Cubic Stylization

HSUEH-TI DEREK LIU, University of Toronto, Canada
ALEC JACOBSON, University of Toronto, Canada

We present a 3D stylization algorithm that can turn an input shape into the style of a cube while maintaining the content of the original shape. The key insight is that cubic style sculptures can be captured by the as-rigid-as-possible energy with an ℓ^1-regularization on rotated surface normals. Minimizing this energy naturally leads to a detail-preserving, cubic geometry. Our optimization can be solved efficiently without any mesh surgery. Our method serves as a non-realistic modeling tool where one can incorporate many artistic controls to create stylized geometries.

CCS Concepts: Computing methodologies → Mesh models; Mesh geometry models.

Additional Key Words and Phrases: geometry processing, geometric stylization, shape modeling

ACM Reference Format:

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.
0730-0301/2019/11-ART197 $15.00
https://doi.org/10.1145/3355089.3356495

1 INTRODUCTION
The availability of image stylization filters and non-photorealistic rendering techniques has dramatically lowered the barrier of creating artistic imagery to the point that even a non-professional user can easily create stylized images. In stark contrast, direct stylization of 3D shapes or non-realistic modeling has received far less attention. In professional industries such as visual effects and video games, trained modelers are still required to meticulously create non-realistic geometric assets. This is because investigating geometric styles is more challenging due to arbitrary topologies, curved metrics, and non-uniform discretization. The scarcity of tools to generate artistic geometry remains a major roadblock to the development of geometric stylization.

Fig. 2. The cubic style have been attracting artists’ attention over centuries, such as the Serpent à’ Plumes found in Chichén Itzá (left), The Kiss by Constantin Brâncuși (middle), and the Taichi by Ju Ming (right). We obtain images from wikimedia.com photographed by Jebulon under CC0 1.0, from flickr.com by Art Poskanzer under CC BY 2.0, and from wikimedia.com by Jeangagnon under CC BY-SA 3.0.
2 RELATED WORK

Our work shares similar motivations to a large body of work on image stylization [Kyprianidis et al. 2013], non-photorealistic rendering [Gooch and Gooch 2001], and motion stylization [Hertzmann et al. 2009]. While their outputs are images or stylized animations, we take a 3D shape as input and output a stylized shape. Thus we focus our discussion on methods for processing geometry, including the study of geometric styles and deformation methods that share technical similarities.

Discriminative Geometric Styles. The growing interest in understanding geometric styles has been inspiring recent works on building discriminative models for style analysis. One of the main challenges is to define a similarity metric aligned with human perception. Many works propose to compare projected feature curves [Li et al. 2013; Yu et al. 2018], sub-components of a shape [Hu et al. 2017; Lun et al. 2015; Xu et al. 2010], or using learned features [Lim et al. 2016]. These models enable users to synthesize style compatible scenes [Liu et al. 2015] or transfer style components across shapes [Berklein et al. 2017; Lun et al. 2016; Ma et al. 2014]. However, these methods are designed for discerning and transferring styles, instead of generating 3D stylized shapes directly.

Generative Geometric Styles. Direct 3D stylization has been an important topic in computer graphics. Many generative models have been proposed for producing specific styles, without relying on identifying and transferring style components from other shapes. This includes the collage art [Gal et al. 2007; Theobalt et al. 2007], voxel/lego art [Luo et al. 2015; Testuz et al. 2013], neuronal homunculus [Reinert et al. 2012], the manga style shapes [Shen et al. 2012], shape abstraction [Kratt et al. 2014; Mehta et al. 2009; Yumer and Kara 2012], and bas-relief sculptures [Bian and Hu 2011; Kerber et al. 2009; Schuller et al. 2014; Song et al. 2007; Weyrich et al. 2007]. While not pitched as stylization techniques, many geometric flows and filters can also be used for creating styled geometry, such as creating edge-preserving smoothing geometry [Zhang et al. 2018], piece-wise planar [He and Schaefer 2013; Stein et al. 2018b] or developable shapes [Stein et al. 2018a], and stylized shapes prescribed by image filters [Liu et al. 2018] (see Fig. 6). Our method contributes to the field of direct 3D stylization, focusing on the style of cubic sculptures (Fig. 7).
We take advantage of the arap deform shapes given modeling constraints. One of the most popular chical deformation which optimizes characteristics to multiresolution modeling (see [Garland 1999; Zorin 2006]).

Many works deal with the question of how to deform shapes given modeling constraints. One of the most popular choices is the arap energy [Chao et al. 2010; Igarashi et al. 2005; Liu et al. 2008; Sorkine and Alexa 2007], which measures local rigidity of the surface and leads to detail-preserving deformations. Not just deformations, similar formulations to arap can also be extended to other tasks such as constrained shape optimization [Bouaziz et al. 2012], parameterization [Liu et al. 2008], and simulating mass-spring systems [Liu et al. 2013]. Ever since, optimizing the arap energy has been substantially accelerated by a large amount of work, such as [Kovalsky et al. 2016; Peng et al. 2018; Rabinovich et al. 2017; Shtengel et al. 2017; Zhu et al. 2018]. However, having nearly interactive performance on highly detailed meshes still remains a major challenge. An alternative strategy to speed it up is to use the hierarchical deformation which optimizes arap on a low resolution model and then recover the original details back afterwards [Manson and Schaefer 2011]. This class of accelerations shares similar characteristics to multiresolution modeling (see [Garland 1999; Zorin 2006]). We take advantage of the arap energy for detail preservation and adapt the method of Manson and Schaefer [2011] to accelerate our cubic stylization to meshes with millions of faces.

Axis-Alignment in Polycube Maps. Axis-alignment is an important property for many geometry processing tasks, such as [Muntoni et al. 2018; Stein et al. 2019]. Especially, this concept is one of the main instruments in the construction of polycube maps [Tarini et al. 2004], including defining polycube segmentations [Fu et al. 2016; Livesu et al. 2013; Zhao et al. 2018] and the cost function for polycube deformations [Gregson et al. 2011; Huang et al. 2014]. Although polycube methods can obtain cubic geometry, they fail to preserve detail (Fig. 8) because they are not desirable for intended applications such as parameterization and hexahedral meshing [Cherchi et al. 2016; Fang et al. 2016; Garcia Fernández et al. 2013; He et al. 2009; Lin et al. 2008; Wang et al. 2007, 2008; Yu et al. 2014].

One tempting direction of creating cubic geometry is to use voxelization. However, voxelization fails to capture the details depicted by the artists and cannot capture the wide spectrum of cubeness across cubic sculptures. Another tempting direction is to recover geometric features from the polycube results. This would lead to a multi-step algorithm and suffer from limitations of particular detail encoding schemes (e.g., bump maps). Even if we stop the polycube algorithm earlier such as the method of [Gregson et al. 2011] to maintain details, it does not provide a satisfactory solution (see the inset for a comparison with Fig. 5 in [Gregson et al. 2011]). More importantly, many artistic controls in Sec. 4 would be nontrivial to add on. Building stylization on top of polycube methods would also suffer from slow performance. For instance, Huang et al. [2014] propose a polycube method that minimizes the ℓ^1-norm of the normals on the deformed tetrahedral mesh with arap for regularization. Their formulation involves minimizing a complicated non-linear function and requires minutes to hours to optimize. Thus a stylization built on top of this method would be even slower. In contrast, our formulation is a single energy optimization which can easily incorporate many artistic controls (Sec. 4). Our energy is similar to the polycube energy of [Huang et al. 2014] in that we also minimize the arap energy with a ℓ^1 regularization, but the key difference is that we define the ℓ^1-norm on the rotated normals of the original mesh instead. This allows us to optimize our energy much faster using the local-global approach with ADMM in only a few seconds (Table 1).

3 METHOD

The input of our method is a manifold triangle mesh with/without boundaries. Our method outputs a cubified shape where each sub-component has the style of an axis-aligned cube. Meanwhile, our stylization will maintain the geometric details of the original mesh.

Let V be a $|V| \times 3$ matrix of vertex positions at the rest state and \bar{V} be a $|V| \times 3$ matrix containing the deformed vertex positions. We denote $d_{ij} = [v_j - v_i]^T$ and $\bar{d}_{ij} = [\bar{v}_j - \bar{v}_i]^T$ be the edge vectors between vertices i, j at the rest and deformed states respectively.
The energy for our cubic stylization is as follows

\[
\text{minimize}_{\overline{V},\{R_i\}} \sum_{i \in \mathcal{V}} \sum_{j \in \mathcal{N}(i)} \frac{w_{ij}}{2} \|R_id_{ij} - \overline{d}_{ij}\|_F^2 + \lambda a_i \|R_i\hat{n}_i\|_1. \tag{1}
\]

The first term is the ARAP energy [Sorkine and Alexa 2007], where \(R_i\) is a 3-by-3 rotation matrix, \(w_{ij}\) is the cotangent weight [Pinkall and Polthier 1993], and \(\mathcal{N}(i)\) denotes the “spokes and rims” edges of the \(i\)th vertex [Chao et al. 2010] (see the inset). In the second term, \(\hat{n}_i\) denotes the unit area-weighted normal vector of a vertex \(i\) in \(\mathbb{R}^3\). The \(a_i \in \mathbb{R}^3\) is the barycentric area of vertex \(i\), which is crucial for \(\lambda\) to exhibit the similar cubeness across different mesh resolutions.

Intuitively, minimizing the \(\ell^1\)-norm of the rotated normal encourages \(R_i\hat{n}_i\) to align with one of coordinate axes because \(\ell^1\)-norm encourages sparsity. Combining the two, the optimal rotation \(\{R^*_i\}\) would simultaneously preserve the local structure (ARAP) and encourage axis alignment (CUBENESS).

We adapt the standard local-global update strategy to optimize our energy [Sorkine and Alexa 2007] (see Alg. 1). Our local step, updating \(\overline{V}\), is achieved by solving a linear system, the same as the Equation 9 in Sorkine and Alexa [2007]. Our local step, finding the optimal rotation, is however different from the previous literature due to the \(\ell^1\) term.

3.1 Local-Step

Our local step for each vertex \(i\) can be written as

\[
R^*_i = \arg\min_{R_i \in SO(3)} \frac{W_i}{2} \|R_iD_i - \overline{D}_i\|_F^2 + \lambda a_i \|R_i\hat{n}_i\|_1, \tag{2}
\]

where \(W_i\) is a \(|\mathcal{N}(i)| \times |\mathcal{N}(i)|\) diagonal matrix of cotangent weights, \(D_i\) and \(\overline{D}_i\) are \(3 \times |\mathcal{N}(i)|\) matrices of rim/spoke edge vectors at the rest and deformed states respectively. By setting \(z = R_i\hat{n}_i\), we can rewrite Eq. 2 as

\[
\text{minimize}_{z, R_i \in SO(3)} \frac{W_i}{2} \|R_iD_i - \overline{D}_i\|_F^2 + \lambda a_i \|z\|_1 \tag{3}
\]

subject to \(z = R_i\hat{n}_i = 0\).
Eq. 5 is an instance of the lasso problem [Boyd et al. 2011; Tibshirani 1996], which can be solved with a shrinkage step:

\[z^{k+1} \leftarrow S_{\lambda / \rho}(R z^k + u^k) \]

We update the penalty \(\rho \) (Eq. 7) according to Sec. 3.4.1 in [Boyd et al. 2011] where \(u \) needs to be rescaled accordingly after updating \(\rho \).

In short, local fitting is performed by running Eq. 8, 9, 6, and 7 iteratively until the norm of primal/dual residuals are small. Warm starting the local-step parameters from the previous iteration can significantly speed up the optimization. Specifically, we initialize \(z, u \) with zeros, and set the initial \(\rho = 10^{-4}, \epsilon_{\text{abs}} = 10^{-5}, \epsilon_{\text{rel}} = 10^{-3}, \mu = 10, \) and \(\tau = 2 \) (the same notation as used in Sec. 3 of [Boyd et al. 2011]). Then \(z, u, \rho \) are reused in consecutive iterations. Note that for extremely large \(\lambda \) one may need to increase the initial value of \(\epsilon_{\text{abs}} \) accordingly in order to avoid bad local minima. We stop the optimization when the relative displacement, the infinity norm of relative per vertex displacements, is lower than \(3 \times 10^{-3} \) (see Fig. 12 for the convergence plots). More elaborate stopping criteria, such as the method of [Zhu et al. 2018], could also be used.

At this point we have completed the cubic stylization algorithm summarized in Alg. 1, enabling us to efficiently create cubified shapes (see Fig. 10). In Fig. 11 and 14 we show that this formulation is applicable to meshes with boundaries and non-orientable surface respectively. As the cube-ness is dependent to the orientation of the mesh, one can apply different rotations to control how the stylization runs (Fig. 13). We expose the weighting \(\lambda \) to be a design parameter controlling the cubeness of a shape (Fig. 9).

However, the “vanilla” cube stylization shares the same caveat as other distortion minimization algorithms: having slow runtime on high resolution meshes.

3.2 Affine Progressive Meshes

Manson and Schaefer [2011] propose a hierarchical approach to accelerate ARAP deformations. The main idea is to deform a low-resolution model and recover the details back after convergence.

Specifically, Manson and Schaefer [2011] propose a progressive mesh [Hoppe 1996] representation which first simplifies a given
mesh via a sequence of edge collapses, and then represents the mesh as its coarsest form together with a sequence of vertex splits. After applying some deformations to the coarsest mesh, each “deformed” vertex split is computed by fitting the best local rigid transformation. This approach is suitable for deformations that are locally rigid (e.g., \textit{ARAP}), but our cubic stylization is less rigid for larger \(\lambda \).

So we fit the best \textit{affine} transformation in each vertex split, rather than rigid transformations. Specifically, in each edge collapse we store the displacement vectors from the newly inserted vertex \(p_i \) to the endpoints \(p_j, p_k \) (see the inset) together with a matrix \(A \):

\[
A = (Q_i Q_i^T)^{-1} Q_i.
\]

\(Q_i \) is a \(3 \times |N(i)| \) matrix where each column is the vector from \(p_i \) to one of its one-rings neighbors \(N(i) \). If \((Q_i Q_i^T)\) is singular (e.g., in planar regions), we remedy the issue with the Tikhonov regularization [Tikhonov et al. 2013]. Then \(A \) is used to computed the deformed displacements for each vertex split as

\[
\bar{p}_j - \bar{p}_i = \bar{Q}_i A^\top (p_j - p_i),
\]

where \(\bar{p}_i \) denotes the position of vertex \(i \) in the cubified coarsened shape, and \(\bar{Q}_i \) is a \(3 \times |N(i)| \) matrix containing vectors from \(\bar{p}_i \) to its one-rings neighbors.

Affine progressive meshes allows us to losslessly recover the original meshes undergoing affine transformations. For smooth non-affine transformations such as our cube stylization, it could still be approximately recovered (see Fig. 15). We summarize our cubic stylization with the affine progressive mesh in Alg. 2. Note that the edge collapses is just a pre-processing step. In the online stage, one only needs to run cubic stylization on the coarsest mesh and then apply a sequence of vertex splits to visualize the result on the original resolution. This offers a huge speed-up when interacting the parameter \(\lambda \) on highly detailed models (see Fig. 16).

An interesting observation is that the number of faces \(m \) in the coarsest mesh not only controls the runtime, but implicitly controls the frequency level of geometric details that gets preserved. In Fig. 17 we show that, under the same \(\lambda \), a smaller \(m \) keeps details across a wider frequency range; in contrast, a larger \(m \) only keeps details at higher frequencies. Therefore one can manipulate the level of preserved features by playing with \(m \).

3.3 Implementation

We implement the cubic stylization in C++ using \textit{libigl} [Jacobson et al. 2018] and evaluate our runtime on a MacBook Pro with an Intel i5 2.3GHz processor. Table 1 lists the parameters and the runtime of our stylization in Fig. 10 (top) and Fig. 16. We test our methods on meshes in the \textit{Thingi10K} [Zhou and Jacobson 2016] and show that we can obtain stylized geometry within a few seconds. This is important for users to receive quick feedback on their parameter choices and iterate on their designs, such as the cubeness \(\lambda \) in Fig. 9 and the level of details \(m \) in Fig. 17.

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{affine Progressive Meshes.png}
\caption{Affine progressive meshes allow us to run cubic stylization on a low-resolution model and then recover original details when converged. ©Colin Freeman under CC BY.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{Fig. 15.png}
\caption{Affine progressive meshes allow us to run cubic stylization on a low-resolution model and then recover original details when converged. ©Colin Freeman under CC BY.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{Fig. 16.png}
\caption{With the affine progressive meshes, we can scale the cubic stylization to meshes with millions of faces. The Nefertiti mesh (left) was scanned by Nora Al-Badri and Jan Nikolai Nelles from the Nefertiti bust.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{Fig. 17.png}
\caption{The number of faces \(m \) used in the decimated mesh not only controls the runtime but also the frequency level of details that get preserved. ©Joseph Larson under CC BY.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{Fig. 18.png}
\caption{User study. We prototype a user interface (see the inset) to conduct an informal user study with six participants (4 male, 2 female) between the ages of 24 and 29. Participant 3D modeling experience ranged from none (complete novice) to three years of hobbyist use. Each participant was instructed for three minutes on how to use our software to load a mesh and control the cubeness parameter \(\lambda \). Then we asked them to cubify a shape of their choosing from a collection of ten shapes. The results of their work is show in Fig. 18. All users reported that they were satisfied with the cubeness of their resulting shape. One user said...}
\end{figure}
Table 1. For each example in Fig. 10 and Fig. 16, we report the number of faces in the original model (|F|), L1 weight (λ), number of faces of the coarsest mesh (m), number of iterations (Iters), pre-processing time (Pre.), and runtime at the online stage (Runtime).

| Model | |F| | λ | m | Iters | Pre. | Runtime |
|-------------|---------|-----|-----|------|-------|------|---------|
| Fig. 10, left | 39K | 0.20 | n/a | 106 | n/a | 5.08s |
| Fig. 10, mid. | 41K | 0.20 | n/a | 93 | n/a | 4.50s |
| Fig. 10, right | 21K | 0.4 | n/a | 86 | n/a | 2.26s |
| Fig. 16, left | 2018K | 0.20 | 20K | 83 | 64.19s| 3.93s |
| Fig. 16, mid. | 346K | 0.40 | 20K | 222 | 10.69s| 4.59s |
| Fig. 16, right | 811K | 0.30 | 40K | 173 | 30.44s| 8.38s |

Fig. 18. Even non-professional users can effortlessly turn an input scene (top) into a cubified scene (bottom). Different colors are results created by different users. From left to right, ©Peter Leppik, Cleven, Terence King, MakerBot, Terence King, Perry Engel, and Christina Chun under CC BY.

that controlling the cubeness of their resulting shape is very easy because it only requires tuning a single parameter.

4 ARTISTIC CONTROLS

In addition to the two parameters λ, m, we expose many variants of our stylization to incorporate artistic controls. As a non-realistic modeling tool, this is important for users to realize their creativity.

We first focus our discussion on a variety of artistic controls that are related to the cubeness parameter λ. Although Eq. 1 only has a single λ for an entire shape, we can actually specify different λi for each vertex independently to have non-uniform cubeness, which leads to the expression λi a∥Ri ̂ni∥. In Fig. 19, we use this approach to make the back of the sheep much more cubic than the rest of the shape to create an ottoman-like geometry. We can also specify the non-uniform cubeness λi in a different way, instead of painting on the surface directly. In Fig. 20 we paint a function on the Gauss map in which the surface normal pointing towards the left has higher cubeness. When we map this function back to the surface, we can have a cubified owl that is more cubic when initial normals pointing towards the left and less cubic when pointing towards the right. Similarly, we can have different λx, λy, λz for different axes. In Fig. 21, we replace the cubeness in Eq. 1 with ai(λx∥Ri ̂ni∥x + λy∥Ri ̂ni∥y + λz∥Ri ̂ni∥z) and specify different values for each λx, λy, λz to have the style of a rectangular prism.

If one wants to fix certain parts of the shape, we can easily add constraints in the global step, the same way as the method of Sorkine and Alexa [2007]. In Fig. 4 we add the parts constraint by fixing the position of some vertices when solving the linear system; we add the points constraint by specifying some deformed vertices Vi at user-desired positions. We can also use the same methodology to...
Hsueh-Ti Derek Liu and Alec Jacobson

Fig. 22. We constrain certain parts of the geometry lying on certain planes to create a 3D printed table clinger (right). ©Morena Protti under CC BY.

Fig. 23. We can define the \(\ell_1 \)-norm on different coordinate systems for different parts of the shape, instead of using the world coordinates. In the figure the hands and the body use different coordinate systems (left). By changing them, we can vary the cube orientations for different parts. ©David Hagemann under CC BY.

Fig. 24. We apply a coordinate transformation inside the \(\ell_1 \)-norm to generalize cubic stylization to polyhedrons. ©Proto Paradigm (middle), Ola Sundberg (right) under CC BY.

Constrain some parts of the geometry lying on certain planes. For instance, setting \((\mathbf{v}_i)_y = 0\) can force vertex \(i\) lying on the \(yz\)-plane. In Fig. 22 we use this plane constraint to create a table clinger.

In addition, one can utilize the property of the \(\ell_1 \)-norm to have different artistic effects. Because the \text{cubeness} term is orientation dependent, in Fig. 13 we can apply different rotations to the mesh before the stylization to control the results. Rather than rotating the mesh, another way is to encode the normal vector in a different coordinate system \(\lambda_a_i \parallel \hat{n}_{\text{local}}_i \parallel_1\), where we use \(\hat{n}_{\text{local}}_i\) to denote the user-desired coordinate system for vertex \(i\). This perspective allows us to define the \(\ell_1 \)-norm on different coordinate systems for different parts of the shape to obtain different cube orientations (Fig. 23). Beyond the cubic stylization, in Fig. 24, 25 we apply a coordinate transformation \(B\) inside the \(\ell_1 \)-norm \(\lambda_a_i \parallel B\hat{n}_{\text{local}}_i \parallel_1\) to achieve polyhedral stylization, for which we provide the details in App. A. Once we obtain the stylized shapes, they are ready to be used by standard deformation techniques in animations (Fig. 26).

Fig. 25. We apply non-symmetric coordinate transformations inside the \(\ell_1 \)-norm to create irregular polyhedral stylization. ©Johannes under CC BY.

Fig. 26. Once we have the cubic geometry (blue), standard deformation techniques (e.g., [Sorkine and Alexa 2007]) can be used to manipulate the cubified shape (yellow).

Fig. 27. Although exhibiting similar cubenesses, our stylization is still not invariant to different resolutions.

5 LIMITATIONS & FUTURE WORK

Accelerating the stylization to real-time would enable faster iterations between designs. Developing a more robust stylization to for bad quality triangles, non-manifold meshes, or even point cloud could be useful for stylizing real-world geometric data. Guaranteeing results to be self-intersection free would be desirable for downstream tasks. Extending our energy to be invariant to discretizations could achieve more consistent results across different resolutions (see Fig. 27). Extending to quadrilateral meshes and NURBS surfaces could benefit existing modeling or engineering design softwares. Generalizing to volumetric meshes could have a better volume preservation. Exploring different deformation energies and \(\ell_p \)-norm could lead to novel stylization tools for non-realistic modeling. Beyond generating stylized shapes, the mathematical expression of the cubic geometry could offer insights toward understanding more intricate styles. For instance, \textit{Cubism} has been
considered as a revolutionized artistic style for paintings and sculptures. Cubism has appeared since the early 20th century. Since then, several attempts have tried to describe [Henderson 1983] and generate Cubist art [Corker-Marín et al. 2018; Wang et al. 2011], but more efforts still required to offer scientific explanations to a wide variety of Cubist art. Our cubic stylization only focuses on a specific style. We hope this could inspire future attempts to capture different sculpting styles such as those presented in African art, or even a generic approach to create different styles in an unified framework.

ACKNOWLEDGMENTS

Our research is funded in part by New Frontiers of Research Fund (NFRFE–201), the Ontario Early Research Award program, NSERC Discovery (RGPIN2017–05235, RGPAS–2017–507938), the Canada Research Chairs Program, the Fields Centre for Quantitative Analysis and Modelling and gifts by Adobe Systems, Autodesk and MESH Inc. We thank members of Dynamic Graphics Project at the University of Toronto; Michael Tao and Wen-Hsiang Tsai for project motivations; David I.W. Levin and Yotam Gingold for ideas on the artistic controls and the user study; Oded Stein for sharing results; Rahul Arora for fabricating stylized shapes; Leonardo Sacht and Silvia Sellán for proofreading; Omid Poursaeed, Rahul Arora, Whitney Chiu, Yang Zhou, Youssef Alami Mejjati, and Zhicong Lu for participating in the user study.

REFERENCES

A POLYHEDRAL GENERALIZATION

Fig. 28. By specifying different coordinate transformations \(B \) inside the \(\ell^1 \)-norm, we can encourage polyhedral style.

Simply applying a coordinate transformation \(B : \mathbb{R}^n \rightarrow \mathbb{R}^m \) inside the \(\ell^1 \)-norm can encourage polyhedral results, instead of cubic results (see Fig. 28). The \(\ell^1 \)-norm of a vector is defined as the summation of its magnitudes along each basis vector. Thus applying a coordinate transformation inside the \(\ell^1 \)-norm changes its behavior because the basis vectors are different. Following the notation in Eq. 1, polyhedron energy can be written as

\[
\text{minimize } \sum_{i \in Y} \sum_{j \in N(i)} \frac{wij}{2} \| R_i D_{ij} - \tilde{D}_{ij} \|_F^2 + \lambda a_i \| B R_i \hat{n}_i \|_1.
\]

In our case, \(B \) is a \(m \)-by-3 coordinate transformation matrix for shapes embedded in \(\mathbb{R}^3 \). Again by setting \(z = R_i \hat{n}_i \) we can reach almost the same optimization procedures, except the Eq. 5 now becomes (we ignore the iteration superscript for clarity)

\[
z^{k+1} = \text{arg min } \lambda a_i \| B x \|_1 + \frac{p}{2} \| R_i \hat{n}_i - z + u \|_2^2.
\]

Similar to common techniques for solving the Basis Pursuit problem, we introduce a variable \(t \geq \| B z \|_1 \) to transform Eq. 10 into a small quadratic program subject to equality constraints

\[
\text{minimize } z, t \left[\begin{array}{c} z^T \\ t^T \end{array} \right] \left[\begin{array}{ccc} p^2 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right] \left[\begin{array}{c} z \\ t \end{array} \right] + \left(-p (R_i \hat{n}_i + u)^T \lambda a_i \right) 1_m \left[\begin{array}{c} z \\ t \end{array} \right]
\]

subject to \(B - l_m \| z \|_1 - l_m \| t \|_1 \leq 0 \),

where \(l_m \) and \(1_m \) denote the identity matrix with size \(m \) and a column vector of 1 with size \(m \) respectively. We then solve this efficiently using \texttt{cvxgen} [Mattingley and Boyd 2012]. Note that the results in Fig. 24 and Fig. 25 use \(m = 4 \).