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Abstract

We developed a method based on interactive B-spline solids for estimating and visualizing biomechanically important parameters for

animal body segments. Although the method is most useful for assessing the importance of unknowns in extinct animals, such as body

contours, muscle bulk, or inertial parameters, it is also useful for non-invasive measurement of segmental dimensions in extant animals.

Points measured directly from bodies or skeletons are digitized and visualized on a computer, and then a B-spline solid is fitted to enclose

these points, allowing quantification of segment dimensions. The method is computationally fast enough so that software

implementations can interactively deform the shape of body segments (by warping the solid) or adjust the shape quantitatively (e.g.,

expanding the solid boundary by some percentage or a specific distance beyond measured skeletal coordinates). As the shape changes, the

resulting changes in segment mass, center of mass (CM), and moments of inertia can be recomputed immediately. Volumes of reduced or

increased density can be embedded to represent lungs, bones, or other structures within the body. The method was validated by

reconstructing an ostrich body from a fleshed and defleshed carcass and comparing the estimated dimensions to empirically measured

values from the original carcass. We then used the method to calculate the segmental masses, centers of mass, and moments of inertia for

an adult Tyrannosaurus rex, with measurements taken directly from a complete skeleton. We compare these results to other estimates,

using the model to compute the sensitivities of unknown parameter values based upon 30 different combinations of trunk, lung and air

sac, and hindlimb dimensions. The conclusion that T. rex was not an exceptionally fast runner remains strongly supported by our

models—the main area of ambiguity for estimating running ability seems to be estimating fascicle lengths, not body dimensions.

Additionally, the craniad position of the CM in all of our models reinforces the notion that T. rex did not stand or move with extremely

columnar, elephantine limbs. It required some flexion in the limbs to stand still, but how much flexion depends directly on where its CM

is assumed to lie. Finally we used our model to test an unsolved problem in dinosaur biomechanics: how fast a huge biped like T. rex

could turn. Depending on the assumptions, our whole body model integrated with a musculoskeletal model estimates that turning 451 on

one leg could be achieved slowly, in about 1–2 s.
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1. Introduction

Studies of the biology of extinct organisms suffer from
crucial unknowns regarding the life dimensions of those
animals. This is particularly the case for taxa of unusual
size and shape, such as extinct dinosaurs, for which
application of data from extant analogs (e.g., large
mammals) or descendants (birds) is problematic. Studies
attempting to estimate the body masses of extinct animals
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have proliferated over the past century, ranging from
techniques based on scaling equations using data from
extant taxa (e.g., Anderson et al., 1985; Campbell and
Marcus, 1993) to whole body modeling using physical scale
models (e.g., Colbert, 1962; Alexander, 1985, 1989; Farlow
et al., 1995; Paul, 1997) or computerized shape-based
algorithms (e.g., Henderson, 1999; Motani, 2001; Seeba-
cher, 2001; Henderson and Snively, 2003; Christiansen and
Fariña, 2004; Mazzetta et al., 2004). Fewer studies have
estimated the centers of mass of extinct taxa such as non-
avian dinosaurs (Alexander, 1985, 1989; Henderson, 1999;
Christiansen and Bonde, 2002; Henderson and Snively,
2003). Even fewer have estimated body inertia tensors
(Carrier et al., 2001; Henderson and Snively, 2003), and
those studies only investigated mass moments of inertia
about the vertical axis (i.e., turning the body to the right or
left) rather than about all three major axes (i.e., including
rolling and pitching movements of the body).

We have developed a method implemented in graphical
computer software that greatly facilitates the procedure of
estimating animal dimensions. This software builds on the
pioneering work of Henderson (1999; also Motani, 2001)
by having a very flexible graphical user interface that is
ideal for assessing the sensitivities of body segment
parameters (mass, CM, and moments of inertia; here
collectively termed a mass set) to unknown body dimen-
sions (shape and size). We first apply our method to an
extant animal (ostrich) for validation against other
methods for measuring or estimating body dimensions.
This is a validation that has not been thoroughly done for
many previous mass estimation approaches—especially
from actual animal specimens rather than illustrations,
photographs, or averages of extant animal variation (one
exception is Henderson, 2003a).
Body axes

Mass set (Tyrannosaurus body)

Fig. 1. Body segments can be created using mass objects of different density

combined inertial properties; the most inclusive Tyrannosaurus mass set (whole

objects.
We focus on estimating the body dimensions of one
taxon, the large theropod dinosaur Tyrannosaurus, in great
detail because of the controversies surrounding this enig-
matic, famous dinosaur (e.g., Could it turn quickly? Was it a
fast runner? Did it stand and move with columnar or
crouched limbs?). We first examine how our estimations of
Tyrannosaurus body dimensions compare to previous
studies. In conjunction, we conduct sensitivity analysis to
investigate how widely our estimations of body mass, CM
position, and moments of inertia might vary based upon the
input parameters of body segment shape, size, and density.
Next, we use two examples to show how a sophisticated,

interactive model of body dimensions is useful to paleo-
biologists by demonstrating the influence of mass set values
on biomechanical performance. We first use our whole
body model of Tyrannosaurus to show how moments of
inertia affect predictions of the dinosaur’s turning ability,
when coupled with data on the moments that muscles can
generate to rotate the body. Second, we relate our results to
the dual controversies over limb orientation (from
crouched to columnar poses) and running ability (from
none to extreme running capacity) in large tyrannosaurs
(Bakker, 1986; Paul, 1988, 1998; Farlow et al., 1995;
Hutchinson and Garcia, 2002; Hutchinson, 2004b;
Hutchinson et al., 2005).

2. Materials and methods

2.1. Software implementation and validation

2.1.1. B-spline solids

Our software can create freely deformable body shapes
from either 3D coordinate data collected elsewhere as a
scaffold around which to build ‘‘fleshed-out’’ animal
Mass objects

(cavities)

Segment (trunk)

x

z

y

and shape. Mass objects can be collected into mass sets to calculate their

body) is outlined here, as well as the trunk segment and its embedded mass
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bodies, or from any representative solid geometry. The
body of an animal to be studied is partitioned into a set of
non-intersecting rigid segments (Fig. 1). Each body
segment can consist of one or more mass objects (i.e.,
parts of the body that have discrete volumes and densities).
For example, the trunk segment can have its volume
represented as the combination of two mass objects with
different densities (one for the lungs and the other
representing the surrounding soft tissue and bones).
Mathematically, the boundary surface of a B-spline solid
is made up of a collection of connected, differentiably,
smooth surfaces. To visualize the model and efficiently
compute its mass properties, this shape is estimated with a
closed polyhedron. Mass objects can be collected into mass
sets for which their mass properties can be amalgamated.
The underlying mathematical model used to represent mass
Fig. 2. A B-spline solid is a closed object whose shape can be adjusted by movi

near the control point. The initial cylindrical shape in A is adjusted (B and C)

closer to the axis.

Fig. 3. A B-spline solid can have its boundary surface tessellated into trian

approximation of a smooth surface can be achieved. Ostrich trunk models from

to F) and in dorsal view (from G to L). The warped appearances of the model

carcass, and the difficulty of representing this surface with simpler geometry.
objects is the B-spline solid:

xðu; v;wÞ ¼
Xl

i¼0

Xm

j¼0

Xn

k¼0

Bu
i ðuÞB

v
j ðvÞB

w
k ðwÞcijk, (1)

where xðu; v;wÞ represents a volumetric function defined
over a 3-D domain in the parameter space of u (radial), v

(circumferential), and w (longitudinal). The shape is
defined by a weighted sum of control points, cijk, and a
triple product of B-spline basis functions. B-spline basis
functions are continuous polynomial functions with a local
finite domain and allow smooth surfaces or volumes to be
modeled with continuous first- and higher-order deriva-
tives. A thorough introduction to B-splines is in Hoschek
et al. (1989); Appendix A explains in more detail how we
used B-spline solids here. Adjusting the control point
ng control points (dark points) that deforms the local portion of the object

by pulling out the points at the ends and drawing the points in the middle

gles of different resolution. The more triangles are used, the better the

Table 1 shown with increasing number of triangles: in lateral view (from A

s are not errors but reflect the complex 3D surface of the dissected ostrich
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Table 1

Comparison of computed volume as number of triangles increase for an

ostrich trunk model (see Fig. 3)

Number triangles

(ostrich trunk model)

Computed volume

(actual: 0.0396)

Relative error

88 0.0240 39.4

468 0.0370 6.65

2128 0.0390 1.60

9048 0.03951 0.315

37288 0.03960 0.0880

151,368 0.03952 0.2901

As the triangles increase, the volume quickly converges to the actual

B-spline solid shape that the triangles approximate.
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parameters allows the shape to be locally changed in the
proximity of the moved control point (Fig. 2); thus, any
arbitrary curved shape, not just ellipses (Henderson, 1999,
2003b; Motani, 2001), is usable. The choice of a closed
solid model instead of a surface model ensures that we can
compute the volume of the shape. Figs. 2–3 illustrate our
usage of B-spline solids to model body segment dimen-
sions. Table 1 shows how the accuracy of our B-spline
solid’s computed volume increases with the number of
triangles used to represent the shape’s boundary surface,
explained further in Appendix A.

2.1.2. Body segment dimensions

The properties that our model can compute include not
only linear dimensions but also volume, mass, center of
mass (CM), inertia tensor, principal axes, and principal
moments of body segments. These quantities are necessary
to conduct physical simulations of body segmental motion.

Suppose a segment contains n non-intersecting mass
objects of volumetric domain. Its mass properties then are:

Volume ¼
Xn

i¼1

Z
Vi

dV , (2)

Mass ¼
Xn

i¼1

ri

Z
V i

dV , (3)

CM ¼
1

Mass

Xn

i¼1

ri

Z
Vi

xdV ;

Z
Vi

y dV ;

Z
Vi

zdV

� �T

, (4)

I ¼
Xn

i¼1

ri

R
Vi
ðy2 þ z2ÞdV �

R
Vi

xydV �
R

Vi
xzdV

�
R

Vi
xydV

R
Vi
ðx2 þ z2ÞdV �

R
Vi

yzdV

�
R

Vi
xzdV �

R
Vi

yzdV
R

Vi
ðx2 þ y2ÞdV

2
664

3
775,
(5)

where ri is the density of mass object i, dV is a differential
volume element, and x, y, z are the spatial coordinates that
constitute the volume of the segment. The inertia tensor
matrix I is symmetrical. The principal axes of inertia are
three orthogonal axes about which the body set can rotate
freely without the application of a torque. When I is
computed with respect to the principal axes (the eigenvec-
tors of I), I becomes diagonal (meaning all of its off-
diagonal elements are zero). The principal moments of
inertia (the eigenvalues of I) are the remaining non-zero
diagonal elements (Marion, 1970). Our model computes all
nine matrix values of the inertia tensor I, but for simplicity
here we focus only on the principal moments of inertia.

2.1.3. Embedding objects within objects

The B-spline solid formulation allows other geometric
objects to be embedded within its volume. If embedded
objects are restricted to triangular polyhedra or B-spline
solids, the combined mass properties of the segment and its
composite objects can be calculated. For example, sub-
volumes of zero (or any other) density can be embedded in a
torso segment to account for the volume of lungs or air sacs.
The process of computing the mass properties of the

composite segment involves first computing the integrals of
the outer volume and subsequently subtracting away the
integrals over the volumes of the embedded objects. The
individual integrals from the embedded objects with their
respective different densities are then added back. For
example, if a segment has a total volume T and has an
outer object A with two embedded objects B and C, its
mass is

Mass ¼ rA

Z
T

dV � rA

Z
VB

dV � rA

Z
VC

dV

þ rB

Z
VB

dV þ rC

Z
VC

dV , ð6Þ

where the subscripts denote the object. The other integrals
in Eqs. (1)–(4) can be similarly computed.
For the inertia tensor of the segment, once the integrals

are computed, the inertia tensor is transformed to be
centered at the segmental CM using the well-known
parallel axis theorem (Marion, 1970):

Icom
s ¼ I s �ms

r2y þ r2z rxry rxrz

rxry r2z þ r2x ryrz

rxrz ryrz r2x þ r2y

2
664

3
775, (7)

where ms refers to the mass of segment s and the
coordinates of the CM are (rx,ry,rz). If the matrix, Icom

s , is
aligned with the segment’s principal axes, the matrix will be
diagonal and the diagonal entries are referred to as the
principal moments, Ixx; Iyy; Izz.

2.1.4. Mass sets for articulated models

Once the mass properties of a segment are known in its
local coordinate system, they can be combined with those
of the other segments in an articulated skeleton to compute
the total CM and inertia tensor for the entire system. The
total CM for a system of n segments can be computed as

comsystem ¼
1

msystem

Xn

1

miri, (8)
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with ri being the CM for segment i. The CM can
subsequently be expressed relative to any arbitrary
reference point. For example, in our Tyrannosaurus model,
the torso CM for all non-limb body segments (head, neck,
trunk, and tail) is expressed relative to the right hip joint
center for comparison with previous published data (e.g.,
Hutchinson and Garcia, 2002; Hutchinson, 2004a, b), and
the hindlimb segments are likewise expressed relative to
their proximal joint centers.

For the inertia tensor we must transform all the tensor
matrices to be in a common world frame of reference using
a similarity transform (Baruh, 1999):

Iworld
s ¼ RsI

com
s RT

s , (9)

where Rs is the rotation matrix of the segment with respect
to the world frame and Icom

s is the local segment inertia
tensor at its CM. Using the parallel axis theorem, each of
the transformed segment inertia tensors are represented
with respect to the common world origin so that the
matrices can be added together to produce the system
inertia tensor. The parallel axis theorem is once again
applied to express the system inertia tensor with respect to
Fig. 4. Ostrich trunk mass set models: (A) photograph of original trunk carcas

experiments; (B) point cloud of carcass landmarks from digitization; (C) B-splin

(D) photograph of skeleton after defleshing of carcass, (E) point cloud of ske

underlying skeletal landmarks (skeleton model); and (G) Skeleton model with B

Not to scale. The right hip joint (pink and black disk; caudal) and CM (red and

A dotted curve outlines the acetabulum in the carcass and skeleton pictures.
the system CM. Subsequent diagonalization of the inertia
tensor matrix using Jacobi rotations can be performed to
compute principal moments and axes (the eigenvalues and
eigenvectors of the matrix; Press et al., 1992).

2.2. Validation

We conducted an initial sensitivity analysis to assess the
potential error in calculating mass sets for an animal body,
and to check the accuracy of the modeling approach. We
used the trunk (main body sans limbs, tail, neck, and head)
of an ostrich (Struthio camelus) for which the mass
parameters were known (data from Rubenson et al., in
review). The more complex case of a whole ostrich body
was unnecessary as the whole body mass set is the
aggregate of the individual segment mass sets. Hence, we
only needed to focus on the accuracy of modeling any one
segment, and we chose the largest one (trunk) of a typical
animal (Fig. 4A).
First, we used a 3D digitizer (Northern Digitial Inc.,

Waterloo, Ontario; with AdapTrax trackers, Traxtal Inc.,
Toronto, Ontario) to digitize 277 reference points around
s in right lateral view, suspended on a cable for CM and inertia estimation

e solid shrinkwrapped to fit underlying carcass landmarks (carcass model);

letal landmarks from digitization; (F) B-spline solid shrinkwrapped to fit

-spline solid expanded laterally to simulate added flesh (fleshed-out model).

black disk; cranial) are shown for the models, with principal axes (arrows).
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the whole trunk carcass, choosing points to thoroughly
represent the 3D trunk contours (Fig. 4B). An extra 32
points were taken around the right and left hip joint (i.e.,
acetabula) to reference the hip joint center, because the
location of the CM was expressed with respect to that
point. These points were then used to ‘‘shrinkwrap’’ a
B-spline around the trunk (1000 control points), which was
then manually adjusted to achieve a good visual fit to all of
the reference points (Fig. 4C). The mass, CM, and
moments of inertia about the CM were then calculated in
our software. We compare these data (referred to as the
‘‘ostrich carcass model’’) to actual physical measurements
of these parameters in Section 3.

Second, we defleshed the trunk carcass and did the same
digitization procedure for 294 skeletal landmark points
(Fig. 4D), in addition to the right and left acetabula (26
points). We incorporated non-skeletal reference points in a
smooth curve caudally from the sternum to the back of the
pubes and dorsally to the back of the synsacrum, to
roughly represent the curvature of the trunk outline. We
again shrinkwrapped a B-spline solid (1000 control points)
around these reference points and manually adjusted them
(Fig. 4E). At first we only tried to match these reference
points, to assess how much we might underestimate actual
mass from skeletal points and basic body contours. We
refer to these data as the ‘‘ostrich skeleton model.’’

Afterwards, we manually expanded the latter B-spline
solid to make a ‘best guess’ (without direct reference to the
original carcass images) of the dimensions of the fleshed-
out trunk (Fig. 4F). We did this expansion by increasing
the x, y, and z dimensions of the previous trunk model by
10%, then increasing the z (mediolateral) dimensions again
by 10% ( ¼ 21% total). The resulting model matched our
subjective impression of what a fleshed-out ostrich carcass
should look like, from skeletal data alone and without
direct reference to the original images. This was conducted
to assess how far off the process of reconstructing a whole
body from skeletal data might be, in a good case in which
we knew the general body shape. We refer to these data as
the ‘‘ostrich fleshed-out model.’’ All model mass sets are in
Table 2 of Section 3.

Initial density was set at 1000 kgm�3 for all ostrich
models, but the individual densities were adjusted by
taking the mass of the real trunk (experimentally mea-
sured), dividing it by the mass estimate for the ‘‘carcass’’
model, and multiplying the densities (for all three models)
Table 2

Mass sets for the ostrich from experimental measurements (REF) and the thr

Method Mass (kg) Mass (kg)-corrected CM (

Experiment 34.9 (0.081

Carcass model 39.3 34.9 (0.063

Skeleton model 29.2 (0.096

Fleshed-out model 39.1 34.7 (0.098

The CM column lists the x, y, and z distances of the trunk CM from the righ

matches to the experimental measurements.
by this value. For simplicity, no air sacs or other internal
anatomy were added to the models. Only overall density
was altered, as the internal anatomy of the ostrich carcass
was not known and the lungs/air sacs were presumably
partly deflated or fluid-filled.
2.3. Tyrannosaurus skeletal geometry acquisition

We chose Museum of the Rockies Tyrannosaurus rex

specimen MOR 555 because a good cast of this nicely
preserved specimen (Fig. 5A) was available next to the
University of California Museum of Paleontology (Berke-
ley, California). This location had enough space for us to
set up a three-dimensional ðx; y; zÞ coordinate system for
estimating body dimensions. The coordinate system was
constructed by laying down a straight 10m line on the floor
near the skeleton, forming the x-axis (craniocaudal;
parallel to the body). A total of 67 landmark points on
the skeleton (Fig. 5B) were marked to represent the outline
of the skeleton from tail to snout (total axial length ¼
10.8m). Next, for each point the height (y-axis, with 0 at
the floor) was measured using a plumb bob and measuring
tape. The coordinates in the x–z (horizontal) plane were
measured from the point where the plumb bob contacted
the ground when hanging still to the coordinate axes. This
simple approach can be used quickly and easily with
mounted specimens in most museums. As the skeleton was
not oriented in a straight line, the coordinates needed to be
straightened out by transforming them so that the midline
dorsal points all lay along the same craniocaudal line,
which was redefined as the new x-axis. Because the left and
right sides of the mounted cast were not symmetrical as in
life, we adjusted the z-axis values to be the mean of the
measured left/right values. Additionally, as the mouth was
open in the cast, we took skull measurements to close the
mouth in our model.
Limb bone geometry was acquired in a previous study

(Hutchinson et al., 2005). The pelvis and hindlimbs were
represented in the model as realistic 3D surfaces, each
made of several thousand polygons. Joints connecting
those bone segments were likewise defined as in the latter
study. This 3D limb bone model was connected to the body
model by placing its hip joint center at the same location as
the centroid of the acetabulum in the mounted skeleton,
which we also collected landmark points for.
ee models from this study

x,y,z) (m) Ixx (kgm2) Iyy (kgm2) Izz (kgm
2)

, �0.167, �0.098) 0.397 0.892 1.45

, �0.139, �0.052) 0.375 1.53 1.75

, �0.106, �0.061) 0.282 1.39 1.49

, �0.112, �0.060) 0.377 1.887 2.045

t hip joint center. Bold values for the mass set parameters indicate closest
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Fig. 5. Tyrannosaurus MOR 555 skeleton: (A) Photograph of mounted skeleton in Berkeley, California (in left lateral view); (B) Torso skeletal landmark

points digitized for our study, plus digitized pelvis and leg bones from Hutchinson et al. (2005); and (C, D) additional cranial and caudal photographic

views of the skeleton from A.
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As Fig. 5B shows, the skeletal landmark points we
collected were insufficient to accurately describe the shape
of the animal, as they did not account for the curvature of
the soft tissues. Naturally, use of these landmarks alone
would drastically underestimate body mass (see below). We
used our B-spline solid modeling software to assist us in
representing the changes of body shape caused by soft
tissue (Fig. 2).

2.4. Tyrannosaurus fleshed-out body model

We first separated our model into a ‘torso’ set: a head, a
neck, a trunk, and five tail segments corresponding to the
underlying skeletal data described above. Second, we had
two ‘leg’ sets, each consisting of four smaller segments: the
thigh, shank, metatarsus, and pes. Hence, our model (torso
plus leg segment sets) had a total of 16 body segments. We
then created our original model (referred to here as Model 1)
to estimate Tyrannosaurus body dimensions by fleshing out
the skeletal data. To show how much this fleshing out
procedure changed the mass set values, we also calculated
mass sets for the torso by only using the skeletal landmark
points as the edges of the body (as we did for the ostrich).

Fleshing out the skeleton was an eloquent reminder to us
how much artistic license is inevitably involved. Impor-
tantly, we did not check the resulting mass set data as we
fleshed out the skeleton, as that might introduce bias
toward some mass set values. We merely attempted to
reconstruct what we thought the entire body dimensions
should look like for a relatively ‘skinny’ (minimal amount
of flesh outside the skeleton, averaging just a few
centimeters) adult Tyrannosaurus, using the skeleton and
our experience as animal anatomists to guide us. B-spline
solid shapes (cylinders, spheres, or ellipses depending on
the segment) were first shrinkwrapped to the underlying
skeleton and then individual points were moved away from
the skeleton to symmetrically add the amount of flesh
desired. Brief reference to other representations in the
literature (especially Paul, 1988, 1997; Henderson, 1999)
was used only in the final smoothing stages to ensure that
the body contours were not exceptionally unusual.
Several simplifications were involved. We did not aim for

extreme anatomical realism, incorporating every externally
visible ridge and crest of the underlying skeleton. We
omitted detailed representation of the arm segments.
Rather, we added a small amount of volume at the cranial
ends of the coracoids to represent the tiny arms. Likewise,
we did not detail the pes segment. A simple rectangular
block (matching the rough dimensions of digit 3; Hutch-
inson et al., 2005) was used to represent the pes, and
assigned a mass of 41 kg based upon scaling data for extant
taxa (Hutchinson, 2004a, b). The pes was considered fused
to the ground and hence not used to calculate whole body
CM or inertia values. Both omissions are justifiable as the
small masses of these segments would have minimal effects
on the mass set calculations. Our goal was to construct a
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reasonable—and most importantly, simple and flexible
enough for sensitivity analysis—initial representation of
the body outline in 3D which could be made more realistic
in the future as desired.

The model (and all later modifications thereof in our
sensitivity analysis, except where noted) was constructed
and kept in a single, completely columnar reference pose
Fig. 6. Original Tyrannosaurus mass set (Model 1) in right lateral (A), dorsal (B

scale. The odd shape of the hip region in (B) represents the 151 adbuction of the

in dorsal view. This is also evident in the abducted positions of the lower legs an

joints (especially the hip and knee) brought the feet close to the body midline (e

in an abducted position (making it easiest to edit 3D leg dimensions), which h
(as in Hutchinson et al., 2005) with all leg segments
vertically aligned, except that the hip joints were kept
abducted by 151 in order to properly place flesh around the
thighs and to match expected hip abduction in theropods
(e.g., Paul, 1988; Hutchinson et al., 2005). This is
important as the leg segment positions influence the total
body mass set. Fig. 6 shows the original model.
), cranial (C), caudal (D), and oblique right craniolateral (E) views. Not to

thigh segment (see Section 2), which makes the thigh seem laterally-flared

d feet in C–E. It is not yet clear precisely how theropod dinosaur hindlimb

.g., Paul, 1988; Hutchinson et al., 2005), so our model was left with its feet

ad no important effects on our results.
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2.5. Body segment densities

One of the most important assumptions involved in body
mass estimates for extinct animals is the average density of
various body segments. Most studies have assumed a
homogeneous density throughout all or most body areas
(e.g., Alexander, 1985, 1989; Paul, 1997; Henderson, 1999;
Motani, 2001; Henderson and Snively, 2003) except usually
including zero-density lungs, ranging 8–10% of body
volume or up to 15% of trunk volume. Such assumptions
also have bearing on the CM positions and inertia
magnitudes. Henderson (2003b); Henderson (2006) has
more cautiously entered varying densities for sauropod
neck and trunk segments.

Our model offers the advantage of being easily able to
incorporate as much or as little variation of density within/
among body segments as desired, and of having such
variation represented by anatomically realistic shapes.
High-resolution data from computed tomography, dense
point clouds, or other complex geometric shapes can be
imported into the model framework. Hence, a model can
be as simple or complex as one desires, within hardware
limitations.

For our model of T. rex, we began by assigning all
segments a density equal to water (1000 kgm�3) as did
many previous authors (Alexander, 1985; Henderson,
Table 3

Results for the original Tyrannosaurus body model

Segment Density (kgm�3) Volume (m3) Ma

Head 650 0.534 347

Buccal cavity 0 0.120 0

Sinus 0 0.0667 0

Neck 724 0.228 165

Pharyngeal cavity 0 0.0623 0

Trunk 783 3.46 270

Trachea 0 0.0263 0

Lungs 0 0.554 0

Abdominal sacs 0 0.168 0

Thigh 1000 0.500 500

Shank 1000 0.172 172

Metatarsus 1000 0.0628 62.

Pes 1000 0.0410 41.

Tail 5 (base) 1000 0.563 563

Tail 4 1000 0.0608 60.

Tail 3 1000 0.0450 45.

Tail 2 1000 0.00854 8.5

Tail 1 (tip) 1000 0.00124 1.2

Multiple segment groups:

Tail 1000 0.68 679

One leg 1000 0.78 776

Limbless body 796 4.90 389

Turning body 800 5.00 399

Right leg support 823 5.68 467

Whole body 845 6.45 545

The CM column lists the x ,y, and z distances of the segment CM, which is

segment, from the proximal joint center for the limb segments, or from the ri
1999). We then embedded (as per above) simplified but
anatomically appropriate shapes to represent zero-density
cavities inside several segments. These cavities were placed
with reference to osteological indicators of pulmonary
anatomy (O’Connor and Claessens, 2005; O’Connor, 2006)
in Tyrannosaurus. The head segment included a buccal
cavity and ‘sinus’ (antorbital and surrounding cranial
sinuses; Witmer, 1997); we shaped these to roughly match
the skull cavities of the specimen. The neck segment had a
pharyngeal cavity ( ¼ trachea, esophagus, associated air
sacs; O’Connor and Claessens, 2005; O’Connor, 2006),
whereas the trunk segment had three cavities: ‘trachea’
(continuation of pharyngeal cavity), ‘lungs’ (and associated
air sacs), and ‘abdomen’ (clavicular and thoracic air sacs;
O’Connor and Claessens, 2005). Fig. 6 shows the cavity
shapes we used. The volumes of these cavities and the final
densities of the segments containing them are shown in
Table 3.

2.6. Sensitivity analysis

We created 29 new Tyrannosaurus models as variations
of our original model (Model 1) by altering the original
torso segment set, embedded cavity, and leg dimensions
(Fig. 7). Only B-spline solid shapes were changed, not the
underlying skeleton. Body segments (along with their
ss (kg) CM (x,y,z) (m) Ixx, Iyy, Izz (kgm
2)

(0.484, 0.193, �0.006) (38.5, 53.1, 64.2)

n/a n/a

n/a n/a

(0.253, 0.652, �0.002) (19.1, 8.67, 20.0)

n/a n/a

8 (0.986, �0.281, �0.201) (735, 2390, 2810)

n/a n/a

n/a n/a

n/a n/a

(�0.016, �0.162, 0.204) (153, 42.9, 175)

(0.016, �0.670, 0.102) (20.5, 5.94, 20.9)

8 (�0.005, �0.418, 0.114) (3.31, 1.95, 2.94)

0 n/a n/a

(�0.636, 0.819, 0.000) (56.8, 122, 162)

8 (�0.354, 0.281, 0.000) (1.03, 3.03, 3.69)

0 (�0.455, 0.240, 0.000) (0.473, 4.33, 4.67)

4 (�0.288, 0.173, 0.000) (0.036, 0.349, 0.379)

4 (�0.230, 0.091, 0.000) (0.001, 0.039, 0.040)

(�1.801, �0.0970, �0.219) (69.4, 526, 578)

(0.007, �0.750, �0.288) (773, 65.1, 784)

9 (0.823, �0.116, �0.204) (1150, 11,300, 12,000)

6 (1.121, �0.270, �0.285) (2150, 6390, 7890)

4 (0.693, �0.217, �0.276) (2300, 11,900, 13,500)

0 (0.599, �0.289, �0.199) (3460, 12,400, 14,800)

from the base (caudal end for head and neck; cranial end for tail) of the

ght hip joint center for the trunk and all multiple segment groups.
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Fig. 7. The six cavities embedded in Tyrannosaurus Model 1’s head, neck, and trunk segments, shown in right lateral (A) and dorsal (B) views. ‘bc’

indicates the buccal cavity; and ‘pc’ indicates the pharyngeal cavity.
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embedded cavities) were either left in their original state or
increased along their y- and z-axes (vertical and medio-
lateral) by 10% or 21% (10% twice); i.e., volumes and
masses increased by 1.21 or 1.46� . This was done because
our original model was designed to be a minimal estimate
of mass sets; we presumed the real animal would have had
more soft tissue. We also separately increased the neck and
trunk embedded cavity dimensions by 10% or 21%,
checking to ensure that these cavities were not excessively
penetrating our skeletal landmark points. Head segment
cavities did not require enlargement as their dimensions
were set by those of the skull cavities. The leg segments
were increased by 10% or 21% along their x- and z- axes
(craniocaudal and mediolateral) to represent more mus-
cular legs. The mass of the pes segment was not changed as
this was deemed sufficiently large. Consequently, we made
26 models of the body of Tyrannosaurus (Models 2–27) to
consider all combinations of one or more of these
variations from Model 1. To investigate how much
different tail dimensions (independently from the rest of
the body) changed mass set values, we added a model (#28)
with tail dorsovental and mediolateral dimensions in-
creased by 21%. As tail position could have influence our
mass set results, we made an additional model (#29) with a
tail in a more ventral, sloped orientation (tail depressed
ventrally by �251; this required deforming the tail
segments slightly, boosting mass by �3%). Finally, we
constructed our intuitive ‘best guess’ model (#30) with a
tail volume enlarged by 1.46� as in Model 28, the body
and leg volumes increased by 1.21� , and body cavities
enlarged by 1.46� . Once all 30 models were finished, we
tabulated their mass set values to examine the effects of
different assumptions about body segment shapes and sizes
(Table 4, Fig. 8).

2.7. Turning speed of T. rex

To illustrate the importance of moment of inertia in
dynamic movements, we estimated the minimum time
required for T. rex to execute a stationary turn of its trunk,
neck, and head by 451 to the right (clockwise) while
standing only on its right foot. We assumed that the tail
during this movement would not move with the trunk.
Therefore, the turning mass set included the trunk starting
from just behind the pelvis at the base of the tail, the left
hindlimb, the neck, and the head (Fig. 9). We further
assumed that the optimal strategy for a minimum-time turn
(to the right) would be to turn the right medial (internal)
rotator muscles on maximally to initiate the turn and then
the right lateral (external) rotators on for decelerating the
turn to a stop at the final angle. The T. rex began at rest
in a forward facing position ðyi ¼ 0:0�; _yi ¼ 0:0�=sÞ
and terminated facing 451 to the right also at rest
ðyf ¼ 45:0�; _yf ¼ 0:0�=sÞ. Allowing for the fact that the
maximal medial rotation and lateral rotation hip joint
moments were not likely the same, a formula for the time
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Table 4

Alternative body models of Tyrannosaurus for comparison with the original (Table 3)

Model Torso (y,z) Legs (x,z) Cavities (y,z) Density (kgm2) Mass (kg) Ratio CM (x,y,z) (m) Ixx, Iyy, Izz (kgm
2)

1 Original Original Original 845 5450 1.00 (0.599, �0.289, �0.199) (3460, 12,400, 14,800)

2 +10% Original Original 867 6479 1.19 (0.678, �0.257, �0.199) (4020, 15,500, 18,200)

3 +21% Original Original 886 7723 1.42 (0.744, �0.229, �0.199) (4800, 19,200, 22,400)

4 +10% +10% Original 872 6788 1.25 (0.647, �0.279, �0.198) (4500, 15,800, 18,800)

5 +10% +21% Original 878 7161 1.31 (0.613, �0.304, �0.197) (5080, 16,100, 19,400)

6 +21% +10% Original 890 8032 1.47 (0.716, �0.249, �0.198) (5290, 19,500, 23,000)

7 +21% +21% Original 894 8405 1.54 (0.684, �0.271, �0.198) (5880, 19,800, 23,700)

8 +10% +10% +21% 824 6411 1.18 (0.582, �0.289, �0.198) (4410, 15,200, 18,100)

9 +10% +21% +21% 832 6785 1.24 (0.550, �0.314, �0.197) (4980, 15,400, 18,700)

10 +10% +10% +10% 850 6617 1.21 (0.618, �0.284, �0.198) (4460, 15,500, 18,500)

11 +10% +21% +10% 857 6991 1.28 (0.585, �0.308, �0.197) (5040, 15,800, 19,100)

12 +21% +10% +21% 848 7655 1.40 (0.665, �0.256, �0.198) (5200, 18,900, 22,400)

13 +21% +21% +21% 854 8029 1.47 (0.634, �0.279, �0.197) (5790, 19,300, 23,100)

14 +21% +10% +10% 871 7861 1.44 (0.693, �0.252, �0.198) (5260, 19,200, 22,700)

15 +21% +21% +10% 876 8235 1.51 (0.662, �0.275, �0.197) (5840, 19,600, 23,400)

16 +10% Original +10% 844 6309 1.16 (0.649, �0.261, �0.199) (3980, 15,300, 17,900)

17 +10% Original +21% 816 6103 1.12 (0.611, �0.266, �0.199) (3930, 14,900, 17,600)

18 +21% Original +10% 866 7553 1.39 (0.721, �0.232, �0.199) (4770, 19,000, 22,200)

19 +21% Original +21% 843 7347 1.35 (0.693, �0.235, �0.199) (4720, 18,700, 21,800)

20 Original Original +10% 819 5280 0.97 (0.562, �0.295, �0.199) (3410, 12,100, 14,400)

21 Original Original +21% 787 5074 0.93 (0.514, �0.302, �0.199) (3360, 11,800, 14,000)

22 Original +10% Original 852 5759 1.06 (0.567, �0.314, �0.198) (3920, 12,700, 15,300)

23 Original +21% Original 857 6113 1.12 (0.533, �0.340, �0.197) (4490, 12,900, 15,900)

24 Original +10% +10% 827 5589 1.03 (0.531, �0.320, �0.198) (3880, 12,400, 14,900)

25 Original +10% +21% 797 5383 0.99 (0.484, �0.328, �0.198) (3830, 12,000, 14,500)

26 Original +21% +10% 836 5962 1.09 (0.498, �0.347, �0.197) (4450, 12,600, 15,500)

27 Original +21% +21% 807 5757 1.06 (0.453, �0.355, �0.197) (4390, 12,200, 15,100)

28 Tail+21% Original Original 852 5765 1.06 (0.467, �0.268, �0.204) (3570, 14,400, 16,800)

29 Ventral taila Original Original 849 5597 1.03 (0.538, �0.333, �0.199) (3355, 13,300, 15,500)

30 Body/tailb 10% 21% 827 6583 1.21 (0.519, �0.279, �0.201) (4470, 16,300, 19,200)

Torso and leg segments as well as internal cavities were enlarged or reduced by specified percentages along the axes indicated in parentheses. The ratio

column shows the total body mass relative to Model 1. The CM column lists the x, y, and z distances of the whole body (including both legs) CM from the

right hip joint center. For density, mass, CM, and inertia the largest and smallest values are, respectively, indicated by bold and italic fonts.
aThe tail in Model 29 is ventrally depressed by �251 and slightly enlarged (see Section 2).
bModel 30 represents our ‘best guess’ at reasonable mass set values, with the body dimensions enlarged 10% and tail dimensions enlarged 21%.
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required by the movement is given by

tturn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:0ðtmed þ tlatÞyf Iyy

tmedtlat

s
, (10)

where tturn is the time it takes to execute the turn, yf is the
final medial rotation angle of the right hip, tmed and tlat are
the estimated maximum medial and lateral hip joint
moments, respectively, that can be generated by T. rex,
and Iyy is the moment of inertia of the rotating body mass
about the right hip joint.

The maximum hip rotation moments were estimated
based on the forces exerted by long-axis (i.e., medial and
lateral) rotator muscles crossing the hip joint times the
moment arms of those muscles (Hutchinson and Gatesy,
2000; Carrano and Hutchinson, 2002). We estimated the
forces using scaled physiological cross-sectional areas and
fascicle lengths for the muscles (data from Hutchinson,
2004a, b). The areas were estimated as follows. First we
assumed that 4% or 5% of body mass was the mass of the
hip extensors, which is toward the upper end of their size in
extant bipeds such as humans and ostriches (Hutchinson,
2004a) but deemed quite feasible in our initial whole body
model (see muscle mass estimation for running ability
below). Hip lateral rotators were assumed to match this
mass, which our musculoskeletal model (Hutchinson et al.,
2005) supports; most hip extensors also have lateral
rotation moment arms as they insert lateral to the medially
offset femoral head. We then assumed that the mass of hip
flexors was 50% of this mass, which is within the range of
data for extant bipeds (dissections from Hutchinson,
2004a; flexors were �50–75% of extensor mass). Again
we assumed that the medial rotator mass was the same as
the hip flexor mass, also supported by the musculoskeletal
model. By dividing these masses by muscle fascicle lengths
(using four scaling estimates from Hutchinson, 2004b:
Table 3; assuming flexor and extensor fascicles to be of
equivalent length) we then estimated muscle physiological
cross-sectional areas (assuming pennation angles to be
negligible, which is reasonable for most hip muscles and
unlikely to be an error 410%). We calculated maximal
muscle forces assuming a maximal isometric muscle stress
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Fig. 8. Six Tyrannosaurus models (in right lateral view) from our sensitivity analysis, representing the extreme high and low values obtained for mass, CM,

and inertia. Shown: Model 1 (original ‘skinny’ model), Model 3 (largest torso), Model 7 (largest torso and legs), Model 21 (largest cavities), Model 27

(largest legs and cavities), and Model 30 (‘best guess’). The right hip joint (pink circle; to left) and total body COM with respect to that point (red circle; to

right) are indicated, with the x; y; z world axes (right hip joint) and the x; y; z principal axes for inertia calculations (COM) indicated by arrows.

Fig. 9. Mass sets used for the Tyrannosaurus turning body analysis; shown for Models 1, 30, and 3.
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of 3.0� 105Nm�2 (explained in Hutchinson, 2004a, b).
Finally we used the mean moment arms (across the
maximal range of motion of the hip joint) for the medial
and lateral rotators (from the 3D Tyrannosaurus muscu-
loskeletal model from Hutchinson et al., 2005) to calculate
the maximal medial and lateral rotation moments. The
values entered in these calculations are in Table 6.
Using the parallel axis theorem (Marion, 1970), the
moment of inertia for the rotating mass set is given by

Iyy ¼ Icom
yy þmr2com (11)

where Iyy is the moment of inertia about a vertical axis
passing through the hip joint, Icom

yy the moment of inertia



ARTICLE IN PRESS
J.R. Hutchinson et al. / Journal of Theoretical Biology 246 (2007) 660–680672
about the vertical axis passing the CM of the rotating mass
set, m the mass of the rotating mass set, and rcom the
distance from the right hip joint center to the CM of the
rotating mass set. All inertial parameters in Eqs. (10) and
(11) were estimated using our mass set software. Estimates
of turning time were computed for the different combina-
tions of low, medium, and high estimates of the medial and
lateral joint moments with low (Model 1: original), medium
(Model 30: ‘best guess’ intermediate model), and high
(Model 3: torso enlarged 1.46� ) estimates of moment of
inertia. Additionally, the same combinations were per-
formed with the moment of inertia about the CM neglected
(i.e., Icom

yy ¼ 0:0). These values are shown in Table 6.
2.8. Running ability of T. rex

To investigate how more realistic estimates of segment
mass and CM could change previous estimates of the
running speed of Tyrannosaurus, we replaced segment mass
and CM data assumed in Hutchinson (2004b) with our
mass set data. We used data from our original ‘skinny’
model (#1), the model with 21% larger embedded cavities
(#21), the model with 21% wider and thicker legs (#23),
and our ‘best guess’ model (#30). Additionally we used our
original model to estimate how much further forward the
trunk CM might have moved if the left hip joint was flexed
(in swing phase) by 651 forward of vertical, as an extreme
case (Hutchinson, 2004b). We then re-calculated the muscle
masses needed to support the right limb at mid-stance
during relatively fast running, with a vertical ground
reaction force (GRF) of 2.5 times body weight
(Hutchinson, 2004a, b). That biomechanical model was
posed in the ‘‘Trex_1’’ bent-legged pose (Hutchinson and
Garcia, 2002). Realistic pose-specific muscle moment arms
(Hutchinson et al., 2005) were used along with the other
model data presented in Hutchinson (2004b) to calculate
the minimal extensor muscle masses required to be actively
contracting about the right hip, knee, and ankle.

From these masses, we finally calculated what maximal
vertical GRF the limb could support. We did this by
estimating the extensor muscle mass able to support each
joint from the mass of the respective limb segment. The
bulk of the hip and knee extensors would have been located
in the thigh segment, whereas ankle extensors would have
been concentrated in the shank segment (Carrano and
Hutchinson, 2002). However, those muscles would have
only been some fraction of the segments’ total masses, not
the entire mass. To estimate that fraction, we calculated the
fractions of segment mass that homologous muscles
occupy in extant non-avian Reptilia (Iguana, Basiliscus,
and Alligator) and birds (Eudromia, Gallus, Meleagris,
Dromaius, and Struthio), using the data from Hutchinson
(2004a). As a reasonable starting assumption, we took the
average fraction of extensor muscle/segment mass for the
‘reptiles’ and for the birds. These fractions were then
multiplied by the estimated segment masses for Tyranno-
saurus to calculate its likely extensor muscle masses (in
absolute terms and as percentages of body mass).
The average of the non-avian Reptilia plus the average

of the bird fractions were used for all muscle masses except
for the knee extensors. The skeleton demonstrates that the
knee extensor muscles in bipedal Tyrannosaurus were much
closer to the avian than the basal reptilian condition
(Carrano and Hutchinson, 2002), so only the average of the
bird fractions was used to calculate the knee extensor
muscle mass (the non-avian Reptilia fraction was smaller).
For the remaining muscles, it is less certain how derived
they were relative to basal reptilian muscles, so an average,
intermediate condition was our objective assumption.
Considerable variation exists in extant taxa, so our
approach can be no better than a rough estimate.
To see how closely each joint’s estimated extensor muscle

mass was matched to the mass required for fast running,
we divided the extensor muscle mass estimated to have
been present (from this study; above) by the extensor
muscle mass required (from the model of Hutchinson,
2004b), for the hip, knee, ankle and toe. Finally, as the limb
could not support a higher GRF than its weakest joint
could, we multiplied the lowest of these ratios (muscle mass
present vs. required) by 2.5 to estimate the maximum
supportable vertical GRF in multiples of body weight.
All input and output data not reported in the references

cited above are shown in Section 3 (Tables 8 and 9).

3. Results

3.1. Ostrich validation

Our validation of the model with sensitivity analysis on
an ostrich cadaver/skeleton model showed some of the
inaccuracies of our approach, but still bolstered the utility
of our modeling procedure to estimate mass parameters for
extinct animals (Table 2). Generally our results matched
our expectations; the carcass and fleshed-out models gave
estimates closer to the ‘real’ mass value whereas the skeletal
model’s mass estimate was lower (77% of the actual value).
If densities had been assumed to be 1000 kgm�3, rather
than taken from the actual carcass (888 kgm�3; similar to
the 850 kgm�3 assumed for an emu by Seebacher, 2001),
the results would have been overestimated because the
presence of low-density air sacs was neglected. Estimates of
the trunk CM position were within 2, 6, and 4 cm of the
experimental values for the x, y, and z coordinates,
respectively. These absolute deviations represent 2.4%,
15%, and 21% errors relative to the total size dimensions
of the trunk (0.83, 0.39, 0.19m). Also somewhat surpris-
ingly, the skeleton model had the closest matches to the Iyy

and Izz measured values (within 133% and 90%, respec-
tively), whereas the fleshed-out model had the closest
match to the empirical Ixx value (within 95%). The model
made from digitizing the actual carcass did not perform the
best out of all three estimates of the trunk moments of
inertia about the CM, although its estimates of the Iyy and
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Izz values were better than those of the fleshed-out model.
Some of the deviations between the experimental measure-
ments and B-spline estimates could be due to inaccuracies
in the experimental measures. While the experimental
techniques for locating the CM of a body can be quite
accurate, measuring the moments of inertia accurately is
more problematic.

3.2. Original Tyrannosaurus model

Table 3 shows the mass set results for Model 1. Additional
mass sets for the entire tail, leg, limbless torso, body
supporting itself on one leg while turning (for the turning
biomechanical analysis), and body supporting itself on one
leg (for the running biomechanical analysis) are included
with the whole body and individual segment mass set data.

Data for the skeletal torso (Fig. 5B, without B-spline
solids or limbs; density of 1000 kgm�3) are not extremely
different from our Model 1 torso estimates, as we started
with a ‘skinny’ model that had a small amount of external
flesh. The 3248 kg torso mass is 83% of Model 1. The CM
ðx; y; zÞ distance from the right hip is almost twice as far
forward (1.10m), more dorsal (�0.089m), and similarly
medial (�0.201m). The principal inertia values about the
CM (Ixx,Iyy,Izz of 730, 8810, and 9370 kgm2) are 63–78%
of Model 1.

3.3. Sensitivity analysis

Table 4 shows mass set data for all 30 of our
Tyrannosaurus whole body models. As expected, the most
dense model (#7; 894 kgm�3) has the largest torso segment
and largest legs, and is the heaviest (8405 kg) model with
the largest principal moments of inertia. Likewise, the least
dense model (#21; 787 kgm�3) is also the lightest (5074 kg)
and has the lowest principal inertia values; it is a
combination of the smallest torso with the largest cavities.
Table 5

Comparison of our mass set estimates with those of other studies

Study Mass (kg)

Colbert (1962) 6890/7700

Alexander (1985) 7400

Anderson et al. (1985) 4028b

Campbell and Marcus (1993) 3458b

Paul (1987) 5700

Paul (1997) 5360b

Farlow et al. (1995) 5400–6300b

Henderson (1999) 7224/7908

Christiansen (1998,1999) 6250–6300c

Seebacher (2001) 6650.9

Henderson and Snively (2003) 10,200

Our original model (#1) 5450b

Our ‘‘best guess’’ model (#29) 6583b

CM locations are relative to the right hip joint center.
aIndicates that the CM location was not quantitatively stated; in one refere
bIndicates that the mass estimate is for the same Tyrannosaurus specimen (M
cNotes that similar results were obtained by Christiansen and Fariña (2004
The mediolateral position of the CM varies negligibly
(always around 0.20m medial to the right hip joint)
whereas the dorsoventral position of the CM is closest to
the hip (0.229m ventrally) when the CM is furthest
forward from the hip (0.744m; Model 3 with the largest
torso), and furthest from the hip (0.355m ventrally) when
the CM is in its most caudal position (0.453m; Model 27
with enlarged legs and cavities). Inertia values vary
less (3355–5880 kgm2) for Ixx, relative to Iyy (11800–
19800 kgm2) and Izz (14000–23700 kgm2) but all vary
within the same relative range (58–60%). All 26 other
models occupy a continuum between the four most extreme
models (#3,7,21,27). Our ‘best guess’ model (#30) lies in the
middle of this continuum at 6583kg total mass, CM 0.519m
cranial to the right hip, and moderate inertia values.

3.4. Turning ability

The time required for T. rex to turn to the right by 451
ranged from as slow as 2.2 s for the lowest joint moments
and highest moments of inertia down to 1.3 s for the
highest joint moments and lowest moments of inertia
(Table 7). The ‘best guess’ of turning time (moderate
torque and inertia values) was 1.6 s. Neglecting the moment
of inertia about the CM dramatically reduced the estimates
of turning time, by a factor of 50% or less, as expected.

3.5. Running ability

We entered our best estimates of muscle moment arms
(Hutchinson et al., 2005) and mass set data (this study) into
the mathematical model of Hutchinson (2004a, b), to
estimate how big extensor muscles would need to be to
support the forces of fast running, and how close these
required muscle masses were to our estimates of actual
muscle masses (from our models and scaled data from
extant taxa). We found that the maximal vertical GRF
CM (x,y,z) (m) Ixx, Iyy, Izz (kgm
2)

n/a n/a

n/aa n/a

n/a n/a

n/a n/a

n/a n/a

n/a n/a

n/a n/a

(0.59, 0.25, n/a)a n/a

n/a n/a

n/a n/a

n/a (n/a, 35,150, n/a)

(0.599, �0.289, �0.199) (3460, 12,400, 14,800)

(0.519, �0.279, �0.201) (4470, 16,300, 19,200)

nce it was estimated from the figures.

OR 555), either from modeling or scaling equations.

).
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supportable by the weakest link in the limb (the ankle, in
all cases) ranged from 0.22–0.37 times body weight, which
is far below the requirements of fast running (2.5� body
weight), or even standing. These unusual results are
discussed further below.

4. Discussion

4.1. Body dimensions of Tyrannosaurus

The body dimensions of an adult T. rex have long been
debated, with mass values ranging from 3400 to 10,200 kg
(Table 5), whereas only one set of studies has quantified the
CM position and inertia for this animal (Henderson, 1999;
Henderson and Snively, 2003). Our body mass results
(5074–8405 kg) overlap those of most studies, except those
that use scaling equations from extant taxa (3458–4326 kg;
Anderson et al., 1985; Campbell and Marcus, 1993). As
many other studies have noted (Alexander, 1985; Farlow et
al., 1995; Paul, 1997; Carrano, 2001; Christiansen and
Fariña, 2004) it is almost certain that these scaling
equations greatly underestimate dinosaur body masses,
especially for large bipeds. The data that the equations are
based upon include no animals with body proportions
(large head, small arms, long tail, bipedal and cursorial
limbs, etc.) and size approaching those of large tyranno-
saurs, so they are at a great disadvantage compared with
estimates that directly use tyrannosaur body dimensions to
estimate body mass. Hence, we recommend abandonment
of their usage for large dinosaurs. This point is bolstered by
our estimates of leg mass: their total mass in the ‘skinny’
Model 1 is 1552 kg (or 2266 kg for the largest legs). Total
body mass must be much more than this value; at least
5000 kg. For example, the ‘skeletal’ torso mass alone (see
Section 3) would add 3248 kg at 1000 kgm�3 density
( ¼ 4800 kg body mass) or 2477 kg with Model 1’s
763 kgm�3 torso density and the largest legs ( ¼ 4742 kg
body mass), and these are surely underestimates of body
mass as they were intentionally as skinny as we could
plausibly construct the models.

Our lightest model (#21; original body with larger
cavities) at 5074 kg is not very plausible as it seems greatly
emaciated, and the torso cavities are quite tightly appressed
to the skeletal landmarks, leaving little room for flesh or
Table 6

Assumed input parameters for estimating turning times of Tyrannosaurus

Joint moments Inertial parameters

tmed (Nm) tlat (Nm) m (kg) rcom (m)

Low 10,000 25,000 3996 1.121

Med 13,000 31,000 4669 1.160

High 16,000 37,000 5972 1.263

Low (Model 1), medium (Model 30), and high (Model 3) estimates of max

m, rcom (distance of the CM along the x-axis from the right hip joint), and ine

base (Table 3: turning body segment group; Fig. 9).
bone. Indeed, the former criticism applies to all 11 of our
models with the torso volume in its original state, leaving
us doubting our mass estimates that fall below about
6000 kg. Hence, we also are slightly skeptical about the low
mass estimates obtained for MOR 555 by Paul (1997;
5360 kg) and lower-end results of Farlow et al. (1995;
5400 kg). Our models offer more plausible support for mass
estimates of 6000+ kg (Farlow et al., 1995; also assumed
by Hutchinson and Garcia, 2002 and subsequent studies).
Yet higher values such as Henderson’s (1999) estimates of
�7000+ kg seem equally plausible given the uncertainty
about tyrannosaur body dimensions; our largest models
(48000 kg) however seem to have an unrealistic amount of
external flesh and so are less plausible. Henderson and
Snively (2003) estimated the larger ‘‘Sue’’ Tyrannosaurus

mass at 10,200 kg. Our ‘best guess’ Model 30’s mass
(6583 kg) is 64.5% of that animal, but is for a smaller adult
specimen, so it is not inconceivable that some large
tyrannosaurs could have exceeded 10 tonnes (e.g., an
individual with linear dimensions �1.1� ours). Addition-
ally, differences in specimen (or reconstruction thereof)
body length and other dimensions could account for some
differences in body mass estimates, but these dimensions
are seldom reported, rendering comparisons among studies
difficult.
Hutchinson (2004b) calculated Tyrannosaurus (MOR

555) limb segment masses from extant animal proportions,
which provides an interesting comparison to our study’s
results as our models were constructed blind to these data.
The thigh segment in our study (500 kg) is �1.2� larger
and the tibiotarsus segment (172 kg) is 61% of the mass
scaling predictions, whereas the metatarsus segment mass
estimate came surprisingly close at 62.8 kg (vs. 63 kg).
Segmental CMs were generally fairly similar although our
estimate for the thigh segment CM is much more proximal
(0.162m vs. 0.63m). At 14.2% of body mass (19.7% in
Model 27, with enlarged legs and cavities), our model’s legs
are smaller than those of an ostrich or emu (19–27%;
Hutchinson, 2004a). This is expected, as ratites differ from
tyrannosaurs in having a relatively larger pelvis and longer
limbs, more slender neck and tiny head, presumably larger
(more derived) air sacs, and a miniscule tail (vs. 12.5% of
body mass in Model 1, 15.0% in Model 30), even though
ratites have a large herbivorous gut.
Icom
yy ðkgm

2Þ m r2comðkgm
2Þ Icom

yy þm r2comðkgm
2Þ

6390 5022 11,412

7915 6283 14,198

9750 9526 19,276

imal medial and lateral rotation muscle moments are shown. The mass

rtia (Icom
yy ) are for the body (counting the left hindlimb) forward of the tail
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What density values are most realistic for tyrannosaur
body segments? Our results suggest that a range of mean
body density from 787–894 kgm�3 (Table 4) is most
appropriate. The anatomical evidence now strongly favors
theropod torsos as being closer to the neornithine bird than
the crocodilian condition (Paul, 1988; O’Connor and
Claessens, 2005; O’Connor, 2006) and hence having lower
densities; using crocodilian lung anatomy as a guide to
tyrannosaur dimensions is unreliable. Paul’s (1997) sugges-
tion of a value of 850 kgm�3 falls comfortably within this
range, as does our ostrich carcass measurement of
888 kgm�3 (albeit with presumably deflated air sacs).
Models that assume homogeneous body densities of
around 1000–1050 kgm�3 (Colbert, 1962; Alexander,
1985; Henderson, 1999; Henderson and Snively, 2003)
likely not only overestimate body mass but would also
result in inaccurate CM positions and inertia values.

Alexander (2006:1849) infers that ‘‘[i]ncorrect assump-
tions about air sacs are unlikely to result in errors greater
than 10%, in estimated dinosaur masses.’’ Our results
concur with this, at least for air sacs up to �46% larger
than our initial model. However other parameters,
especially position of the CM cranial to the hip, may incur
more error—in Model 21, the CM cranial distance from
the hip is 86% of Model 1’s even though density is only
93% of the original. Removing the abdominal air sac
(Fig. 7), whose presence is more ambiguous (O’Connor and
Claessens, 2005; O’Connor, 2006), increased the body mass
for the ‘best guess’ model (#30) by 4% but the body CM
position moved 8% craniad. Similarly, Tyrannosaurus had
evidence of respiratory tissue being present as far caudally
as the fourth sacral vertebra (Brochu, 2003) hence
(following O’Connor, 2006) our original model’s ‘‘lung’’
cavity might not have been caudally extensive enough,
which would mean that some models (e.g., Model 1) might
have CM values that are too far craniad. Thus information
on air sac anatomical details is important although its
effects on mass set parameters can often be small.

Our lower whole body density estimates of course
resulted from fairly low densities for the body segments
that contained cavities. For example, the trunk segment
density (from pelvis to neck base) had values from
683 kgm�3 (Model 21) to 852 kgm�3 (Model 3). Our
‘‘lung’’ cavity occupied only 8.6% of the whole body
volume (or 11.3% of torso volume) in Model 1 (slightly less
in other models), up to 12.6% if the cavities were expanded
by 1.46x (e.g., Model 21). However we also incorporated
abdominal and tracheal cavities that brought the total
trunk cavity volume to 11.6% body volume in Model 1
(17.0% in Model 21). Overall it seems unlikely that we have
overestimated cavity volumes and hence underestimated
density, as these volumes match those assumed in other
studies and data from extant taxa fairly well (e.g.,
Alexander, 2006; Henderson, 1999, 2003a, b and references
therein). Considering these data and the convergently
avian-like respiratory system in sauropods (Wedel, 2003,
2005), it is possible that Henderson (2003b) overestimated
sauropod density, as sauropod trunk segment density
(850 kgm�3 in that study; �800 kgm�3 for the whole
body) should be lower than our tyrannosaur values.
Henderson (2006) used slightly lower values of
�800 kgm�3 for sauropod trunks.
Our models place the total body CM in front of

(0.453–0.744m) and well below (0.229–0.355m) the hips
(Table 4). Larger legs or cavities or a larger tail (Models
28,30) move the CM closer to the hips and further
ventrally. A 21% increase in two dimensions moved the
CM furthest caudad for the tail (Model 28; by �0.13m),
moderately for the cavities (Model 21; by �0.085m), and
least for the legs (Model 23; by �0.066m). Depressing the
tail had smaller effects, confounded by a required increase
of tail mass (CM moved 0.061m caudad). If we have
underestimated the dimensions of those structures, the
actual CM of a Tyrannosaurus might have been slightly
closer to the hips than 0.45m craniad, but we doubt that it
could have been closer than 0.40m as none of our models
approach that value—even considerable changes to tail
(Model 28) or cavity (Model 21) anatomy do not shift the
CM that far caudally. Model 30 represents the most
plausible combination of larger tail, cavities, and legs,
but we enlarged the body as we felt it was overly skinny, so
the CM is still 0.51m craniad to the hip (�0.08m from
Model 1).
Our findings agree with what others have estimated for

dinosaur CM positions (e.g., Alexander, 1985; Henderson,
1999): the CM lies a moderate distance in front of and
below the hips—not directly at/underneath the hips like an
ideal cantilever as dinosaurs are often described as in
popular accounts. Yet, as noted above, our models show a
moderate amount of variation in where the CM lies along
the craniocaudal axis, which no other studies have
emphasized. A body CM only 0.45m cranial to the hips
would require about 75% of the supportive hip antigravity
muscle activity (or mass) relative to a CM 0.60m cranial to
the hips (Henderson, 1999; Hutchinson and Garcia, 2002),
so this variation has great biomechanical importance. We
present more consideration of how different CM positions
can influence limb muscle exertion below (Table 6).

4.2. Turning ability of Tyrannosaurus

Accurate inertia data are crucial for estimating animal
performance in turning and other accelerations, as Carrier
et al. (2001) and Henderson and Snively (2003) have
already shown for various theropods. The long tails and
heavy bodies of theropods would have had high inertia
about the y-axis (i.e., in yaw), and hence restricted their
relative turning performance. This importance of inertia is
reinforced by our estimates of turning times that neglect
inertia (Table 7). Yet no studies have addressed the pivotal
question: How fast would turning performance be in
absolute terms in a large theropod such as Tyrannosaurus?
Our estimate is a rather slow (�1–2 s) 451 turning
performance.
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Table 7

Estimated times in seconds for a Tyrannosaurus to turn to the right by 451

while standing on one leg

Ihigh Imed Ilow

tlow 2.2 (1.4) 1.8 (1.2) 1.6 (1.0)

tmed 2.0 (1.3) 1.6 (1.0) 1.4 (0.90)

thigh 1.8 (1.2) 1.4 (0.94) 1.3 (0.84)

Joint moment and inertial input parameters for Eqs. (10) and (11) are

listed in Table 6. Numbers in parentheses are for when the moment of

inertia about the CM of the turning mass set is neglected (i.e., Icom
yy ¼ 0:0 in

Table 6).

Table 8

Calculation of approximate Tyrannosaurus hindlimb extensor muscle

masses from total leg segment masses, using data from extant taxa

(Hutchinson, 2004a)

Model Original Large cavities Large leg Best guess

(Model 1) (Model 21) (Model 23) (Model 30)

Mass (kg)

Body 5450 5074 6113 6583

Thigh 500 500 733 605

Shank 172 172 251 208

Meta 62.8 62.8 91.9 49.2

Extensor muscle mass/segment mass

Extant taxa: Non-avian Avian Both

Hip 0.68 0.41 0.54

Knee 0.19 0.34 0.26

Ankle 0.37 0.57 0.47

Estimated extensor muscle mass (kg)

Hip 271 271 398 328

Knee 171 171 251 207

Ankle 81 81 119 98

Muscle % body mass

Hip 5.0 (7.6) 6.5 (8.8) 5.4 (8.1) 5.0 (9.6)

Knee 3.1 3.4 4.1 3.1

Ankle 1.5 1.6 1.9 1.5

Total 9.6 (12.2) 11.5 (13.8) 11.4 (14.1) 9.6 (14.2)

Values of extensor muscle mass/segment mass in bold are those used in the

calculations below them in this table.

Hip muscle masses in parentheses indicates values with the hip muscle

mass increased by 1/4 of the tail base (tail segment5) mass, to represent

added caudofemoral extensor musculature.

J.R. Hutchinson et al. / Journal of Theoretical Biology 246 (2007) 660–680676
However, we did not aim to present the final word on
tyrannosaur turning performance. We kept our analysis
simple in order to make a basic example of how whole
body models can be combined with musculoskeletal models
in order to examine locomotor performance in extinct
animals, in conjunction with sensitivity analysis. More
realistic additions to the analysis, such as laterally flexing
the tail into the turn or using the opposite leg’s GRF in
order to contribute to the total turning moment, would
lower these turning times. Turning performance depends
not only on rotating the body against its inertia, but also
on the ability of the limbs to deflect the velocity heading of
the CM to a new direction, which is related to musculo-
tendinous ground-reaction force production, body mass,
and CM position more than rotational inertia and muscle
moments.

Nonetheless, we suspect that our basic conclusion is
unlikely to change despite unavoidable inaccuracies in
estimating mass sets and muscle moments: T. rex could not
pirouette rapidly on one leg, as popular illustrations have
sometimes pictured it and other large dinosaurs as doing
(e.g., Bakker, 1986; Paul, 1988). Like our running
performance estimates (below), this conclusion has little
bearing on the tired media-based ‘debate’ over whether
T. rex was a scavenger or predator. All of our models (and
those of others such as Henderson and Snively, 2003)
should apply quite well to the large dinosaurs (e.g.,
Edmontosaurus, Triceratops) that T. rex likely preyed and
scavenged upon. How turning capacity in bipeds vs.
quadrupeds differs remains poorly understood by biome-
chanists (but see Usherwood and Wilson, 2005), so we do
not yet consider this one potentially important difference.
We would expect some turning performance differences
betweeen the habitually quadrupedal Triceratops and the
facultatively bipedal Edmontosaurus. Smaller dinosaurs
likewise should have had relatively lower moments of
inertia and relatively higher muscular moment-generating
capacity. Hence, these animals would have been more agile
in absolute terms.

4.3. Running ability of Tyrannosaurus

Recently, Hutchinson and Garcia (2002), Hutchinson
(2004a, b), and Hutchinson et al. (2005) have confronted
two related, longstanding questions about the paleobiology
of large tyrannosaurs: what was the pose or limb
orientation used by such animals during standing and
moving, and the maximum running ability (if any) that
these enormous bipeds had (for counterpoints see Paul,
1988, 1998). Because these questions are inherently
biomechanical, we used biomechanics to address them,
and hence we required estimations of body dimensions.
Body mass was factored out of the analysis in Hutchinson
and Garcia (2002) and Hutchinson (2004b), but the CM
position entered into the biomechanical models was
crucial, particularly for determining the hip extensor
muscle mass needed for fast running. Inertia values were
not incorporated into the latter studies; a more complex
dynamic analysis is required to check the importance of
inertia. We used our model to estimate the masses of
hindlimb extensor muscles (Table 8) and used these values
to estimate running ability in Tyrannosaurus (Table 9).
Considering that our models suggest a range of
�0.45–0.8m in front of the hip for the body CM position
during single-legged stance (similar to the few previous
studies; Table 9), and moment arms can be bounded within
a similarly narrow range for most hindlimb muscles
(Hutchinson et al., 2005), the largest two parameters of
uncertainty for estimating running ability in Tyrannosaurus

are the actual masses and fascicle lengths of extensor
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Table 9

Calculation of the hindlimb extensor muscle masses required for Tyrannosaurus to run with a ground reaction force (GRF) of 2.5 times body weight (BW)

Model Mass (kg) CM (x,y) (m) Extensor muscle masses required (% body mass) Max GRF (BW)

Hip Knee Ankle Total

Trex_1 (Hutchinson, 2004b) 6000 (0.585, 0.0) 9.7 2.7 8.3 20.7 1.8

Original (Model 1) 5450 (0.693, �0.217) 10 2.4 13 25.4 0.29

Model 1 with folded limb 5450 (0.801, �0.147) 13 n/a 17 30.0 0.22

Large air sacs (Model 21) 5074 (0.601, �0.225) 10 4.2 13 27.2 0.37

Large legs (Model 23) 6113 (0.645, �0.225) 9.8 2.8 12 24.6 0.33

‘‘Best guess’’ (Model 30) 6583 (0.600, �0.204) 10 2.9 12 24.9 0.31

Body dimensions are taken from the models in Table 4. CM positions are for single-legged support (as in Hutchinson, 2004a, b) and are relative to the right

hip joint. The extensor muscle masses are for one limb; bold values indicate the highest value for a given model (and hence potentially the weakest joint in

the limb). The final column ‘‘Max GRF’’ shows what peak vertical GRF (in multiples of body weight) the limb could sustain under maximal exertion; see

Section 2 for explanation.
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muscles. Our models bounded the likely masses (Table 8)
of hip extensors in the range of 5–10% body mass, whereas
knee and ankle extensors fall well under 5% (1.5–4.1%);
totaling 9.6–14.2% body mass per leg. These are plausible
results, as the largest extensor muscles known in living
animals are in ratites (14–15% body mass total; Hutch-
inson, 2004a) and there is no convincing anatomical
evidence that Tyrannosaurus had relatively larger muscles
(see above). Furthermore, our models had legs totaling up
to 19.7% of body mass (not counting tail-based hip
extensors) so total muscle masses must be well below this
value.

Our estimates of maximal GRF supportable on one limb
(�0.3� body weight; Table 9) fall very low, as absolute
muscle masses needed for running are as high as 17% for
single joints (i.e., the ankle) and totaling 24–30% body
mass. The GRF values are for a fairly flexed limb pose, so
they would be increased by up to 4� (bringing them over
1� body weight) in more upright poses (Hutchinson,
2004b). However, our model results lead us to suspect that
our estimates of extensor muscle fascicle lengths (see
Section 2 and Hutchinson, 2004b), which are inversely
proportional to maximal GRF values, are still too high.
Thus, to improve reconstructions of dinosaur running
ability, more analysis is most needed to narrow down the
possible ranges of values for limb muscle fascicle lengths.
The error is unlikely to be more than 2x, however, as much
lower values would reduce the fascicle lengths to be equal
to or smaller than the values seen in large extant bipeds
(Hutchinson, 2004a), which is extremely unlikely. An
additional likely source of error is the lower leg segment
masses, as a 2x factor of error is not implausible and would
increase muscle masses proportionately. So far, fossil bones
do not help to further constrain these parameters.

Regardless, our amended parameter values only alter the
conclusions of previous biomechanical studies quantita-
tively, not qualitatively—the muscle masses needed for fast
running are still be too high (over 5–9% of body mass per
leg), as Table 9 shows.
5. Conclusions

There is no question that careful sensitivity analysis of
unknown body dimensions in modeling the biomechanics
of extinct vertebrates is important, and we have conducted
the most detailed such study for any one extinct taxon.
Sensitivity analysis can also identify which mass para-
meters are relatively stable or which parameters are
sensitive. This can help researchers to prioritize where to
focus their efforts to get more accurate measurements, or
to identify which parameters might be negligible and
therefore not worth the modeling effort. The method we
have developed here facilitates sensitivity analysis by
making it relatively easy to model slight deviations of
shape or different scenarios and quickly seeing their effect
on the mass estimates.
We also have aimed to demonstrate how estimates of

extinct animal body dimensions can be used in a biomecha-
nical analysis and uncover stimulating results, revealing the
likely slow absolute (as opposed to relative; Carrier et al.,
2001; Henderson and Snively, 2003) turning performance of
large theropods and its high dependence on the body
moments of inertia. By providing more realistic estimates
of body dimensions, we strengthen the conclusions of
Hutchinson and Garcia (2002) and Hutchinson (2004b),
emphasizing why T. rex should not have been a fast runner.
Together with our inertia estimates (also moment arms from
Hutchinson et al., 2005), these studies continue to support
the inference that it used a more upright pose than some have
assumed (e.g., Bakker, 1986; Paul, 1988, 1998). However, our
CM estimates reinforce the conclusions of Hutchinson et al.
(2005) that the limb was not completely columnar as in a
standing elephant: in order to bring the foot under the CM
(at least 0.4m in front of the hip) and the knee in front of the
CM (Hutchinson and Gatesy, 2006), the limb must have had
some flexion. Whether this degree of flexion is similar to that
argued by other studies (e.g., Paul, 1998; Christiansen, 1999)
depends on the CM value and what is specifically meant by
‘flexed’ (see Hutchinson et al., 2005).
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Certainly no estimate of body mass, CM, or moments of
inertia for extinct animals will ever be very accurate, as it
would be hubris to expect that any model will match the
real animal. We have our own misgivings about the
accuracy of our Tyrannosaurus model despite its improve-
ments over other models—in the future we could improve
our representations of the arms/chest, or leg/tail shape and
orientation, for example, particularly with higher-resolu-
tion data for well-preserved skeletal elements. As little is
knowable about the soft tissue dimensions and densities of
Tyrannosaurus, we might never obtain much narrower
estimates than in this study. The question should always
be, then, is any estimation accurate enough for a higher-
level inference to be based upon it? This will depend on the
research question (e.g., how did a dinosaur move, as in this
study). Sensitivity analysis is a step that always should
follow the presentation of a numerical result as a
conclusion of such a study. Without investigation of how
the question is affected by potential error in mass
parameter estimates, the strength of any conclusion is
uncertain. Studies assuming one numerical result for mass
parameters without checking the effects of possible error
on their numerical results and hence the conclusions based
upon them should be viewed warily. Many studies obtain
only one estimated value for body dimensions of interest.
Thereafter that value is typically treated as a known
parameter, without checking the effects of potential error
on the conclusions. Or, only a brief sensitivity analysis is
conducted, without considering that a unconsidered but
plausible value for an unknown parameter such as CM
position might greatly change the conclusions.

Our analysis has showed how sensitive some body mass
parameters are to the assumptions about body form. Even
slight changes in size, shape, or density can substantially
alter CM position or moments of inertia—especially if
these changes occur far from the CM, such as in the tail
(e.g., our Model 28). Conversely, changes of body form
close to the CM, such as in the trunk or legs of a biped,
often have small or even negligible effects on some mass
parameters. Our Models 7 (large body and legs) and 27
(small body, large legs, and cavities) demonstrate these
basic facts of geometry and rigid body dynamics. Yet
neither case always necessarily holds. The effects of minor
alterations of geometry on system dynamics can be non-
intuitive. Models 11 and 17 (Table 4) have cranial CM
positions similar to Model 1 despite different anatomy, but
have very different mass and inertia parameters. Modeling
anatomical aesthetics with our mass set approach can
quantitatively determine if anatomical features of interest
have a direct effect on the mass parameters. Our point is
these potential effects must be investigated cautiously, and
their implications phrased in the context of the bigger
question being addressed. Estimating the body mass
parameters of extinct animals is not important in and of
itself. It becomes important when used to test a question,
and then the accuracy of that estimation becomes vital to
address.
Acknowledgments

We thank the following people for their help in
constructing the computer model: John R. Horner and
Pat Leiggi for access to MOR 555 and Museum of the
Rockies space and digitizing equipment, and Celeste
Horner for much kind assistance with digitizing and other
patient technical support. We also thank the University of
California Department of Integrative Biology and Museum
of Paleontology for initial funding support for the
digitizing and editing. This work was completed as part
of a grant from the National Science Foundation awarded
to J.R.H. in 2001. Support from the Honda Research
Institute, USA was given for the development and
implementation of the mass set software tool. Additional
computer support was provided by the Stanford Biome-
chanical Engineering Division. Funding from an internal
grant from The Royal Veterinary College, Department of
Veterinary Basic Sciences in 2003 also aided this work. We
greatly thank Jonas Rubenson for sharing ostrich trunk
mass set data with us, and appreciate Rob Siston’s aid in
digitizing the carcass. This paper benefited from discus-
sions with Scott Delp, Gregory Erickson, Robert Full,
Steve Gatesy, Donald Henderson, Alan Wilson, and
members of the Berkeley Friday Biomechanics Seminar,
the Stanford Neuromuscular Biomechanics Laboratory,
and the Structure and Motion Laboratory at The Royal
Veterinary College. An anonymous reviewer gave very
constructive input.

Appendix A. B-spline solid modeling approach

A.1. Rigid body segments

We restrict our representation of rigid body segments to
closed polyhedra geometry, with the boundary surface
represented as triangles and no gaps or holes in the
geometry. If non-triangular polygons exist, they can be
converted to triangles trivially by subdividing the polygon.
After the final shape of a B-spline solid is determined, point
samples on its boundary surface can be evaluated by
choosing values along equal intervals in the parametric
boundary domain of Eq. (1). The point samples can
be triangulated to form a polyhedral representation of the
B-spline solid (Fig. 3).
A computationally efficient algorithm (Mirtich, 1996)

calculates the mass properties by using the divergence
theorem to reformulate Eqs. (2)–(5) as surface integrals
instead of volume integrals. Further optimization in
computation is achieved by taking advantage of an
exclusively triangular boundary surface. In order to ensure
that proper surface integrals are calculated, the triangles
must all be consistently oriented, with the surface normals
pointing outwards (a counterclockwise vertex order as seen
from outside the polyhedron guarantees this). Usefully, the
calculations in other body shape models, such as the
elliptical slices in Henderson (1999) can also be accelerated
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with this surface integral optimization. Table 1 shows how
the calculated volume converges to the true volume as
more triangles are used to approximate the boundary
surface of the B-spline solid. The slight increase in relative
error at the highest number of triangles reflects excess
triangles that amplify jagged areas in the original data
which were smoothed over when fewer triangles were used.
These errors were absent when we conducted the same
procedure with an ideal cylinder; relative error declined
asymptotically. Hence excess tesselation can be a dis-
advantage, particularly in fitting B-spline solids to complex
shapes.
A.2. B-spline solid shape definition

In order to define an initial shape to approximate a body
part, a bounding B-spline generic volume (e.g., cylinder,
ellipsoid, or box) is oriented around the data points in
several steps. To choose a tight-fitting box, the eigenvectors
of the covariance matrix of the data points are chosen as
the frame of reference to rotate the box. All the data points
are transformed in this new frame of reference and a
bounding volume is calculated based on the local data
point coordinates.

Once the initial bounding volume is constructed, a set
of spatial points is generated uniformly over the volume
(Ng-Thow-Hing and Fiume, 1997). For each of these
spatial points, the closest data point is identified and the
B-spline solid is deformed to make the data point and
corresponding spatial point coincident. In general, this
method produces good initial shapes when the number of
control points are chosen to be fewer than the number of
data points. Subsequent manual adjustments of the control
points can be made for shape refinement. The entire
process is outlined in Fig. 3.
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