB of RAM.

Example 2 × 2 × 2 4 × 4 × 4 5 × 5 × 5 10 × 10 × 10 25 × 25 × 25 50 × 50 × 50
Bunny 3323 3126 3165 3225 3224 3909
Bunny Watertight 2694 2749 2883 3424 5527 14316
Cow 173 217 240 333 831 3216
Cube 14 16 29 142 1263 9193
Dragon 4740 4972 4965 5441 8035 16603
Fandisk 407 459 438 662 1783 5947
Joint 54 70 81 287 2028 11257
Ogre 1265 1301 1435 1658 3214 8970
Noisy Sphere 36 29 55 142 1190 6504

difference, finite volume, and finite element schemes for solid and
fluid mechanics problems, including fluid-structure interaction and
multiphase flows. We believe that Mandoline’s greatest benefit will
be allowing the community as a whole to more fully explore the
use of cut-cell meshes for geometry processing, simulation, and
animation tasks. For a sneak peek, look at Appendix B.

ACKNOWLEDGMENTS
This work is graciously supported by NSERC Discovery Grants
(RGPIN-04360-2014&RGPIN-2017-05524), NSERCAccelerator Grant
(RGPAS-2017-507909), Connaught Fund (503114), and the Canada
Research Chairs Program. We thank Tim Jeruzalski for his substan-
tial efforts to render our results, as well as Rahul Arora, Nicole
Sultanum, and Sarah Kushner for assistance with figure creation,
and Ryan Goldade for the fluid crown splash model.

REFERENCES
Michael J Aftosmis, Marsha J Berger, and John E Melton. 1998. Robust and efficient

Cartesian mesh generation for component-based geometry. AIAA journal 36, 6
(1998), 952–960.

PF Antonietti and I Mazzieri. 2018. High-order Discontinuous Galerkin methods for the
elastodynamics equation on polygonal and polyhedral meshes. Computer Methods
in Applied Mechanics and Engineering 342 (2018), 414–437.

Vinicius C. Azevedo, Christopher Batty, and Manuel M. Oliveira. 2016. Preserving
Geometry and Topology for Fluid Flows with Thin Obstacles and Narrow Gaps.
ACM Trans. Graph. 35, Article 97 (2016), 97:1–97:12 pages. Issue 4. Proceedings of
SIGGRAPH 2016.

M. Berger. 2017. Chapter 1 - Cut Cells: Meshes and Solvers. In Handbook of Numerical
Methods for Hyperbolic Problems, Rémi Abgrall and Chi-Wang Shu (Eds.). Handbook
of Numerical Analysis, Vol. 18. Elsevier, 1 – 22. https://doi.org/10.1016/bs.
hna.2016.10.008

P. Colella, D. T. Graves, T. J. Ligocki, G. Miller, D. Modiano, P. O. Schwartz, B.
Van Straalen, J. Pilliod, D. Trebotich, M. Barad, B. Keen, A. Nonaka, and C. Shen. 2014.
EBChombo software package for Cartesian grid, embedded boundary applications.
Technical Report.

RK Crockett, Phillip Colella, and Daniel T Graves. 2011. A Cartesian grid embedded
boundary method for solving the Poisson and heat equations with discontinuous
coefficients in three dimensions. J. Comput. Phys. 230, 7 (2011), 2451–2469.

Christian Dick, Marcus Rogowsky, and Rüdiger Westermann. 2016. Solving the fluid
pressure Poisson equation using multigrid—evaluation and improvements. IEEE
transactions on visualization and computer graphics 22, 11 (2016), 2480–2492.

Olivier Dionne and Martin de Lasa. 2013. Geodesic voxel binding for production char-
acter meshes. In Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium
on Computer Animation. ACM, 173–180.

Essex Edwards and Robert Bridson. 2014. Detailed water with coarse grids: combining
surface meshes and adaptive discontinuous Galerkin. ACM Transactions on Graphics
(TOG) 33, 4 (2014), 136.

Florian Ferstl, Rüdiger Westermann, and Christian Dick. 2014. Large-scale liquid
simulation on adaptive hexahedral grids. IEEE transactions on visualization and
computer graphics 20, 10 (2014), 1405–1417.

Matthew Fisher, Boris Springborn, Peter Schröder, and Alexander I Bobenko. 2007. An
algorithm for the construction of intrinsic delaunay triangulations with applications
to digital geometry processing. Computing 81, 2-3 (2007), 199–213.

Eitan Grinspun, Anil N. Hirani, Mathieu Desbrun, and Peter Schröder. 2003. Discrete
Shells. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation (SCA ’03). Eurographics Association, Aire-la-Ville, Switzerland,
Switzerland, 62–67. http://dl.acm.org/citation.cfm?id=846276.846284

Eran Guendelman, Andrew Selle, Frank Losasso, and Ronald Fedkiw. 2005. Coupling
water and smoke to thin deformable and rigid shells. InACMTransactions on Graphics
(TOG), Vol. 24. ACM, 973–981.

Anil Nirmal Hirani. 2003. Discrete exterior calculus. Ph.D. Dissertation. California
Institute of Technology.

Yixin Hu, Qingnan Zhou, Xifeng Gao, Alec Jacobson, Denis Zorin, and Daniele Panozzo.
2018. Tetrahedral Meshing in the Wild. ACM Trans. Graph. 37, 4, Article 60 (July
2018), 14 pages. https://doi.org/10.1145/3197517.3201353

Alec Jacobson, Daniele Panozzo, C Schüller, Olga Diamanti, Qingnan Zhou, N Pietroni,
et al. 2016. libigl: A simple C++ geometry processing library.

Jan Jaśkowiec, Piotr Pluciński, and Anna Stankiewicz. 2016. Discontinuous Galerkin
method with arbitrary polygonal finite elements. Finite Elements in Analysis and
Design 120 (2016), 1–17.

Hong-Jun Kim and Timothy J Tautges. 2010. EBMesh: An embedded boundary meshing
tool. In Proceedings of the 19th International Meshing Roundtable. Springer, 227–242.

Dan Koschier, Jan Bender, and Nils Thuerey. 2017. Robust eXtended finite elements for
complex cutting of deformables. ACM Transactions on Graphics (TOG) 36, 4 (2017),
55.

Long Lee and Randall J LeVeque. 2003. An immersed interface method for incompress-
ible Navier–Stokes equations. SIAM Journal on Scientific Computing 25, 3 (2003),
832–856.

Yijing Li and Jernej Barbič. 2018. Immersion of self-intersecting solids and surfaces.
ACM Transactions on Graphics (TOG) 37, 4 (2018), 45.

Haojie Lian, Asger N Christiansen, Daniel A Tortorelli, Ole Sigmund, and Niels Aage.
2017. Combined shape and topology optimization for minimization of maximal von
Mises stress. Structural and Multidisciplinary Optimization 55, 5 (2017), 1541–1557.

Konstantin Lipnikov, Gianmarco Manzini, and Mikhail Shashkov. 2014. Mimetic finite
difference method. J. Comput. Phys. 257 (2014), 1163–1227.

Sebastian Martin, Peter Kaufmann, Mario Botsch, Martin Wicke, and Markus Gross.
2008. Polyhedral finite elements using harmonic basis functions. In Computer
Graphics Forum, Vol. 27. Wiley Online Library, 1521–1529.

Matthias Meinke, Lennart Schneiders, Claudia Günther, and Wolfgang Schröder. 2013.
A cut-cell method for sharp moving boundaries in Cartesian grids. Computers &
Fluids 85 (2013), 135–142.

Rajat Mittal and Gianluca Iaccarino. 2005. Immersed boundary methods. Annu. Rev.
Fluid Mech. 37 (2005), 239–261.

Neil Molino, Zhaosheng Bao, and Ron Fedkiw. 2004. A virtual node algorithm for
changing mesh topology during simulation. In ACM Transactions on Graphics (TOG),
Vol. 23. ACM, 385–392.

Matthias Müller. 2009. Fast and robust tracking of fluid surfaces. In Proceedings of
the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. ACM,
237–245.

Maks Ovsjanikov, Mirela Ben-Chen, Justin Solomon, Adrian Butscher, and Leonidas
Guibas. 2012. Functional maps: a flexible representation of maps between shapes.
ACM Transactions on Graphics (TOG) 31, 4 (2012), 30.

Taylor Patterson, Nathan Mitchell, and Eftychios Sifakis. 2012. Simulation of complex
nonlinear elastic bodies using lattice deformers. ACM Transactions on Graphics
(TOG) 31, 6 (2012), 197.

ACM Trans. Graph., Vol. 38, No. 6, Article 179. Publication date: November 2019.

https://doi.org/10.1016/bs.hna.2016.10.008
https://doi.org/10.1016/bs.hna.2016.10.008
http://dl.acm.org/citation.cfm?id=846276.846284
https://doi.org/10.1145/3197517.3201353


179:16 • Michael Tao, Christopher Batty, Eugene Fiume, and David I.W. Levin

Glaucio H Paulino and Arun L Gain. 2015. Bridging art and engineering using Escher-
based virtual elements. Structural and Multidisciplinary Optimization 51, 4 (2015),
867–883.

Nicholas Ray, Dmitry Sokolov, Maxence Reberol, Franck Ledoux, and Bruno Levy. 2018.
Hex-dominant meshing: Mind the gap! Computer-Aided Design 102 (2018), 94–103.

Masoud Safdari, Ahmad R Najafi, Nancy R Sottos, and Philippe H Geubelle. 2016. A
NURBS-based generalized finite element scheme for 3D simulation of heterogeneous
materials. J. Comput. Phys. 318 (2016), 373–390.

Nicholas Sharp, Yousuf Soliman, and Keenan Crane. 2019. Navigating intrinsic triangu-
lations. ACM Transactions on Graphics (TOG) 38, 4 (2019), 55.

Jonathan Richard Shewchuk. 1996. Triangle: Engineering a 2D Quality Mesh Generator
and Delaunay Triangulator. In Applied Computational Geometry: Towards Geometric
Engineering, Ming C. Lin and Dinesh Manocha (Eds.). Lecture Notes in Computer
Science, Vol. 1148. Springer-Verlag, 203–222. From the First ACM Workshop on
Applied Computational Geometry.

Hang Si. 2015. TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM
Transactions on Mathematical Software (TOMS) 41, 2 (2015), 11.

Eftychios Sifakis, Kevin GDer, and Ronald Fedkiw. 2007. Arbitrary cutting of deformable
tetrahedralized objects. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics
symposium on Computer animation. Eurographics Association, 73–80.

Jeffrey Slotnick, Abdollah Khodadoust, Juan Alonso, David Darmofal, William Gropp,
Elizabeth Lurie, and Dimitri Mavriplis. 2014. CFD vision 2030 study: a path to
revolutionary computational aerosciences. (2014).

Maxime Theillard, Landry Fokoua Djodom, Jean-Léopold Vié, and Frédéric Gibou. 2013.
A second-order sharp numerical method for solving the linear elasticity equations on
irregular domains and adaptive grids–application to shape optimization. J. Comput.
Phys. 233 (2013), 430–448.

Chris Wojtan, Nils Thürey, Markus Gross, and Greg Turk. 2010. Physics-inspired
topology changes for thin fluid features. ACM Trans. Graph. 29, 4 (2010), 1–8.
https://doi.org/10.1145/1778765.1778787

Qingnan Zhou, Eitan Grinspun, Denis Zorin, and Alec Jacobson. 2016. Mesh Arrange-
ments for Solid Geometry. ACM Transactions on Graphics (TOG) 35, 4 (2016).

Qingnan Zhou and Alec Jacobson. 2016. Thingi10K: A Dataset of 10,000 3D-Printing
Models. arXiv preprint arXiv:1605.04797 (2016).

A DEGENERACIES
Although Mandoline is formulated to simplify cut-cell generation
as much as possible, various types of degeneracies nevertheless re-
quire explicit handling; we review some of these below. The general
principle is that in many components of our pipeline we encounter
redundant geometries, algebraically volume-free elements, or non-
manifold elements that do not affect the final topology. All of these
elements can simply be removed from the construction of the topol-
ogy and, for completeness, added back to the geometry afterwards.

Bad Input Meshes. The first step of Mandoline is to preprocess
its input for three issues: self-intersecting triangles, redundancies,
and empty triangles. We treat these by first running libigl’s
remesh_self_intersections on the input. We then collapse ver-
tices having identical floating point coordinates, remove triangles
sharing the same three indices, and remove empty (topologically
zero-area) triangles. For topological consistency, we stitch the re-
maining triangles together after removing empty triangles.

Maintaining Open Simplex Assumption. Key to Mandoline is the
ability to create cut-vertices and cut-edges that are robust to floating
point errors. Cut-edges are computed by analyzing how cut-vertices
partition closed tri- and hybrid-edges, including their endpoints. To
guarantee that these endpoints remain endpoints of these edges,
we mathematically require that edge-intersections lie on an open
edge. Within the local parameterization of each edge this is the
same as saying we only accept edge-intersections that lie in the
open interval (0, 1).

Planar Triangles. Recall that the intersection of an axial plane
with an open triangle is either the entire triangle itself or an open

segment, i.e., a new hybrid-edge. When we encounter a triangle
contained by an axial plane we neglect searching for hybrid-edges
along that particular axis.

Redundant Edges and Faces. When the input mesh has edges or
faces that lie entirely in axial edges or planes, respectively, we let the
input mesh take priority and remove the grid-based edges and faces.
In order to discern redundant cut-elements we use the bitmasks to
hash cut-elements to the grid-edges or grid-faces they lie within
and search for cut-elements on grid-elements with the same indices.
One optimization on this procedure takes advantage of the fact that
tri-cut-faces only contain a single boundary curve. This implies that
only grid-cut-faces that have more than one boundary curve can be
ignored. We further accelerate the comparison of cut-elements by
making use of a total ordering of their indices. For edges this means
we sort the indices, but for cut-faces there is some subtlety required
because the boundary loops representing the potentially redundant
cut-face can be ordered in the opposing orientation. This check is
done by finding the smallest index of both curves and circulating
in two directions for one of the curves to see if it is identical to the
other.

B POISSON PROBLEM

Fig. 22. We simulate the effect of putting a bust of Max Plank in a wind
tunnel. In the background we show the resulting pressure field as per-cut-
cell colors and in the foreground we show the resulting flow with arrows.
Note how the arrows flow around the bust.

A crucial question is whether the cut-cells generated by Man-
doline can be used for simulation. We were successfully able to
solve a Poisson problem using existing techniques, without any
preprocessing such as removing small cells or faces. In particular,
we used a DEC-styled Laplacian [Hirani 2003] approach where the
dual vertices are chosen to be the grid-cell centers, as proposed
by Azevedo et al. [2016]. This sort of Laplacian depends on only
three geometric quantities: the adjacency structure of the cut-cells,

ACM Trans. Graph., Vol. 38, No. 6, Article 179. Publication date: November 2019.

https://doi.org/10.1145/1778765.1778787


Mandoline: Robust Cut-Cell Generation for Arbitrary Triangle Meshes • 179:17

the surface areas of the cut-faces, and the distance between dual
vertices.

The adjacency structure is given by Mandoline, the surface areas
of cut-faces can be computed from the boundary loop structures
of the (untriangulated) cut-faces, and the distances between dual
vertices is straightforward. This is where the advantage of Mando-
line’s explicit cut-cell computation lies: the cut-face surface areas
are readily available from the geometry and do not need to be ap-
proximated. For example, although the background grid in Figure 22
is quite coarse, with the obstacle’s neck only ∼4 grid cells long, we
are able to accurately resolve a visibly smooth flow around it.

Figure 22 is the result of a “wind tunnel” test using potential flow,
which solves for static airflow with given boundary conditions. The
flow is described by the gradient of a scalar potential ϕ, found by
solving a Poisson problem with boundary conditions on its gradient.
We solve for the L2-minimal solution with two types of Neumann
conditions. On the grid boundary we presume ∇ϕ · D = ∇ϕ · N ,
where ϕ is the solution, D is a given direction, and N is the normal
of a boundary face. On the input mesh boundary we presume no
penetration: ∇ϕ · N = 0. MIC0-preconditioned conjugate gradient
with a residual norm tolerance of 10−10 consistently converged for
this linear system.

Fig. 23. Mandoline works at various grid resolutions and can generate adaptive grids. Different slices through the exterior region (yellow) were chosen for
each image to expose interesting features.

ACM Trans. Graph., Vol. 38, No. 6, Article 179. Publication date: November 2019.


	Abstract
	1 Introduction
	1.1 Contribution

	2 Related Work
	3 Overview
	3.1 Notation
	3.2 Cut-Vertices
	3.3 Cut-Edges
	3.4 Assembling Cut-Faces
	3.5 Assembling Cut-Cells

	4 Technical Details
	4.1 Grid-Mesh Intersections
	4.2 Reducing Redundancies
	4.3 Constructing Cut-Faces using Half-Edges
	4.4 Cut-Cell Construction
	4.5 Tunneling
	4.6 Degenerate Edges in Face Creation
	4.7 Triangulation

	5 Results
	5.1 Split Cells and Tunneling
	5.2 Effect of Grid Resolution
	5.3 Adaptive Meshes
	5.4 Open Meshes
	5.5 Difficult Cases
	5.6 Validation
	5.7 Performance

	6 Conclusions and Future Work
	Acknowledgments
	References
	A Degeneracies
	B Poisson Problem

