
Multi-Modal Motion Planning for a Humanoid

Robot Manipulation Task

Kris Hauser
1
, Victor Ng-Thow-Hing

2
, and Hector Gonzalez-Baños

2†

1
 Computer Science Department, Stanford University, Stanford, CA USA
khauser@cs.stanford.edu

2
 Honda Research Institute, Mountain View, CA USA
vng@hri.com, hhg@4espi.com

†
 Currently affiliated with Electronic Scripting Products, Inc., 260 Sheridan Ave,

Suite B25, Palo Alto, CA USA

Abstract. This paper presents a motion planner that enables a humanoid robot to

push an object on a flat surface. The robot’s motion is divided into distinct walking,

reaching, and pushing modes. A discrete change of mode can be achieved with a

continuous single-mode motion that satisfies mode-specific constraints (e.g.

dynamics, kinematic limits, avoid obstacles). Existing techniques can plan well in

single modes, but choosing the right mode transitions is difficult. Search-based

methods are vastly inefficient due to over-exploration of similar modes. Our new

method, Random-MMP, randomly samples mode transitions to distribute a sparse

number of modes across configuration space. Results are presented in simulation

and on the Honda ASIMO robot.

1 Introduction

Pushing is a potentially useful form of manipulation for humanoid robots

when grasping is impossible. But pushing is not as simple as walking to the

object and moving the arm; advance planning is crucial. Even simple tasks,

like reorienting the object in place, may require a large number of pushes.

Between pushes, the robot may need to switch hands or walk to a new

location, choosing carefully among alternatives so that each push respects

kinematic constraints and avoids collision. Furthermore, many tasks cannot

Fig. 1. To cross a table, an object must be pushed along the table’s edges

2 Kris Hauser, Victor Ng-Thow-Hing, and Hector Gonzalez-Baños

be solved by greedily pushing the object toward its target. For example, an

object cannot be pushed directly across a large table (Fig.1). Once the

object out of reach it cannot be pushed further, and since pushing is

nonprehensile, the object cannot be recovered.

The current technology in ASIMO’s control system requires dividing the

robot’s motion into distinct walk, reach, and push modes. While ASIMO

walks, the swaying of its body prohibits accurate hand positioning. There-

fore, the robot is required to stand still while reaching for and pushing the

object. Secondly, to predict the object’s motion when pushed, we restrict

ourselves to use stable pushes [7]. This imposes additional constraints on

the hand and object motion during a push.

Given these constraints, a motion planner must produce a discrete

sequence of modes, as well a continuous motion through them. This multi-

modal planning problem occurs in several areas of robotics. In

manipulation planning, motion alternates between transfer and transit

(object grasped/not grasped) modes [1, 8, 9]. In legged locomotion, each set

of environment contacts defines a mode [2, 4]. Modes also occur in

reconfigurable robots [3] and as sets of subassemblies in assembly planning

[10]. The most general existing multi-modal planning approach first

appeared in manipulation planning as a “manipulation graph” [1], and can

be described as mode-before-motion search. It constructs a graph of modes

by selecting an existing mode, and transitioning to neighboring modes with

single-mode motions. However, in pushing and other problems, some

modes have a continuous set of neighbors (e.g. to start pushing, any points

on the surface of the hand and object can meet). A fixed discretization

makes search intractable, even for simple push tasks.

The problem is not that pushing itself is hard, but that search samples

modes much too densely. Inspired by probabilistic motion planners, the

novel Random-MMP approach samples mode transitions at random,

according to a strategy designed to distribute modes sparsely across

configuration space. A simple blind strategy samples transitions (roughly)

uniformly at random. Though this is easy to implement and performs

reasonably well, it can be improved with prior knowledge of the push task.

After precomputing tables of push utility – the expected distance the object

can be pushed – we bias the sampling of contact points to yield high-utility

pushes. We additionally focus on “bottlenecks” by picking good pushes

before choosing where to walk. The combined strategy plans for difficult

problems in minutes on a PC. We demonstrate results in simulation and

experiments on the real robot.

Multi-Modal Motion Planning for a Humanoid Robot Manipulation Task 3

2 Problem Specification

We plan for ASIMO to push an object across a horizontal table. We move one

arm at a time for convenience. We assume the object moves quasi-statically

(slides without toppling and comes to rest immediately), and can be pushed

without affecting the robot’s balance. The planner is given a per-fect

geometric model of the robot, the object, and all obstacles. Other physical

parameters are specified, e.g. the object’s mass and the hand-object friction

coefficient. Given a desired translation and/or rotation for the object, it

computes a path for the robot to follow, and an expected path for the object.

2.1 Configuration Space

A configuration q combines a robot configuration qrobot and an object con-

figuration qobj. ASIMO’s walking subsystem allows fully controllable motion

in the plane, so leg joint angles can be ignored. Thus, qrobot consists of a

planar transformation (xrobot,yrobot,θrobot), five joint angles for each arm, and a

degree of freedom for each hand ranging from open to closed. Since the

object slides on the table, qobj is a planar transformation (xobj,yobj,θobj). In all,

the configuration space C is 18 dimensional.

The robot is not permitted to collide with itself or obstacles, and may

only touch the object with its hands. It must obey kinematic limits. The

object may not collide with obstacles or fall off the table. We also require

that the object be visible from the robot’s cameras while pushing to avoid

some unnatural motions (e.g. behind-the-back pushes).

2.2 Modes and submanifolds

The robot’s motion is divided into five mode classes: walking, reach left,

reach right, push right, and push left. Each mode has its own motion

dynamics and constraints, specified as follows. In walk modes, only the

base of the robot (xrobot,yrobot,θrobot) moves. The arms must be raised to a

“home configuration” that avoids colliding with the table while walking. In

Fig. 2. (a) Abstract depiction of reach and push modes, with arm motion

horizontal, object motion vertical. Each object configuration yields a new reach

mode. (b) Paths from q to q’ pass through a transition configuration in Fm ∩ Fm’

4 Kris Hauser, Victor Ng-Thow-Hing, and Hector Gonzalez-Baños

reach modes, only a single arm and its hand may move. In push modes, the

hand is in contact with the object. The object moves in response to the arm

motion according to push dynamics, and reciprocally, the dynamics impose

constraints on arm motions (Sect. 2.4). Additionally, the object must lie in

the robot’s field of view.

Each mode constrains motion to a submanifold of lower dimension than

C. Let Cm denote the submanifold corresponding to mode m, and Fm denote

the set of configurations in Cm that satisfy all feasibility constraints of m.

An important semantic note is that a mode m refers to both the mode class

as well as all other parameters necessary to fully describe the motion con-

straints. For example, there are an infinite number of reach modes, each one

with a distinct object position (Fig. 2.a). We represent modes (nonuniquely)

by an integer describing the mode class and a representative configuration.

2.3 Adjacencies and transitions

We say modes m and m’ are adjacent if a transition is permitted between

them. For a path to transition from m to m’, some configuration q along the

way must satisfy the constraints of both modes. An important consequence

is that the intersection of Fm and Fm’ must be nonempty (Fig. 2.b). We call

q∈Fm ∩ Fm’ a transition configuration.

The following mode transitions are permitted (Fig. 3). Walk-to-reach,

reach-to-reach, and push-to-reach are allowed from any feasible

configuration. Either the left or right arm may be chosen. Reach-to-walk is

allowed if the arms are returned to the home configuration. Reach-to-push

is allowed when the hand of the moving arm contacts the object.

2.4 Push Dynamics

We restrict the planner to use pushes that, under basic assumptions, rotate

the object predictably. These stable pushes must be applied with at least two

simultaneous collinear contacts, such as flat areas on the robot’s hand.

Given known center of friction, surface friction, and contact points, one can

calculate simple conditions on the stable centers of rotation (CORs) [7].

Rotating the hand in the plane about a stable

COR c will predictably rotate the object about c.

Pure translations are represented by a COR at

infinity.

3 Multi-Modal Planning

3.1 Single-mode planning

Single-mode motions can be planned quickly

with standard techniques. On average, each plan

takes a small but not negligible amount of time

Walk

Reach

Left

Reach

Right

Push

Left

Push

Right

Any time

Any time

Any time
Object

contact,

in view

Object

contact,

in view

Home

config

Home

config

Any time

Walk

Reach

Left

Reach

Right

Push

Left

Push

Right

Any time

Any time

Any time
Object

contact,

in view

Object

contact,

in view

Home

config

Home

config

Any time

Fig. 3. Mode transition

diagram

Multi-Modal Motion Planning for a Humanoid Robot Manipulation Task 5

(typically between 10 and 100 ms). Walk modes are 3D, and motions can be

planned with a variety of methods. Reach modes are 6D, requiring the use

of probabilistic roadmap (PRM) methods. PRMs build a roadmap of

randomly sampled, feasible configurations, connecting them with straight-

line paths. They plan quickly when the space has favorable visibility

properties [5], which are almost always satisfied in reach modes. However,

PRMs cannot determine that no path exists, so the planner declares failure

after a specified time limit.

Push motions are produced as follows. Let phand be a contact on the

hand touching a point pobj on the object, with normals nhand and nobj. First,

sample a stable COR c. Rotate the object about c for some distance.

Maintain hand contact during this rotation using a numerical inverse

kinematics (IK) solver to position phand at pobj and orient nhand to –nobj. If the

motion is feasible, repeat the process to push the object further.

3.2 Existing multi-modal approaches

Some multi-modal problems can be solved with standard PRMs simply by

allowing a mode-change action. This action succeeds only at transition

configurations in regions Fm ∩ Fm’. But most interesting multi-modal

systems contain transitions Fm ∩ Fm’ with lower dimension than Fm (or Fm’,

or both). In particular, a reach-to-push transition requires that a flat part of

the hand touch the object. The set of all such configurations has zero

measure in the 6D reach submanifold, so a randomly sampled arm

configuration has zero probability of transitioning to a push. This

necessitates mode-before-motion approaches, which explicitly consider

mode transitions as targets for single-mode planning.

The most general mode-before-motion approach is based on classical

search, and can work well if good mode-based heuristics are developed.

The method builds a search tree T where nodes are configuration/mode

pairs. At each step, the method picks an unexpanded node (q,m) from T

according to a heuristic, and expands it as follows. For each adjacent mode

m’, plan a single-mode path y in m, starting at q and ending at a transition q’

in Fm ∩ Fm’. If successful, add the edge (q,m) → (q’,m’) to T, annotated

Fig. 4. Diagram of search with a

fixed discretization. Each “fan” is a

mode’s configuration space. Yellow

regions are continuous sets of poten-

tial transitions. Feasible transition

configurations are green, infeasible

are red. Blue lines are single-mode

paths

6 Kris Hauser, Victor Ng-Thow-Hing, and Hector Gonzalez-Baños

with y. Once a goal is reached, the motion follows the single-mode motions

along the edges of the solution path.

Search is directly applicable if each mode has a finite number of

adjacencies [2]. For systems with continuously varying modes, the system

must be discretized because each mode has an uncountable number of

adjacencies [1, 4, 8] (Fig. 4). Choosing a discretization requires trading off

between speed and completeness.

A notable alternative to discretizing continuous sets of modes is based

on a roadmap of the set of configurations that transition between any two

modes [1, 9]. Unfortunately, a controllability condition has restricted this

method so far to prehensile manipulation.

3.3 Drawbacks of search

Using search for push planning requires discretizing walk positions (walk-

to-reach transitions), contacts (reach-to-push transitions), and pushes (push-

to-reach transitions). But even the sparsest discretization makes search

intractable. Consider pushing a box. One should allow either hand to touch

each side of the box, so there must be k≥2 hand contacts and m≥4 box

contacts. One should allow at least a straight push and CW and CCW

rotations, so there must be n≥3 pushes. Finally adding p walk positions

(say, p≥4), a search tree of d pushes expands O((kmnp)
d
) modes. In terms of

pushes, the branching factor is no less than 96. Since each expansion takes

10-100 ms, even expanding to a depth of two pushes is too costly.

Furthermore, it appears difficult to develop good heuristics, because they

must reason about the feasibility of future transitions and single-step paths.

4 Random-MMP

If pushing were truly intractable, search might be our only option. But

search covers the configuration space much more densely than is needed,

e.g. pushing left with the right hand from position x is similar to pushing

left with the left hand from position y. In continuous spaces, PRMs use

randomness to overcome similar discretization issues. Their performance

depends on the visibility properties of the space [5], and if visibility is good,

a roadmap of a small number of configurations sampled at random is

sufficient to capture the connectivity of the space. This inspires the

development of Random-MMP. We conjecture that pushing and other

multi-modal systems exhibit good “visibility”, although more work is

needed to define such a term in the multi-modal case.

Like mode-before-motion search, Random-MMP maintains a tree T and

extends it with a single-mode transition. But each extension picks a node

from T at random with probability Φ, and expands to a single adjacent

mode sampled at random with probability Ψ. But how to select Φ and Ψ?

Multi-Modal Motion Planning for a Humanoid Robot Manipulation Task 7

Some intuition can be gained by examining how tree-growing PRMs try to

sample in low-density areas. Two early planners have been empirically

shown to have good performance over a wide range of problems, and have

inspired dozens of variations existing in the literature. The EST planner

expands from a node with probability inversely proportional to the number

of nearby nodes [5]. The RRT planner tries to distribute configurations

uniformly across the space by picking a random point in space, and

expanding the closest node toward that point [6]. We use a simple RRT-like

implementation, expanding the tree as follows:

Random-MMP

1. Sample a random configuration qrand.

2. Pick a node (q,m) that minimizes a distance metric d(q,qrand). We

define d to be the distance of the object configurations, ignoring the

robot entirely. Like RRT, step 2 implicitly defines Φ proportional to

the size of the Voronoi cell of q.

3. The tree is expanded from (q,m) to new mode(s) using an expansion

strategy Expand, which implicitly defines Ψ.

We will compare four variants of the expansion strategy Expand.

• Blind: Expands to an adjacent mode m’ chosen at random.

• Reach/Utility-Informed: Same, but samples contacts, for reach-to-push

transitions, according to expected reachability/utility.

• Push-centered: Expands a sequence of modes that executes a high-

utility push that moves qobj toward qrand.

5. Expansion Strategies

Blind sampling is important to consider, because it can be used for most

multi-modal problems simply by implementing a transition sampler.

Reach/utility-informed sampling improves contact selection by assigning

probability proportional to reachability/utility, much like importance

sampling. These weights are precomputed on grids in the workspaces of

contacts on the hand. Push-centered expansion makes a further imp-

rovement by selecting body positions that execute high-utility pushes.

5.1 Blind Expansion

Given a configuration q at mode m, blind expansion samples a transition

configuration q’ at an adjacent mode m’, and if q’ is feasible, plans a single-

mode path y to connect q and q’ as usual. We first choose an adjacent mode

class, then sample q’ to achieve that type of transition (together defining m’

as remarked in Sect. 2.2). We sample q’ as follows:

8 Kris Hauser, Victor Ng-Thow-Hing, and Hector Gonzalez-Baños

• Walk-to-reach: Sample a body position between a minimum and

maximum distance from the object and a body orientation such that the

object lies within the robot’s field of view.

• Reach-to-walk: Move the arm to the home configuration.

• Reach-to-reach: Use any configuration.

• Reach-to-push: Let Shand and Sobj be the surfaces of the hand and the

object. We predefine a number of contact points Ccand ⊆ Shand that are

candidates for stable pushes. Sample a point phand from Ccand and a point

pobj from Sobj, with normals nhand and nobj. Starting from a random arm

configuration, use numerical IK to simultaneously position phand at pobj

and orient nhand to –nobj.

• Push-to-reach: Rather than sample and plan separately, we plan the

single-mode path y as in Sect. 3.1, and let q’ be the endpoint of y.

5.2 Reach/Utility-Informed Sampling

In reach-to-push sampling, only a small portion of Sobj is reachable from a

given point on the hand. For each p in Ccand, we precompute information

that helps identify the reachable region R on Sobj, and furthermore measures

the expected utility of points in R.

When pushing, the normal n at p must be horizontal in world space. We

fix a height of pushing h, constraining the vertical coordinate of p. This

define a 3D workspace W of points (x,y,θ), where (x,y) are the horizontal

coordinates of p and θ is the orientation of n, relative to the robot’s frame

(Fig. 5.a). We precompute two tables over W as follows.

Reachable stores 1 if the contact is reachable and 0 otherwise (Fig. 5.c).

We initialize Reachable to 0, and then sample the 5D space of the arm

joints in a grid. Starting at each sampled configuration q, we run IK to bring

the height of p to h and reorient n to be horizontal. If successful, we check

if the arm avoids collision with the body and the point p is in the robot’s

field of view. If so, we mark Reachable[(x,y,θ)] with 1, where (x,y,θ) are

the workspace coordinates of p and [⋅] denotes grid indexing.

Utility stores the expected distance the contact can be pushed in the

absence of obstacles, calculated by Monte Carlo integration through

Fig. 5. (a) Workspace coordinates of the right fingers. (b) Reference frame F,

with vertical axis indicating rotation angle. (c) Reach/utility table in frame F.

Reachable cells are drawn with utility increasing from blue to red

Multi-Modal Motion Planning for a Humanoid Robot Manipulation Task 9

Reachable (Fig. 5.c). In W, a push traces out a helix that rotates around

some COR. We assume a prior probability Π over stable CORs for a

reasonable range of physical parameters of the object. Starting from

w0=(x,y,θ) we generate a path w0, w1,…, wK. For all k, wk+1 is computed by

rotating wk a short distance along some COR sampled from Π. The

sequence terminates when Reachable[wK+1] becomes 0. After generating N

paths, we record the average length in Utility[(x,y,θ)].

Given robot and object positions, contacts along Sobj at height h form a

set of curves B in W. Intersecting B with the marked cells of Reachable

gives the set of reachable object edges R. Reach-informed sampling

samples contacts uniformly from R. Furthermore, utility-informed sampling

samples from R with probability proportional to Utility.

5.4 Push-centered expansion

During reach-to-push transitions, the maximum push utility depends greatly

on the placement of the robot body. A randomly chosen placement may

have a hard time reaching the object or pushing it as desired. Push-centered

expansion explicitly chooses a good body position to execute a high-utility

push. Given a node (q,m), this strategy 1) chooses a robot’s body and arm

configuration and a high-utility push for a reach-to-push transition qpush, 2)

plans a whole sequence of modes backwards from the reach mode at qpush to

(q,m), requiring no search, and 3) plans a push path forward from qpush.

We elaborate on step 1. Let qobj be the object configuration in the

randomly sampled configuration qrand. Choose a point pobj on Sobj (at height

h and normal nobj) and a stable push such that the object will be pushed

toward qobj. Next, sample a contact phand from Ccand and a workspace co-

ordinate (xhand,yhand,θhand) with probability proportional to Utility. Then,

compute the body coordinates that transform (xhand,yhand) to pobj and rotate

θhand to θobj, where θobj is the orientation of –nobj. Repeat until the body

position is collision free. Fixing the body, sample the arm configuration of

qpush, using IK to pos-ition phand to pobj and orient nhand to –nobj.

Table 6. Expansion strategy experiments. Bold indicates best in column

 Nodes

/ push

Time /

push (s)

Average

push (cm)

Push rate

(m/s)

Tgt. seek

rate (m/s)

Blind 10.0 0.956 6.7 0.070 0.0302

Reach-informed 6.99 0.353 6.5 0.185 0.0658

Utility-informed 5.99 0.325 8.2 0.254 0.111

Push-centered 5.08 0.404 13.3 0.329 0.257

10 Kris Hauser, Victor Ng-Thow-Hing, and Hector Gonzalez-Baños

5.5 Experimental Comparison

We measure the performance of an

expansion strategy as the distance

the object is pushed per unit of

planning time. We ran Random-

MMP on the setup of Fig. 7 using

the blind, reach-informed, utility-

informed, and push-centered

strategies. The search is initialized

with a walk mode, and terminates at a single push (requiring three

transitions, from walk to reach to push). The final column measures the

distance the object was pushed toward the object position in qrand (if

positive). The results, averaged over 1,000 runs, are summarized in Table 6.

Though blind expansion is improved with reach- and utility-informed

sampling, push-centered expansion is clearly superior.

6 Simulations and Experiments

Figs. 1 and 7 show a generated motion plan in simulation. The goal is to

push the object to the opposite table corner. The planner found a trajectory

in about one minute on a 2GHz PC. Planning times increase if obstacles

introduce difficult bottlenecks, e.g. in Fig. 8. A moved obstacle invalidates

the initial path during execution, forcing the robot to a more difficult

alternative. The planner produced a new path in three minutes.

We performed tests on the physical robot (Fig. 9) executing the motion

without visual or tactile feedback. The object and table have known

geometry and are marked with calibration patterns. Only at the start, the

object and table are sensed using stereo vision, and the planner is given

their transformations relative to the robot. The robot performs several

pushes (typically 3 to 5) almost exactly as planned. After a while, drift in

the robot position (estimated with dead reckoning) causes pushes to fail.

Current hardware can only localize the object and table periodically by

walking to a location where all calibration patterns are in view. Future work

could modify cameras to provide continuous feedback, introducing the

possibility of planning and executing unstable (point) pushes.

Fig. 8. Replanning in a changing environment

Fig. 7. Search tree for the plan of Fig.1

Multi-Modal Motion Planning for a Humanoid Robot Manipulation Task 11

8 Conclusion

We presented a manipulation planner for a humanoid robot using a novel

yet simple multi-modal planning algorithm, Random-MMP. Random-MMP

tries to distribute modes sparsely across the configuration space, much like

sample-based motion planners. We accelerate planning by biasing transition

sampling toward high-utility pushes. Experiments show that even without

visual feedback, the motions can be executed reasonably well. Further work

might improve planning speed using alternate search strategies, or improve

motion quality.

This work also brings up the possibility of unifying multi-modal

planning research across application domains. Future work should advance

the understanding of the entire spectrum of multi-modal problems, and

compare existing approaches across problems. This may enable building

efficient, general-purpose multi-modal planners.

Acknowledgements. Jean-Claude Latombe provided helpful comments on the

paper. This work was partially supported by NSF grant IIS-0412884.

References

1. Alami R, Laumond JP, Simeon T (1995) Two Manipulation Planning

Algorithms. In: Algorithmic Foundations of Robotics, K. Goldberg et al.

(eds.). A K Peters, Wellesley (MA), pp 109-125

2. Bretl T (2006) Motion Planning of Multi-limbed Robots Subject to

Equilibrium Constraints: The Free-climbing Robot Problem. In: Intl J of

Robotics Research, 25(4):317-342

3. Casal A (2001) Reconfiguration Planning for Modular Self-Reconfigurable

Robots. PhD Thesis, Aero & Astro Dept, Stanford University, Stanford, CA

Fig. 9. Asimo pushing a block. Block is highlighted in red for clarity. More

videos are available at http://draco.honda-ri.com:8080/Videos/Videos

12 Kris Hauser, Victor Ng-Thow-Hing, and Hector Gonzalez-Baños

4. Hauser K, Bretl T, Latombe J-C (2005) Non-gaited Humanoid Locomotion

Planning. In: Proc IEEE Intl Conf on Humanoid Robotics

5. Hsu D, Latombe J-C, Motwani R (1999) Path Planning in Expansive

Configuration Spaces. In: Intl J of Computational Geometry, 9(4-5):495-512

6. LaValle SM, Kuffner JJ (1999) Randomized Kinodynamic Planning. In: Proc

IEEE Intl Conf on Robotics and Automation, pp 473-479

7. Lynch KM, Mason MT (1996) Stable pushing: Mechanics, controllability, and

planning. In: Intl J of Robotics Research, 15(6): 533-556

8. Nieuwenhuisen D, van der Stappen AF, Overmars, MH (2006) An Effective

Framework for Path Planning Amidst Movable Obstacles. In: Workshop on

Algorithmic Foundations of Robotics

9. Simeon T, Cortes J, Sahbani A, Laumond J-P (2002) A General Manipulation

Task Planner. In: Workshop on Algorithmic Foundations of Robotics

10. Wilson R (1992) On Geometric Assembly Planning. PhD Thesis, Stanford

University, Stanford, CA

