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Abstract

Anatomically-based models for physical and geometric reconstruction of humans and other
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Victor Ng-Thow-Hing
Doctor of Philosophy

Graduate Department of Computer Science
University of Toronto

2001

The relationship between the design elements of form and function is fundamental in producing

new insights and understanding of the objects we encounter every day. Of particular interest

is the study of human and animal anatomy, and how the elegance of shape and form we take

for granted must simultaneously serve a practical role to locomote the body and perform other

essential tasks for survival. We demonstrate how an integrated mathematical model, the B-

spline solid, can be used to successfully capture geometric aspects of musculotendons as well

as their physical characteristics. The B-spline solid is flexible enough to specify large insertion

and origin attachment areas for musculotendons to the skeleton. Furthermore, it is scalable to

facilitate detailed three-dimensional fibre reconstruction of internal muscle architecture. From

these geometric reconstructions, we can embed different physical models to simulate phenom-

ena such as volume preservation, active muscle contraction, and contact collisions. A software

framework is developed to allow these musculotendon models to co-exist with other anatomic

tissues, such as bones, ligaments, fat, and skin. The construction of these musculotendon

models and the existence of a software environment for their utilization in different scenarios

promises to enable detailed studies of the interdependencies in the body design of humans and

other animals.
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Chapter 1

Introduction

What causes those depressions, corregations, indentations, bulges, pockets, hollows, dim-
ples, creases, crannies, ridges, furrows, knobs, folds, curves, grooves, tucks, knots, clefts,
pits, dents and bumps?

John Cody, M.D. in Visualizing Muscles: A New Ecorche Approach to Surface
Anatomy, 1990

1.1 Motivation

The complex assembly of skeleton, muscle, tendon and ligament in animals is a testament to
the creative forces of nature. They create a mechanism that is capable of producing a versatile
array of locomotion, from flying to playing the piano. In addition to the functional role of these
tissues, it is their interesting shapes and underlying change of form during motion that gives
them a visual beauty. The great Renaissance artist and scientist Leonardo da Vinci studied the
elegant relationship between form and function of muscle which played a critical role in the
success of his sculptures[20]. The early Disney artists studied comparative anatomy to perfect
their animation techniques when drawing animals such as those seen in Bambi[117].

This thesis presents a technique of modelling the underlying tissues that comprise the an-
imal form using knowledge from the disciplines of computer graphics, numerical methods,
biomechanics and anatomy. The result is an anatomic modelling system that can capture both
the geometric and physical nature of the musculotendon unit - the fusion of muscle and tendon
tissues which are the primary motivators of motion in animals. Several disciplines of study
focus on different characteristics of muscle and tendon for their own unique purposes. An ap-
pealing challenge is the development of a model that can serve a wide array of applications,
and yet be customizable for the special needs of these areas. To identify these needs, we will
explore different perspectives of anatomic modelling from three application domains: anatomy,
biomechanics, and computer graphics.

1.1.1 Anatomy Perspective

Anatomists are interested in exploring the relationship between form and function of tissues
in the body. In addition to basic limb motion, muscles are important as an expressive method

1
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Figure 1.1: Ultrasound imagery of contracted human soleus muscle. Photo courtesy of Roger
Leekam[77].

of communication. They actively contribute to the creation of facial expressions and body
language, such as when tense muscles convey fear or stress. In the case of muscle, anatomists
need to examine the arrangement of muscle fibres, tendons, and ligaments in determining their
functional role in maintaining body posture or creating limb movement. This highlights the
need for a musculotendon model that contains a solid component that can have volumetric
representation to visualize internal fibre arrangements and their influence on the overall shape
of the musculotendon.

Anatomists have studied muscle by examining cadavers and recording measurements of
muscle fibre length and orientation. Because the fibre tissue is inactive, it is impossible to
observe active muscle contraction. The best clinical tool available for observing in vivo con-
tractions is ultrasound imagery. This technology is subject to noise and other restrictions on
the view of the process from a few fixed vantage points (Figure 1.1).

The fibre structure or architecture of muscle is not a simple case of a group of muscle
fibres running together in parallel from end to end. A single muscle can have several distinct
regions of fibres, each with their own orientations. The overall shape of muscle can take on a
diversity of forms from fusiform, triangular, parallel, and bipennate shapes (Figure 2.3)[42]. A
shape primitive must be capable of representing these forms. To complicate matters, the tendon
attachment region to the muscle fibres can occur in different configurations from local areas to
wide regions of tissue known as aponeurosis).

Muscles have been reconstructed from medical images by segmenting the regions from
transverse sections of specimens taken from the Visible Human dataset. A boundary surface
representation of the muscle is created, but the internal fibre architecture between adjacent
slices is not captured. With only superficial representations of the muscle, functional studies
of contraction are impossible because we do not know the direction of fibre shortening.

A functional model of muscle and tendon allows closer study of the relationship between
fibre orientation and the magnitude and direction of forces generated. This has significance in
providing insights of how various muscles work within the body and the roles they provide.
For example, the soleus muscle is an antigravity muscle that is important for balance and
posture control, yet may not actively contribute to limb motion. Surgical procedures such
as reconstructive plastic surgery can be simulated virtually. Palaeontologists can attempt to
reconstruct the musculature of fossilized skeletons in order to gain insight in the appearance
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of extinct animals who were never seen in the history of our species. These reconstructions
can then be potentially simulated to test hypotheses of limb motion and joint articulation by
creating the necessary muscle forces directly from the models to achieve these motions.

1.1.2 Biomechanics Perspective

Biomechanists are concerned with the role of muscles and tendons as force actuators that drive
animal locomotion. They seek to answer questions such as how our nervous system coordinates
muscles activations to produce limb motion. With this information, new training techniques
can be developed to improve athletic performance. Through study, methods can be devised to
prevent injury or heal damaged muscles, ligaments and tendon through rehabilitation.

Although there are biomechanists who have studied non-human locomotion, a large amount
of work has focused on the particularities of the human body. A complete analysis of the
human body would entail a physical system consisting of over 200 bones and 600 muscles. As
the largest physical simulations of articulated figures currently contain about ninety degrees of
freedom[80], it is currently not computationally feasible to create a complete simulation of the
human body. Consequently, previous work involves the creation of isolated musculoskeletal
models that target subsystems such as lower leg or shoulder assemblies.

To maximize the number of musculotendon units that can be simulated, muscles are often
approximated as piecewise line segments whose lines of action have zero curvature. Although
optimization studies have been able to produce qualitative correlations between muscle and
recorded muscle activations called electromyograms (EMGs), there are several deficiencies.

� Lines of action. The lines of action of muscle must be computed properly in order
to calculate the correct torques on the joints that the muscles act on. The situation is
complicated by the fact that the moment arm changes depending on joint configuration
and that provisions must be made to prevent interpenetration of the lines of action into
the bone. Current models assume zero curvature in the line of action but observation
shows there is a definite non-zero curvature in the action lines.

� Pennation effects. A given muscle has a distinct fibre architecture where the orientations
of the fibres directly influence the direction of the generated force vector. These fibre
patterns often resemble that of a feather where the muscle fibres converge to a middle
axis of tendon material (Figure 2.3). For some motions, a lumped-sum parameter for
the fibre orientation may be adequate, but various anti-gravity muscles that are used
for postural stability and fine control may need detailed functional study that examines
the interplay between distinct regions of fibre orientation. The control signals from the
nervous system to muscle are sent to motor neurons which innervate groups of fibres.
To model the phenomenon of motor recruitment of fibre, the ability to partially activate
selected regions of muscle are necessary.

� Global shape effects. The majority of physical studies of muscle have concentrated on
the resulting force at the attachment site to the skeleton. We will show that some phenom-
ena of muscle contraction may need to consider global muscle constraints such as volume
conservation. For example, we will present evidence that the observed changes of muscle
pennation angles could be influenced by volume preservation forces. The pathological
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condition of compartmental syndrome requires the study of the internal muscle pressures
as they exert forces on each other and the surrounding fascia tissue of each muscle fibre
bundle.

� Insertion and origin sites. The area over which the tendon attaches itself to the bones
of a skeleton directly influence the magnitude and direction of musculotendon forces on
the bone. These areas can span over large areas of boney surface. Models that represent
muscles as line segments treat the attachment site as single points. In order to simulate
large areas of attachment such as the sternocostal portion of the pectoralis, many line
segments must be used. The single generation model we represent allows a continuous
representation of these attachment areas and a unified way of enumerating points in the
area.

A detailed muscle model that incorporates both the physical and geometric characteristics of
muscle allow functional studies to be conducted in greater detail than has been performed be-
fore. By using a compact representation for muscle, computational overhead can be minimzed
and multiple muscle simulations are possible even with the larger set of parameters for each
muscle. The model can open up new directions for study such as simulation of compartmen-
tal syndrome and motor control theories that can be tested through simulation. Clinicians can
visualize which muscles are being used the most as skeletons undergo various motions. Re-
constructive surgery can also be planned by simulating various scenarios and observing the
resultant changes in range of motion or flagging potential areas of excessive strain that could
result in the modified musculoskeletal system.

1.1.3 Computer Graphics Perspective

The ability to include humans and other animals in computer animation has allowed a greater
freedom of storytelling by populating digital realms with interesting characters. As in classical
animation, to maintain the “illusion of life”, animators can decompose all movement in living
characters to a layered collection of motions. There is the base positioning of limbs as the
figure transitions from pose to pose. The projectile trajectory of the centre of mass can be seen
in jumping, walking and running. There is a global change of shape in the body to account for
the volume preserving effects of stretch and squash as deformable material reacts to various
external forces. Finally, there is the secondary motion in the form of visible muscle and skin
deformations that occur due to muscles driving the motions in the limbs.

Being able to model synthetic animals for film or interactive entertainment has many ad-
vantages. Computer generated animals can be directly controlled by a human operator without
the unpredictability associated with real animals. The inherent dangers of working with wild
animals and potential hardships on the animal’s health are eliminated. With knowledge of ex-
isting anatomical configurations in animals, fictional creatures with similar body structures can
be designed and animated with potentially greater realism. In the area of entertainment, more
emphasis is placed on visual accuracy rather than physical correctness or muscle architecture.
Nevertheless, an anatomically-inspired approach has several advantages over other methods
for attempting to represent the anatomical features of animals.

Previous models have focused on simulating skin deformations automatically from muscles
with shape changes being based on deformation techniques that neither accurately depict the
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correct anatomical configuration of the body nor adequately capture the dynamic solid tissue
nature of muscle. While this approach may be satisfactory for an initial visual approximation
for animation, there are several phenomena which may be excluded:

1. Tendons and ligaments define shape When a skeletal muscle contracts to create motion,
the contractile force is transmitted through to the tendons. These tendons can become
stretched taut and can visibly protrude out of the skin. This is apparent when you clench
a fist or straighten out your fingers.

2. Isometric contractions and negative work In animal motion, muscles often actively
contract while exhibiting no limb motion. Visually, muscles appear to tense and some-
time bulge, conveying to the viewer the anticipation or exertion of effort during a motion.
Many schemes that simulate muscle deformations correlate the deforming of muscle to
joint movement. Since isometric contractions do not result in any joint motion, no notice-
able deformations will be generated with these schemes. In reality, as a muscle contracts,
there is compliance in the attached tendon. This compliance allows a muscle to change
shape while the affected limbs are held stationary.

3. Inertial effects Many muscle models feature deformations that are exclusively a function
of the kinematic state without consideration of time derivatives or mass properties. As
a result, stress waves[23] that propagate through muscle or local inertial effects that
can cause muscles to demonstrate damped oscillations will not be reproduced with pure
geometric models. This phenomenon can be observed as “jiggles” that occur in the
muscles after a sudden stop of a quick motion.

4. Collision and interpenetration Nature has designed muscles to be compactly placed on
the skeleton of animals. As a result, numerous muscles often press against each other,
surrounded by an envelope of fat tissue and skin. Consequently, shape changes in one
muscle will result in pressure changes on surrounding muscles. Biomechanists have
realized the importance of this phenomenon when they study compartmental syndrome
(the injuries in muscle that are caused by the built up pressures of muscle tightly packed
against each other). These geometric and physical consequences have not been modelled.
Previously, muscle volumes have been allowed to intersect with each other.

To consistently apply these visual phenomena to computer-generated characters, a method
based on the underlying anatomical structure can create life-like motions. With the goal of
visualizing these features and simulating the mechanics of musculotendon systems, this the-
sis develops a methodology and useful set of physical and geometric primitives that can be
applied in the fields of anatomy, biomechanics and entertainment. The key challenge will be
the creation of a muscle model that can represent a large array of shapes and levels of com-
plexity. Furthermore, anatomy and biomechanics require a higher standard of accuracy than
applications for entertainment purposes.

1.2 Problem Statement

Given these considerations, our problem can be stated as:
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Given a skeleton of an animal consisting of bone geometry, produce an additive
process that allows the layering and attachment of muscles, tendons and ligaments
to the underlying skeleton. For physical simulation, these elements can be made
to exert force on the skeleton and undergo shape changes consistent with the be-
haviour of the material they are meant to model. This includes shape changes due
to external forces or internal potential energies. In the case of muscle tissue, these
forces are generated internally and we wish to be able to accurately model the
muscle architecture (fibre orientation) as well as its volume preservation charac-
teristics. The muscles produced should be controllable to the extent that a force
model allows a control input variable to be specified that directly affects the active
contractile force of muscle.

1.2.1 Restrictions

To model the entire anatomy of an animal would be an extremely complex task. For our pur-
poses, we are concerned only with modelling the elements of anatomy that are the causal agents
for motion and body shape definition: skeletal muscle, tendons and ligaments. Less considera-
tion will be given to fat and skin. Smooth (stomach lining) and cardiac muscle (the heart) will
not be considered. Specialized models that account for the unique fibre arrangements of these
types of muscle and their interactions with fluids have been developed[97].

The stiffness of bone is measured by its Young’s Modulus, which is about 1011dyn=cm2[2].
Tendon and muscle can be up to several orders of magnitude more compliant than bone. Tendon
has a strength of around 1010dyn=cm2 and active muscle tissue in frogs experience a maximum
stress of 2 � 106dyn=cm2[36]. Consequently, bones will be treated as rigid objects and their
viscoelastic and plastic effects under high stress will be ignored.

Regarding skeletal muscle, we will not directly look at the molecular mechanisms that
occur during the contraction of muscle, such as those described by the Cross-bridge theory
[61]. Computer simulations of the hypothesis of cross-bridge links have been created in [127].
Muscles have also been known to have history-dependent effects and can be affected by factors
such as age, exercise, pre-stretching, immobility and fatigue[131]. We will not attempt to
model muscles dependent on these parameters.

1.3 Contributions and Results

This thesis presents a solution to the stated problem in the design and implementation of an
anatomically-based modelling system. A fundamental concern is to develop an integrated
physical and geometric model for muscle. Muscles are the primary actuators of locomotive
force in animals and also define the shape of the animal’s body. Previous work has only fo-
cused on one side of this dual nature of muscle. Biomechanists have constructed force models
for linear muscle model without 3-D volume. In contrast, computer graphics has only con-
sidered modelling gross geometric effects of muscle deformation on skin with little concern
for physical simulation. An important first step to modelling both aspects simultaneously is to
choose and define equations of motion for the parameters of a geometric muscle model while
keeping in mind that the muscle must be able to collide and maintain non-penetration con-
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straints with other objects. By focusing on the the low-level building blocks that combine to
create the form and function of humans and other animals, these elements can be re-configured
to create novel forms adhering to anatomical constraints. The major contributions of this work
can be listed as follows.

1.3.1 Muscle shape primitive

We chose to model muscles as solids, instead of a boundary surface representation. All points
that consist of the solid can be enumerated with a parameterization of a B-spline triple tensor
product formulation. This representation has allowed us to model the internal fibre arrange-
ments of actual muscle, providing an important visualization tool and link for validation of our
muscle with actual measurements from cadaveric specimens. In order to create initial shapes
for these solids, we designed a procedure using several template guides to fit to the B-spline
solid model.

1.3.2 Lagrangian Physics formulation

As the model’s shape can be represented uniquely by a set of state variables, we developed a set
of equations of motion derived from Lagrangian dynamics. This has provided a convenient way
of decomposing the various forces into separate parts that can be adjusted. Volume-preserving
forces can co-exist with external forces such as gravity and spring forces. Constraints can be
applied to portions of the solid material to create point on plane or fixed point constraints.
We have developed an assortment of physical force models that can be selectively added or
removed from the muscle model depending on the targetted application.

1.3.3 Biomechanical Muscle Model

The physical parameters of our solid primitive allow us to extend the range of applicability
of the model from muscle to tendon to ligaments. This model for soft tissue can be used
in a dynamic anatomical system. The well-known force-length-velocity relationship of the
contractile element of muscle will be integrated into our three-dimensional volume model for
muscle. Similarly, we can choose to endow our tendon and ligament models with elastic effects.

1.3.4 Development of System

In order to build a framework to test our models, we have developed a software architecture
that can allow the integration of all the bone, muscle and other soft tissue elements to create
a simulated dynamical system. Various joint constraints can be created and the skeleton sub-
sequently manipulated interactively. A system was designed using object-oriented techniques
and dynamic loading of object code to provide a flexible environment to construct our dynamic,
anatomical systems. The system was co-designed with Petros Faloutsos and is referred to as
DANCE (Dynamic Animation and Control Environment)[86].
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1.3.5 Skin Deformation

The final stage is to envelope the bone and muscle constructs with a skin model. The skin is
deformed by the underlying muscle motion and rigid motion of the limbs of the skeleton. The
effects of the fat layer that lie underneath the epidermal and dermal layers of skin and over the
musculature are accounted for.

1.4 Overview

We have explained the relevance of the work in the context of anatomy, biomechanics and
computer graphics. Given the needs of these three areas, a problem statement was presented
that motivated the creation of an anatomically-based modeller and its component soft tissue
models. The contributions of this modeller and its parts were listed. The structure of this thesis
consists of nine chapters: 1) Introduction, 2) Background, 3) B-spline Solids, 4) The Geomet-
ric Musculotendon Model, 5) The Physical Musculotendon Model, 6) Bones, Ligaments, and
Skin, 7) System Design, 8) Results, and 9) Conclusion and Future Work. Chapter 1 motivates
and introduces the need for an anatomically-based modeller. Chapter 2 reviews the related pre-
vious work in biomechanics and computer graphics as well as giving a primer on the related
anatomical material we will use in this work. Chapter 3 will present the B-spline solid model
and its mathematical properties. Chapter 4 will describe how initial shapes can be defined for
the B-spline solid from different data sources. Chapter 5 covers the physically-based mod-
elling aspects of the model for creating dynamic musculotendons. Chapter 6 will describe the
modelling of other soft tissues. Chapter 7 details the design and implementation of the system
architecture used in creating the modeller followed by several results illustrated in Chapter 8.
Finally, Chapter 9 concludes with discussion and possible future work.



Chapter 2

Background

Understand the freedom from the conformity of styles. Free yourself by observing closely
what you normally practice.

Bruce Lee in Tao of Jeet Kune Do, 1975

It is important to examine some of the key ideas and prevailing methods from each of the
fields of study - anatomy, biomechanics and computer graphics - with which we are intersect-
ing. This chapter has a major section for each discipline, covering important issues relevant to
muscle modelling that are specific to each area. Although some readers will be familiar with
certain material, for others the same concepts will be new.

2.1 Anatomy

If you are already familiar with the anatomy of muscles, tendons, ligaments and bone, you can
skip this entire section.

The biology of animals is a large area of study. Accordingly, we will be focusing on a set
of tissues that are important for defining body form and motion: bone, ligaments, tendon and
muscle. It is primarily these structures which create the complex machinery that allows animals
to locomote and that will directly influence the changes of features in superficial body shape
on the skin. These materials are categorized into passive and active structures. The passive
structures have inherent physical properties, while only muscle is an active structure that can
generate forces on its own.

2.1.1 The living machine

All these structures work together as a cohesive, efficient organic machine. The bones create
a skeleton that provides structural support for the body as well as protection of the internal
organs. Mechanically, in conjunction with musculotendon units, they make up a complex lever
system that enables locomotion by applying forces on the external environment to manipulate
objects or push off the ground. The ligaments provide stability at the joints to prevent adjacent
bone segments from slipping away from each other. They act to guide motion as the joints
articulate. Muscles are the primary force actuators of motion and are attached to tendons,

9
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Figure 2.1: The hierarchical structure of muscle. From [52], reproduced with permission.

which transmit forces from the muscles to the bones that they are attached to. We will discuss
each of these tissues in closer detail.

2.1.2 Active structures

Muscle

Muscles are considered active structures because they are capable of generating forces on their
own. Muscles have a hierarchical structure (Figure 2.1) that at their lowest level consist of
muscle fibre cells that contain contractile units called sarcomeres. Within these sarcomeres,
there is a parallel arrangement of thick and thin filaments that according to the prevailing cross-
bridge theory, form chemical bonds that generate the force in muscle[52]. The muscle fibres
group themselves into bundles known as fascicles which are in turn enveloped by a material
known as fascia. Each fascia group represents different heads of a muscle. For example, the
gastrocnemius muscle consists of a medial and lateral head (Figure 2.2).

Within the fascia, the muscle fibres can have an orientation characterized by the angle
they make with respect to the tendons they attach to. This fibre arrangement is known as
the muscle’s pennation. Figure 2.3 illustrates several types of pennation patterns observed in
skeletal muscle. These arrangements directly determine the direction of forces produced.

Muscles can attach to tendon material either at a narrow site or over wide sheets of tendon
known as aponeurosis. As both muscle and tendon work closely together to create a functional
unit of force generation and transmission, we will collectively refer to this structure as a muscu-
lotendon unit. Tendon is several orders of magnitude stiffer than muscle. Therefore, the areas
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Medial gastrocnemius

Lateral gastrocnemius

Soleus

Calcaneal tendon

Figure 2.2: The gastrocnemius muscle in the lower leg. From Valerie Oxorn 1997, reproduced
with permission.

where tendon is in contact with muscle have restricted movement compared to the uncovered
portions of muscle[42]. The tendon portion of the musculotendon unit attaches to the skeleton
at two different sites known as the origin and insertion . By convention, the origin is the more
proximal site to the body’s centre of mass and due to the greater mass located at the centre, is
usually the less mobile of the two sites (Figure 2.4).

All these mentioned factors have a direct influence on the shape changes within the mus-
culotendon units as contraction occurs. The musculotendon and its relationship to the skeleton
also directly affects the resultant torque generated at a joint. A skeleton posed in two differ-
ent configurations will be capable of exerting two entirely different sets of forces as both the
magnitude and direction of forces are dependent on the length constraints set by the underlying
skeleton. To capture these aspects of muscle, our strategy will focus on the development of a
unified geometric and physical model for the musculotendon unit that can be used as building
blocks to create a diverse set of musculoskeletal systems.

2.1.3 Passive structures

Passive structures consist of material that does not actively generate force on its own. Rather,
these materials exhibit tension when strained by other external forces.

2.1.4 Bones

Bones make up the skeletal framework to which musculotendon and ligaments are attached.
There are 206 bones in the human skeleton[87]. For our purposes, we will treat bones as
rigid objects to simplify the dynamics by reducing the number of degrees of freedom in their
equations of motion. In actuality, bone material is several times stiffer than muscle, with an
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fusiform unipennate bipennate multipennate triangular

Figure 2.3: Different patterns of muscle pennation.

elastic modulus of 1011dyn=cm2[2]. There are stress limitations of bone which if exceeded will
cause fractures. We will make the assumption that in our model, the bones will be operating
under nominal conditions to avoid accounting for the deformation characteristics of bone.

2.1.5 Tendon

Tendon is the second important component of the musculotendon unit. It transmits the force
generated by the attached muscle to bone. The tendon material has different shapes depending
on its attached material. The external tendon connects muscle to bone whereas the internal
tendon or aponeurosis provides an attachment area for muscle and resembles a thin, sheet-like
material.

Relative to muscle, tendon is much stiffer and stronger in tension when pulled. As tendon
is made up of parallel-aligned collagen fibres, its Young’s modulus is about 1010dyn=cm2[2].
Due to the alignment of the fibres, there is tension along its longitudinal length, but there is
still enough compliance to allow tendon to bend around joints. This allows forces generated
by a muscle to be transmitted and applied to a different area where the muscle is located.
For example, the hands have long tendons along the fingers that are attached to muscles in
the forearm. Under normal operation, tendon is rarely stretched to more than 5% strain[53].
At about 8 � 10% strain, tendon begins to experience irreversible strain and can experience
damage. Tendon can also serve a spring-like role for storing elastic energy, as when the Achilles
tendon alternatively stores and releases energy during running[3].

2.1.6 Ligaments

Ligaments attach adjacent bones to one another across joints. They help to guide joint move-
ment and maintain stability at the joints during movement. As they are made up of collagen,
they have similar physical properties to tendon. Ligaments can also be more elastic than ten-
don. Elastic ligaments such as the ligamentum nuchae located on the back of a horse’s neck[2],
have twice as much elastin than collagen[35]. They help to store elastic strain energy and re-
quire less energy to hold postures than active muscle contraction.
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Figure 2.4: A musculoskeletal system configuration. The gracilis muscle is biarticular because
it spans two joints. The line of action is in the direction of the point of origin to the point of
insertion. In [24], a via point is added to show changing lines of action around bony protrusions.

2.2 Biomechanics

Having introduced the roles of the different anatomic elements we wish to study, we will need
to quantify their behaviour by reviewing existing models for calculating forces. The majority
of this work is from the field of biomechanics.

2.2.1 Modelling musculotendon forces

If we look at muscle as force actuators in a mechanical system, they have several unique char-
acteristics compared to standard torque motors used as joints in robotic systems. Musculo-
tendons can span over several joints. A biarticular muscle that can contribute motion directly
to two joints plays an important role in determining the resulting motion. Simulations have
shown that vertical biarticular jumping using the gastrocnemius produces greater heights than
monoarticular muscle action[125]. The intrinsic properties of muscle and tendon can act as sta-
bilizers for highly-explosive movements, potentially allowing more robust control. The built-in
compliance in tendons smoothes out perturbations introduced to a motion[124]. If prescribed
torques were applied to joints, any perturbations would most likely contribute to instability in
the original motion.

In order to simulate the effects of the musculoskeletal system, biomechanists have created
mathematical models for muscle force. The majority of models have focused on the skeletal
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joints

links

Figure 2.5: Articulated figures consist of rigid links that have various joint constraints between
them.

muscle itself, as these forces are actively generated through voluntary neural control signals.
Several models for representing the force generated by muscles have been created from the
fields of physically-based computer animation (PBCA) and biomechanics simulation. In re-
ality, these fields have the same mathematical framework for modelling the physical system.
The distinction is that the models created in biomechanics have more parameters that relate
to actual physiological measurements of musculotendons, making them more accurate. On
the other hand, with PBCA, the models are simpler and easier to control, at the expense of
accuracy.

2.2.2 Musculoskeletal system

Before discussing the various force models used for musculotendons, we will introduce the
typical physical system arrangement for representing skeletons and the forces acting on them.
The majority of studies simulating animal movement have represented skeletons as a set of
rigid links that are held together by joint constraints. This assembly is termed an articulated
figure (Figure 2.5). Depending on the formulations used to describe the equations of motion
governing how these links move in response to external and internal forces on the system, the
joints are modelled either as constraint forces that are maintained between adjacent links or
using the principle of virtual work, equations of motion can be created that captures only the
independent degrees of freedom with all the joint kinematic constraints built into the formu-
lation. Both methods allow external and internal forces to be applied to the system. Internal
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Figure 2.6: The muscle-derived torque is proportional to the muscle force along the line of
action and its moment arm about the joint. Muscles act in agonist and antagonistic groups at a
joint to pull in opposing directions for bidirectional joint movement.

forces are generated by actuators. For example, a robotic arm may have motor actuators at its
joints to move the links while animals have muscles which generate motion.

2.2.3 Pure torque models

Instead of modelling each of the musculotendon actuators contributing to the movement of a
joint, the resultant torque can be applied directly at the joints. This eliminates the need for
a musculotendon model because we have a one-to-one relationship between joints and actua-
tors. In a biological joint, muscles come in antagonistic pairs that pull in opposite directions,
creating opposing torques (moments) in a joint (Figure 2.6). Consequently, there are many
possible combinations of forces that can be applied between opposing muscles to create the
same resultant torque at a joint. Applying control signals to torque motors directly eliminates
the redundancy inherent in muscle actuators. Working with pure torques, we can use inverse
dynamics to determine the required forces needed to obtain a prescribed motion in a skele-
ton. Isaacs and Cohen[63] used this method to embed a keyframing animation system within a
dynamics framework.

The majority of work in controller synthesis attempts to solve controlling joint torques
to create various motions. Hodgins developed control laws for torques generated at differ-
ent phases of motion[55] and van de Panne has used dynamic programming[95] and stochastic
search techniques[94] for synthesizing controllers that use torque-based actuators. These meth-
ods use proportional-derivative (P-D) control for their low-level torque generation. Given a
desired target angle �d for a joint, the torque is computed as:

� = kp(� � �d)� kd _�; (2.1)
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where � is the current angle and _� is its time derivative. The coefficients kp and kd are stiffness
and damping parameters to control the elasticity and viscosity effects in the joint. By having
appropriate combinations of kp and kd, underdamped, and critically-damped motion can be
achieved as the joint is drawn to �d.

The drawbacks of using torque motors are the lack of intrinsic characteristics associated
with muscles. Muscle geometry for deforming skin must be created separately. Muscle-
generated forces are nonlinear functions of muscle length, shortening velocity and neural ac-
tivation. All of these parameters create the dynamic viscoelastic characteristics of the muscle
actuator. In contrast, techniques that use P-D control usually keep the viscoelastic coefficients
constant throughout a simulation. Following this approach, these coefficients must be hand-
tuned until reasonable motions are achieved. As muscle forces are influenced by their moment
arms, joint changes during limb motion will affect the range of forces produced. Under a pure
torque scheme, dynamic limits of torque for each body part must be computed as in [74]. Treat-
ing joints independently with their own torques does not take into account the dependencies
that occur in biarticular muscles (muscles that directly contribute to motion in two or more
joints). Biarticularity can directly affect the performance of motions such as jumping[125].
Optimization studies for human motion have shown that using muscle models instead of pure
torque models in the objective function will produce physiologically reasonable forces[22].

2.2.4 Linear Spring-Damper Muscle Actuators

Rather than model forces indirectly through torques, the forces can be generated as linear
actuators whose direction is determined by a line segment connecting two limbs at an origin and
insertion point. McNeill Alexander refers to muscles as being spring-like in various situations,
particularly when the length of the tendon is relatively long compared to the muscle, such as
in the leg muscles of a kangaroo[3]. Raibert was inspired by this observation to create “pogo-
stick” hopping robots that use pneumatic air springs which are essentially spring-damper based
actuators[102]. In computer graphics, these linear forces were modelled as spring-damper
systems (Figure 2.7). Linear springs and dampers have been used successfully to animate
fish[119], and snakes[83]. The general form of these force models is:

fm = kp(l
m � lmo )� kd _l

m: (2.2)

By choosing appropriate stiffness (kp) and damping (kd) coefficients, the natural frequencies
of motion can be adjusted. The muscle’s spring restlength lmo can be changed during a motion
to provide a variable target length for changing pose configurations. This representation has
worked well with periodic motions that are inherently sinusoidal, but they may not be suitable
for a larger class of motions such as quick-start motions that require sudden changes of velocity
and may require more nonlinear elasticity and damping in the dynamics. Biomechanists require
a model that has parameters corresponding to actual muscle and tendon measurements to study
real musculotendon function. Such a model can allow empirical measurements to be used to
create a model that can be parameterized to capture the features of any skeletal muscle in a
body. The same actuators can then be used in a wider range of motions without needing to re-
tune the parameters for new motions. To provide these capabilities, biomechanists use a more
sophisticated linear actuator consisting of three elements that can be individually modelled.
Hence, these actuators are collectively referred to as the three-element Hill-based models.
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Figure 2.7: Viscoelastic models for linear actuators. Left: a standard linear spring-damper
system Right: the Hill three-element model consisting of the contractile element (CE), parallel
element (PE), and series element (SE). The CE and PE act over the muscle length (lm) and the
SE is dependent on the tendon length (lt). The musculotendon length is lmt

2.2.5 Three-Element Hill-based models

If you are familiar with the three-element Hill-based model for muscle force generation and
do not care about alternative formulations for the different elements, you can skip over this
section and the sections on the series, parallel and contractile elements.

Hill’s model is simple if the contractile element is entirely stress free and freely disten-
sible in the resting state, and is described exactly by Hill’s equation when the muscle is
activated, if the series and parallel elements are elastic, and if the whole muscle is a simple
combination of identical sarcomeres in series and in parallel. Unfortunately, none of these
is true.

Y.C. Fung, Biomechanics: Mechanical Properties of Living Tissues, 1981

The quotation above serves to remind us that although the three-component Hill-based model
(Figure 2.7) has been used extensively in the literature[138, 93], it is still not complete in cap-
turing all observed phenomena in muscle. However, its predictive power for estimating qualita-
tive patterns of muscle activation is well-supported in several different motion studies[121, 92].
It is a phenomenologically-based, lumped-parameter model based on a series of controlled ex-
periments on muscle, namely the force-length and force-velocity dependencies observed in
active muscle[138]. The model has three major components: the series element (SE), the par-
allel element (PE) and the important contractile element (CE). Subsequent work has sought to
learn more about each of these mechanisms and practitioners generally use different forms of
the equation based on desired characteristics of muscle on which they wish to focus. It is not
uncommon to remove one of these elements if they do not have a significant effect on forces
generated. Reviewing the physiological motivation behind the design of each element is im-
portant for deciding how to use the three-element model in a combined geometric and physical
3-D musculotendon context.
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Figure 2.8: The normalized version of the tendon force-strain curve showing the toe, linear,
and failure regions. Based on data from [138].

2.2.6 Series Element (SE)

The series element (SE) (Figure 2.7) lumps together the effects of several biological materials
in musculotendon. This element represents mainly the elastic effects of tendon and intrin-
sic elasticity of structures within the sarcomere[36], isolated by quick release experiments
of contracting muscle[7]. Although important at the sarcomere level, the elastic effects of
the sarcomere can usually be omitted for whole muscle studies because the tendon elasticity
dominates[138].

It is claimed in [138] that the aponeurosis (internal tendon) experiences the same strain
at the external tendon. Tendon also has viscous properties. Fung has described hysteresis
properties during cyclic loading and unloading of ligaments[36], which are made of the same
material as tendon: collagen and elastin. This viscous effect can also be removed, as Bahler[7]
and Hatze[50] has shown that the damping component is negligible.

Given these simplifications, we can focus on the stress-strain properties of tendon. A typical
curve is shown in Figure 2.8. The x-axis refers to the SE strain, which is calculated as

�SE =
lSE � lSEo

lSEo
: (2.3)

In whole muscle simulation, the descriptor SE can be interchanged with t for tendon. The
value �SE refers to the elongation of the SE. The initial toe region has a curved nonlinear
relationship to tendon strain and is hypothesized to be due to the way collagen fibres of ten-
don straighten out from their previous slack state as they are stretched. At around 1:4 � 4%
strain[138], the curve becomes linear until excessive strain of around 10% causes material
failure.

Several different functions have been used to model this tension-strain function. Bahler[6]
has used cubic polynomial relationships based on observations, but the coefficients used have
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no physical interpretation. Hatze[50] and Fung[36] use an exponential function:

fSE = kse
�SE�1 + dSE _�

SE; (2.4)

which is the solution of a first order differential equation of tendon behaviour. This is probably
the most accurate model, but suffers from the expense of computing the exponential function.
For simulation purposes, the shape characteristics of the exponential function can be substituted
for a simpler quadratic function with conditional branches[122]:

fSE(lSE) =

(
0 if lSE < lSEslack:
k(lSE � lSEslack)

2 if lSE � lSEslack:
(2.5)

The top branch recognizes that no tension is developed if the tendon length does not exceed
the tendon slack length. This is comparatively different from normal linear springs which
experience restorative forces when they are compressed. The tendons only experience these
forces when they are stretched.

2.2.7 Parallel Element (PE)

This element of the Hill model (Figure 2.7) represents the passive elastic properties of muscle,
disregarding the active contractile machinery of the muscle. The parallel element (PE) repre-
sents the connective tissue sheaths (endomysia, perimysia, epimysia, fascia) of the muscle[36],
with the fascia dominating these elastic effects. Due to the material properties of these sheaths,
tension is only produced when the PE is actively strained beyond its rest length. As with
tendon, we can define the elongation of the PE as a unitless ratio:

�PE =
lPE � lPEo

lPEo

: (2.6)

The term lPE is usually equivalent to the length of the muscle portion (lm) of the musculoten-
don unit. The passive portion of muscle force is illustrated in the graph in Figure2.9. To model
this curve, Hatze[50] used a least-squares fit to an exponential:

fPE = k(exp(c�PE)� 1): (2.7)

The constants k and c can be adjusted to match the behaviour of different muscles. This model
can be expanded to more precisely capture the individual structural influences of the different
connective sheathes in muscle[51]:

fPE =
nX
i=1

ki(exp(ci�
PE)� 1); (2.8)

with each term corresponding to a different connective tissue. For simulation purposes, a
simple parabola can be used for quicker evaluation[122]:

fPE = k(�PE)2: (2.9)
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Figure 2.9: The normalized version of the muscle’s force-length curve. The force response
for fully-activated muscle has limited range. Passive force occurs when muscle is stretched
beyond its rest length. Based on data from [138].

In addition to elastic effects, passive muscle has also demonstrated hysteresis effects during
cyclic loading and unloading[36]. As muscles are made primarily of water, this viscous be-
haviour is expected. Hatze added a damping term[51]:

fPEdamped = fPE + d _�PE: (2.10)

If muscle can be shown to operate below its passive rest length, the PE element can be removed
from the Hill force model as it will never play a role[6]. However, there are many motions
where muscle is being actively lengthened, creating passive stretching of muscles while they
are being actively stimulated. The active range of a muscle appears to be dependent on the
animal species. Human leg muscles tend to operate at distances less than lmo , while frog muscles
can operate in regions where the passive PE is a factor[52].

2.2.8 Contractile Element (CE)

The contractile element is the most interesting component of the three-element model. It con-
tains the source of active force generation. This force is under voluntary control in skeletal
muscle. A special parameter u(t) is introduced to represent the time-varying neural control
signal to muscle (Figure 2.7). The neural signal originates from the central nervous system
and leads to motor neurons in the muscle. Each motor neuron innervates a set of muscle fibres
which will contract when stimulated. This entire functional unit is termed the motor unit[138].
Further details of the chemical processes that occur during muscle contraction can be found in
[52].

Experiments have been conducted to learn about the behaviour of the contractile machinery.
It is through these examinations that the important force-length and force-velocity properties of
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muscle have been discovered. Although these relationships are widely recognized, one should
be aware that the measurements are made in controlled conditions, such as with fully-activated
muscle or constant loading. An actual muscle in vivo undergoes dynamic loads and activa-
tions. An interesting use of simulation is to apply these force curves in controlled conditions
to validate the predictive power of these models.

Force-length property

As early as 1894, Blix described that muscle force depends on its length[52]. It was not until
1966[52] that the exact nature of the force curve in relation to lengths of sarcomeres was
revealed. By working with fully-activated muscle (in its tetanus state), the recruitment of all
the muscle fibres is ensured[81]. The muscle length is constrained to be constant (isometric)
and the generated force is measured. If this process is performed for several different lengths,
the resulting curve appears in normalized form as shown in Figure 2.9.

This curve has previously been modelled with quadratic functions[124], piecewise cubic
splines[19] and piecewise line segments[138]. The use of piecewise line segment is the least
expensive to compute and conveniently attributes each line segment to a specific stage in the
hypothesized cross-bridge contractile process within the sarcomeres[52]. In practice, the force-
length function is smoother in shape, and the quadratic form can be used[122]:

fCE(lm) = fmo

2
41�

 
lm � lmo
W

!2
3
5 : (2.11)

Note that the muscle length is considered to be the same as the length of the contractile element,
so that lCE = lm. The values lmo refers to the isometric length where the maximum isometric
force, fmo is generated (Figure 2.9). The parameter W adjusts the width of the parabolic curve.
Figure 2.9 clearly shows there is a limited operational range for active force generation. The
lower range of the curve starts at 0:5 and ends at 1:5[138]. For sub-maximal activation, the
curve is usually linearly scaled by the activation[122, 138].

Force-velocity property

In addition to the dependency of muscle force on its length, the force is also influenced by
the muscle’s velocity of shortening (Figure 2.10). In order to quantify the relationship, fully-
activated muscle was clamped isometrically and suddenly released to allow shortening against
an external load. The resulting relationship was first described by Fenn and Marsh[32]. How-
ever, the model most frequently used was the hyperbolic equation that Hill formulated[54]:

fm =
fmo b� avm

b + vm
; (2.12)

where vm is the velocity of shortening of the muscle. This relationship is invertible so that
velocity can be calculated from the measured tension:

vm = b
fmo � fm

fm + a
; vmo = b

fmo
a
: (2.13)
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Figure 2.10: The normalized version of the muscle force-velocity curve. As the muscle short-
ens, its behaviour can be described by the hyperbolic Hill’s equation. Muscle can lengthen
during periods of negative work, where the muscle is being stretched while activated. Based
on data from [138].

The parameter vmo is termed the maximum velocity of shortening and is experienced when
there is no load on the muscle. From Equation 2.12, when the muscle is isometric (vm = 0),
the force developed will be the maximum isometric force (fm

o ). The coefficients a and b are
termed Hill coefficients and roughly represent the effects of temperature and type of muscle
respectively. By the type of muscle, we are referring to slow, fast and mixed twitch fibres that
can contract at different speeds[52]. For mammalian muscle, slow fibres contract at maximum
speeds of 6 � lmo =s and fast fibres at 16 � lmo =s[52]. Mixed fibres can be modelled as a weighted
combination of slow and fast fibres.

It is important to realize that since Hill’s equation was created under maximum activation
and constant loading, its accuracy in typical operating conditions is limited. Studies measuring
shortening velocity under changing load conditions have shown deviations from the hyperbolic
form[64]. Many motions in the body may be initiated from submaximal activations, where
Hill’s equation may not apply. Modifications have been made to Hill’s model to account for
these effects, mainly by paying closer attention to activities of the contractile element in the
sarcomeres during muscle shortening[51]. Others have modified Hill’s equation to account for
the effects of shortening and its influence on depressing force production[82]. Nevertheless,
Hill’s original equation is used extensively in biomechanics simulation[122].

Activation/contraction dynamics

The previously-mentioned force-length and force-velocity relationships have been measured
with fully-activated muscle. As neural stimulation to muscle occurs as a train of pulses, the
frequency will determine whether tetanus (full activation) can occur. At lower frequencies,
each pulse is followed by a single twitch. As the twitches occur closer together in time as fre-
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quency increases, the twitches will fuse into a steady state of force production[36]. Typically,
there can be several milliseconds of delay before the initial stimulation is given and the muscle
begins to contract[98].

Zajac has accounted for this delay by creating a first-order differential equation relating the
activation state of the muscle, a(t), to the neural excitation input signal, u(t)[138]:

_a(t) +
1

�act
(� + (1� �)u(t))a(t) =

1

�act
u(t): (2.14)

The rate �act is the time-constant when the muscle is fully excited (u(t) = 1). Similarly, we can
define a time-constant, �deact = �act

�
, when muscle is deactivated (u(t) = 0). The constant � is

the ratio of the time-constants for muscle activation to muscle deactivation and consequently
is bounded between zero and one. A consequence of this model is that active contractile force
will rise faster during excitation than relaxation, a property that is stated to be well-observed in
[132]. For biomechanical simulation, Bogert describes a simple version, assuming the rate of
activation and relaxation are the same (� = �act = �deact)[122]:

_a(t) =
1

�
(u(t)� a(t)): (2.15)

At the other extreme, Hatze has developed a detailed model that factors in the various biochem-
ical processes that occur in the contractile element during the activation and force generation
process[51].

2.2.9 Putting it all together

Now that we have described each of the elements of the Hill model, we can combine their
effects together into a model for musculotendon. From Figure 2.7, we have the relationship:

f t = fSE (2.16)

fm = fPE + fCE (2.17)

fmt = fm = f t; (2.18)

where fmt is the force generated from the musculotendon unit. Since lt = lmt� lm, these force
quantities can be expressed as functions of only muscle length, muscle velocity and activation:
f t(lm); fm( _lm; lm; a(t)). This relation among lm, _lm, and a(t) forms a volume where each
isosurface created at a fixed activation corresponds to a force-length-velocity constraint surface
(Figure 2.11)[51, 131]. It is this volumetric function which we are modelling in the contractile
element to capture the active effects of muscle.

2.2.10 Normalized version of the three-element Hill model

To encourage a reusable musculotendon model, it is convenient to abstract the basic nature of
the force-length and force-velocity relationships from the specific values produced in different
muscles. Creating a parameterized version of Hill’s three-element model allows muscles to
be configured with a set of standard muscle measurements. The standard force curves of the
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elements can be normalized with respect to parameters such as maximum isometric length
(lmo ), maximum isometric force (fmo ) and tendon slack length (ltsl). The normalized curves
can be scaled with these parameters to represent any skeletal musculotendon unit, as long as
we can provide estimates for these values. The resulting physical quantities become unitless
ratios. Zajac formalized this model and termed it the dimensionless musculotendon actuator
in his classic review article in 1989[138]. Normalized musculotendon ratios are calculated as
follows:

~fm =
fm

fmo
; ~lm = lm

lmo
; ~lt =

lt

ltsl
: (2.19)

Here, fmo is the maximum isometric force which is experienced at the maximum isometric
length, lmo . It is often estimated using the physiological cross-sectional area (PCSA):

fmo = 25N=cm2 � PCSA: (2.20)

The PCSA is defined in [137] to be the volume of the muscle divided by its “gross muscle
length or its fibre length with or without accounting for pennation”. The interpretation of “gross
muscle length” often depends on using simplified geometrical representations for muscle[2]
(Figure 2.12):

PCSA =

(
m=(�l) (fusiform)
m=(2�t) sin(2�) (unipennate)

(2.21)

where m, �, and l are the muscle mass, density and length. The pennation effects are handled
by t, which is the layer thickness and �, which is the pennation angle.
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Figure 2.12: The fibre arrangements for calculating the physiological cross-sectional area
(PCSA) are often simplified to have uniform fibre length and pennation angle. Adapted from
[2].

Almost all subsequent work in simulation of biomechanical musculoskeletal systems have
used a form of this dimensionless model to parameterize it for different muscles[93, 19, 122].
Although the basic Hill model cannot reproduce phenomena such as yielding during mus-
cle lengthening or force enhancement after stretch[131], the simplicity of Hill’s three-element
model and its relatively few parameters has allowed the standardization of reported measure-
ments in the literature to allow reuse of data in different motions. Pandy uses the same muscle
parameters to successfully simulate walking and jumping motions[91]. Yamaguchi has cre-
ated collections of these parameter values for several muscles[137]. Simulations have shown
that the Hill model can be used to produce results that agree with observations measured from
actual muscles[91].

2.2.11 Muscle line of action

Hill’s three-element model provides the magnitude of the forces, but the muscle’s geometry
determines the direction or line of action of the force vector. There are two main methods
for representing the line of action. Delp uses piecewise line segments[25] (Figure 2.13) for
musculotendons attached to a skeleton. Intermediate via points (Figure 2.4) are introduced
at different joint angles to constrain the muscle’s line of action when it wraps around bone
or is forced to go through tendon sheathes called retinacula. Others[65] use centroid curves
which are constructed by interpolating a curve through estimated centroids from several trans-
verse sections throughout the muscle. Although centroid curves appear to visually follow the
muscle’s shape more accurately, the line segment approach may be acceptable for physical
modelling. The requirement that muscles create couples or sets of forces that sum to zero indi-
cate that if a muscle was to contact a bone at a finite number of positions, the net sum of those
contact forces would be zero and hence the line of action can be simplified with piecewise
line segments. The challenge still remains to find the correct directional vectors of these line
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Figure 2.13: The SIMM system[24] uses line segments to represent musculotendons. Repro-
duced with permission.

segments.
However, there are several sources for potential inaccuracy when using line segments for

muscle line of action:

1. Insertion and origin points As the musculotendon is represented with line segments,
they necessarily only have a single point of attachment at both the insertion and origin
ends. Single points of attachment of musculotendon to a skeleton may be suitable if the
tendons attach over a small surface area. However, where muscles attach over a large
area, the lines of action distributed over this area will substantially differ from that of
a single point. This can be corrected by approximating the musculotendon units with
several lines of action. Van der Helm has shown that six lines of action can be used
without losing significant accuracy compared to a more extensive set of two hundred
line segments[123]. Furthermore, we can sum the forces and moment vectors generated
by these points to get a single force and moment vector, allowing us to apply these loads
only once per body rather than separately in succession.

2. Lack of inter-muscle effects The large assemblies of line segments that can result in
these simulations neglect to consider the inter-muscle collision forces that will occur as
they exert pressure on each other.

3. Architectural modelling These inaccuracies have led researchers to incorporate more
architectural features into the model, primarily targetting the gastrocnemius of muscle.
There have been several attempts[136, 68, 141] to capture the geometrical configuration
of aponeurosis and pennation of muscle fibres. The models are constrained to preserve
volume, but use simplified shapes to approximate the musculotendon’s shape. Further-
more, the muscle was only studied in isolation.
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Figure 2.14: Different internal muscle force configurations in an articulated figure.

4. Pennation The orientation of muscle fibres to the tendon tissue are generally accounted
for by a single angle of pennation. This angle is used to compute the component of force
being applied by the muscle to tendon. Detailed architectural modelling can capture
varying pennation within a muscle.

2.2.12 Internal muscle forces

Muscles create internal forces in the musculoskeletal system. One part of the system (mus-
culotendon) exerts a force on another part (the bone). Consequently, the total momentum of
the system must be conserved in the absence of external forces. This implies that the centre
of mass of the system should experience no acceleration after all external forces are removed.
The individual momentum of the links can change, but the total sum is constant.

Regarding muscles, we must be careful not to introduce force components that violate this
principle. This can be achieved by ensuring the sum of all internal forces acting on the bones
of the skeleton sum to zero to result in no momentum changes. This example is illustrated in
Figure 2.14. In diagram A, we have two resultant force vectors applied at the origin, pO, and
insertion, pI , attachment ends of the muscle. This results in a net force component that will
pull the system to the left. The balancing force required to make the vector sum to zero can
be applied at points of contact pi and pi+1. Alternatively, if we assume equal tension along the
muscle, forces in the direction of pi to pi+1 can be applied in both directions and the forces at
the attachment areas are ignored because their effects on the bone are cancelled out. Another
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interesting situation is diagram B. The force vectors along the dashed line at the attachments
do not sum to zero, yet there is a lack of contact along the muscle length to provide application
of a balancing force to zero. This apparently violates the conservation of momentum. How can
we explain this situation physically? The musculotendon unit can only generate force if tension
is achieved with the muscle. As the muscle fibres contract, as long as they are able to shorten
without resistance, there will be negligible tension experienced at the bone. The fibres will be
in a slack state. When the fibres begin to experience resistance to the shortening, muscle force
will begin to generate. This can happen as the muscle’s line of action begins to straighten out
(solid line) or when the contracting muscle begins to exert pressure on interior muscles.

The net result of musculotendon units on the skeleton is that the translational forces sum to
zero and only a pure torque remains. This does not imply that we can ignore musculotendon
geometry altogether and apply the torque directly. Torque is a function of the moment arm of
the muscle about the joints it spans. The moment arm is directly determined by the geometry
of the muscle and its lines of action.

2.2.13 Calculation of muscle-derived torques

As the joints undergo rotation, the moment arm may change as the line of action moves closer
or farther away from the joint centre. For regions where the musculotendon can wrap around
bony surfaces or have a curved path from origin to insertion, intermediate points can be intro-
duced to define a piecewise line segment to represent the musculotendon’s line of action over
the underlying tissues[24]. This allows a better estimate of the moment arm of the musculo-
tendon than simply using a two point line segment. In [24], the intermediate points stay fixed
to their underlying bones during joint motion and can be made active only within certain joint
ranges to model changing musculotendon kinematic conditions. It is not clear if these points
should stay fixed when they are active, as there may be cases where the musculotendon’s dy-
namics cause the points to shift relative to their underlying bones. For example, in sets of
tightly, packed muscle, as underlying muscles contract, they would push out more superficial
muscles, resulting in changing moment arms for the latter muscle. Furthermore, the matter in
the muscle can have its own inertial motion where the centroid axis can move independently
of joint angle.

The moment arm can be calculated geometrically as the perpendicular distance from the
joint centre to the muscle’s line of action. However, this method does not work when the joint
centre is not fixed[122], such as in the knee[88]. For cases where the joint kinematics are not
restricted to a single rotation axis and fixed joint centre, we can invoke the principle of virtual
work[72] to compute the moment arm for a generalized coordinate, qi, to produce a generalized
force, Qi on that degree of freedom. The generalized force due to a particular musculotendon
can be calculated as:

Qi = �fmt Æl
mt

Æqi
: (2.22)

The partial derivative of lmt with respect to qi is the musculotendon’s moment arm for that
degree of freedom. Delp and Loan[24] apply this method for their piecewise line segments and
call it the partial velocity technique. If q is a single joint angle, then Q is the torque about that
joint’s single axis.
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2.2.14 Joint modelling

We define a joint as a constraint between two rigid objects. The proximal object is considered
to be the parent link while the distal object is the child link (the one furthest from the torso
or centre of mass of the figure). Mathematically, the joint is a transformation expressing the
child link’s translation and orientation with respect to the parent’s frame of reference. Usually
the transformation is constrained in some way, such as rotation about a single fixed axis. The
most general case of a joint is a six degree of freedom joint where the child can take arbitrary
translation and orientations relative to its parent.

In practice, computer animation applications use one to three degrees of freedom rotational
joints in articulated figures. Keeping the joints simple allows the articulated figures to be
represented with a minimal set of generalized coordinates that describe the configuration state
of the figure. Smaller state vectors increase the speed of algorithms such as those used in
controller synthesis[95] and inverse kinematics[40].

Biomechanical systems require higher fidelity of joint description. The SIMM (Software
for Interactive Musculoskeletal Modelling)[24] system allows kinematic functions to be de-
scribed that specify joint with changing joint centers and axes. This is done by interpolating a
cubic spline through several key joints that constrain the joint centers and axes at several dif-
ferent joint angles. For complex joint interactions in the shoulder, Badler et al. uses a spherical
surface to represent the rotational centre of the humerus[5], while Maurel et al. use an ellipsoid
as a contact surface between the scapula and thorax[79].

This concludes a review of methods for computing the magnitude of musculotendon forces
as well as the geometric issues for determining the force vectors and moment arms of these
musculotendons. Very rarely do these biomechanical models account for the 3-D shape and
volume of muscle and its interaction with other muscles. In contrast, geometric models in
computer graphics and deformable object techniques from physically-based computer anima-
tion have been developed to capture the visual and motion effects of 3-D objects.

2.3 Computer Graphics

We now will examine the contributions that computer graphics has made on providing tools and
techniques for visualizing and animating shapes. These techniques can be applied to represent
muscle geometry, animate muscle contraction, and deform shape in response to interaction
with other musculotendons and bones. We first will survey the major geometric primitives, fol-
lowed by techniques for modulating or deforming shape characteristics. Finally, we discuss the
use of physically-based methods for creating realistic motions by specifying the time-varying
properties of these shape parameters.

2.3.1 Geometric shape primitives

Our pursuit of modelling muscle shape requires that a suitable mathematical model can be
found to define the geometry and parameters to modulate shape. Several methods have been
developed to model deformable objects that not only translate and rotate, but can be stretched,
squashed or bent. The prevailing primitives are parameteric surfaces, implicit objects, polygons
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and subdivision surfaces. In the following discussion, we will assume these primitives reside
in a 3-dimensional cartesian space, <3.

2.3.2 Notation for geometry and related coordinate systems

Let O � <3 be the set of points belonging to a given object. If there exists a function p and
domain U � <3 such that O = fp(u)ju 2 Ug, then p is a parameterisation of O. The tuples in
u can be called the material coordinates or parameters of O. On the other hand, if there exists
an algebraic function 8x 2 O, such that f(x)� L = 0, then O defines an implicit object. L is
a constant used to specify a particular iso-surface boundary for the object. Implicit objects do
not use material coordinates.

Finally, a geometric object can have a set of values q which can modify its overall shape.
For example, a sphere can have a vector q = f(x; y; z; r) where x,y,z is the centre of the sphere
and r is the radius. A particular set of parameters in q will map to a shape configuration. How-
ever, it is possible for two sets of parameters to represent the same shape. These parameters q
are referred to as generalized coordinates or degrees of freedom of the shape.

Parametric shapes

Formally, a parametric shape Sp is a vector function:

x(u) = Sp(u;q);x 2 <3; (2.23)

where u is a vector that represents the material coordinates[118]. The material coordinates
enumerate points within the shape’s domain. If u 2 <2, then Sp can describe a surface, where
if u 2 <3, Sp is a volumetric shape. The material coordinates and the generalized coordinates
together are used in a vector function to produce the spatial coordinates x that are in the 3-D
world.

In computer graphics and computer-aided design, tensor product parametric functions that
use the B-spline, Bezier and Non-uniform rational B-spline basis functions are primarily used
due to their local shape control properties.

Polygonal shapes

With scan conversion-based graphics hardware and 3-D application programming interfaces
(API), a rendering pipeline scan converts polygons, mainly in the form of triangles or quadri-
laterals. For interactive rendering of geometry, parametric shapes need to be tessellated into
polygons or other shapes are modelled directly with polygons. The vertices and their edges
connecting them form the boundary surface of the shape. Due to the ostensibly planar na-
ture of polygons, a large number of polygons are needed to accurately capture regions of high
curvature. The polygonal shapes can be changed by animating the vertices.

Subdivision surfaces

One of the major deficiencies of parametric shapes are their lack of topological flexibility. In
the case of parametric surfaces, they are the topological equivalent of a rectangular or triangu-
lar sheet. Surface patches must be pasted together with continuity constraints at the boundaries
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Figure 2.15: The two implicitly-defined spheres on the left are blended on the right because
the strength of their overlapping fields matches the iso-level value corresponding to the blended
surface.

to create surface areas with protruding branches. In contrast, a polygon mesh allows shapes
of arbitrary topology to be defined. Subdivision surfaces combine the smooth characteristics
of parametric surfaces with the topological flexibility of polygonal meshes. The surfaces can
either be created by repetitive subdivision rules that create successively smoother meshes[15]
or evaluated directly[110]. The ability to selectively refine a region of a mesh and create pro-
trusions in surface shape make subdivision surfaces an appealing choice for modelling the skin
of animals and humans[27]. However, finding useful techniques for animating these surfaces
due to the dense set of mesh points are continuing open problems.

Implicit shapes

Parametric shapes explicitly evaluate points on a surface. By contrast, the points x of an
implicit shape must be found as a solution to a root-finding problem:

f(x)� L = 0; (2.24)

for a given constant L. Whenever the scalar function f evaluates to an iso-level L, a corre-
sponding iso-surface which forms the boundary of the shape is created. For shape control, the
choice of f often takes the form of the sum of local field functions where each field has a char-
acteristic decay with the single maximum located at the source of the radial force. Blinn used
summations of exponentials centred at specific points to build his implicit shapes (he termed
them “blobbies”)[11]. Convolution surfaces use a curve or area as the field source rather than
single points[13]. As the field source has a geometric interpretation, the Euclidean distance
of the point x to the field source is usually calculated and used as the independent variable to
determine field strength.

Where two or more field functions f overlap in influence, a smooth blending effect can be
created (Figure 2.15) between each of them. These blending properties have allowed implicit
objects to be used to model body shapes, but the general quality of the model seems to be an
unnatural global smoothness as if the surface details have been low-pass filtered. Although
texture mapping is possible[96], the texture coordinates for the iso-surface are not directly
computable from the implicit function.
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2.3.3 Animation and deformation of shape

Given the geometric representation using one of these four shape representations, the shapes
can be adjusted by changing the values of various parameters, q, that influence shape. In many
cases, the size of q can be large, making it infeasible to specify these values manually. Tech-
niques have been developed to animate these parameters either by creating high level functions
that completely specify the values for the more numerous parameters or creating automatic
methods that evolve q to animate a shape according to desired criteria. We will review two
methods of choosing these parameter values: deformations and Lagrangian dynamics.

2.3.4 Deformation techniques

An advantage of being able to specify a finite set of parameters q for shape configuration is
that it is easier than defining the position of every point in x individually. In cases where x is
a continuous domain of the object, parameter modification can be used to specify shape mod-
ification. However, there may still be too many parameters in q for their manual modification
to be feasible.

Deformations allow a higher level of manipulation handles to be used to specify and modify
values in q. These handles are usually represented by fewer parameters or a new set that may
be intuitively easier to understand for a shape designer. The use of fewer parameters implies
that dependencies are assumed between the elements of the original parameters. Various spatial
or continuity constraints are maintained through these dependencies.

A deformable function and its inverse can be generally defined as follows:

D�(�) = q (2.25)

D�1
� (q) = �; (2.26)

where � denotes a set of animatable parameters which define the deformation, and the � rep-
resent the local coordinate representation of q in the deformation space.

The inverse procedure is usually done once as a precomputation step for each q to produce
a corresponding �. Subsequent deformation operations involve changing the higher level set
of parameters �, while repeatedly invoking D. For example, D�(t)(�) = q illustrates the
time-varying nature of �, while q denotes a new configuration for the object’s shape. The
two deformation methods that are used in computer graphics are volume-based deformation
and feature-based deformations. The former results in global changes of shape while the latter
tends to localize shape changes around certain visible features of the object.

2.3.5 Volume-based deformation

In volume-based deformation, the geometry is usually embedded within a parameterically-
define finite volume. The vector q usually consists of a set of 3-D points in the Cartesian
coordinate system (vertices or control points). We can concatenate all these points into the
monolithic vector q:

q = fqiji = 0; � � � ; 3jqj � 1g: (2.27)

The nth point will have (q3n; q3n+1; q3n+2) as its Cartesian coordinates. We apply the same
indexing convention to the material coordinates u. As the enclosing volume is deformed, the
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change lattice shape

Figure 2.16: Free-form deformations are used to globally deform geometry embedded within
the control lattice.

parameters q are modified with the same deformations, and results in a global change in shape
configuration (Figure 2.16).

A common parametric volume deformation is the use of triple tensor product volumes:

D�(�) =
lX

i=0

mX
j=0

nX
k=0

Bu
i (u)B

v
j (v)B

w
k (w)�ijk; (2.28)

where B are basis functions which create the tensor product, (u; v; w) 2 �, and �ijk is the
equivalent of the point �(ijmj+j)jnj+k). The points of � represents a a set of points that define a
control lattice that influences the overall volume shape.

Sederberg and Perry introduced the term free-form deformation (FFD) to describe these
parametric volume deformations. They used the Bernstein polynomial basis functions in Equa-
tion 2.28[106]. In order to implement the inverse procedure D�1, which they termed “freez-
ing”, the two coordinate systems of � and � were constrained to be axis-aligned to allow the
inverse to be found by using simple translation offset calculations. Using a Bernstein volume
requires a control lattice of 4� 4� 4 = 64 points. The deformations possible were often too
coarse to allow local refinements of the underlying geometry shape. Subsequent extensions
such as extended free-form deformations[21] allowed several lattices to be connected together
with continuity constraints and permitted lattices to be pre-deformed to more closely overlap
the underlying shape, giving more control. Root-finding techniques were needed to evaluate
the inverse procedure D�1.

To avoid explicitly setting constraint conditions, B-spline volumes [48] and NURBs vol-
umes [71] have been used to allow lattices to be extended and refined independently in each of
its three dimensions. Unfortunately, to refine the points in one dimension required adding an
entire new level 2-D grid of points into the lattice plane. MacCracken and Joy introduced sub-
division FFDs based on the Catmull-Clark subdivision rules[78] to allow local refine of points
within the volume.
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The existence of all the control lattice points to define the solid, especially for subdivision
solids which involve nested groups of points raises the problem of how to let an animator spec-
ify how their positions will change over time. Hsu devised a direct manipulation technique[59]
to solve for the control points given a a set of equality constraints for points on the embedded
geometry to be at particular spatial points.

2.3.6 Feature-based deformations

Geometry embedded in a deforming volume will be subject to global changes of shape. In
other situations, a more local deformation is required that is related to defined features visible
on an object. The first of these originated in image-based morphing[9] where directed vectors
coinciding with image features were animated, locally deforming the image space in each
vector’s proximity.

The main characteristics of feature-based deformation are the influence each feature has
in its local neighbourhood and allowing a point in an image or 3-D object to be influenced
by several features, depending on a weight roughly inversely proportional to the distance of
the point to each feature. Singh and Fiume use 3-D space curves termed “wires” to shape
surfaces, adding creases and folds in the surface that follow the shape of the curves[109].
Later, we will describe anatomically-based methods which use muscle shapes as features to
deform surrounding skin geometry.

2.3.7 Physically-based Models

The previous discussion on deformation techniques presents a method of specifying changes
in shape through parameter adjustment. For physically-based muscles, the time-varying prop-
erties of these parameters need to be modelled. There have been several techniques for embed-
ding physical, dynamic properties into geometry.

Viscoelastic networks

The first attempts to model deformable objects consisted of representing objects with a dis-
tributed set of mass points that were connected to each other by links that had viscoelastic
bonds between them (Figure 2.17). Since the mass is concentrated at a single point for each
particle, the equations of motion are relatively easy to determine and the resultant forces are
simply the vector sum of all forces acting on that point. Reaction forces for various constraints
can be determined explicitly by analysing the dynamics at each point[99]. Viscoelastic net-
works using springs with variable rest lengths to control muscle contraction have been used to
simulate snake locomotion[83] and fish[119]. Damping provides dissipative forces that simu-
late energy loss, preventing perpetual oscillations in these physical systems. These models also
included frictional and hydrostatic forces to simulate external environmental forces necessary
for locomotion.

The disadvantage of constrained particles are directly due to their representation. For finer
resolution or detail, a larger number of particles and springs may be required. Furthermore,
global deformation constraints, such as volume preservation cannot be directly modelled as
particles are only influenced by their nearest neighbours. The empty space between adjacent
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mass points

viscoelastic units (springs and dashpots)

Figure 2.17: A network of mass points interconnected with viscoelastic units can be used to
model deformable objects. Many connections are necessary for structural stability.

mass points can cause the structure to collapse on itself. To counteract these effects, cross-
springs or other supplementary forces[14] can be applied to the mass points to reduce shearing
or to preserve volume locally.

Using numerical explicit integration methods, very stiff objects would require extremely
small timesteps to allow forces initiated in one region of the object to propagate to the other
regions without causing numerical instability. Recently, implicit integration techniques have
been proposed that allow larger timesteps to be utilized at the expense of accuracy because they
effectively introduce artificial damping to the system to improve stability[28].

Lagrangian dynamics

If you are familiar with Lagrangian dynamics, you can skip over this discussion and derivation
of the equations of motion.

In viscoelastic networks, all forces are directly applied to the mass points in the spatial
domain. Constraint forces must be explicitly applied to the system. For many parametrically-
defined objects, relatively fewer parameters are needed to completely describe an object’s shape
configuration. the method of formulating Lagrangian equations of motion allows differential
equations to be described for each of the time-varying parameters, without considering the
implicit constraints. The major advantage of this formulation is that there is increased freedom
to work with other coordinate systems outside of Cartesian space.

The Lagrangian equations of motion follow from D’Alembert’s Principle that allowed dy-
namics to be viewed as equilibrium problems with the introduction of an inertial force[72]. A
key quantity is the Lagrangian function, which is the excess of kinetic energy (T ) over potential
energy (V ):

L = T � V: (2.29)
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Hamilton’s principle states that the motion of an arbitrary system occurs when

Æ
Z t1

t0

Ldt = 0; (2.30)

where Æ denotes a variation of the definite integral of the motion from time t0 to t1. For equation
2.30 to hold true, the following differential equations must be satisfied:

d

dt

ÆL

Æ _qi
� ÆL

Æqi
= 0; i = 0; � � � ; n� 1: (2.31)

The qi are the n generalized coordinates that specify the system configuration. These differ-
ential equations create the Lagrangian equations of motion. Equation 2.31 can be written out
explicitly in terms of the energies as:

d

dt

ÆT

Æ _qi
� ÆT

Æqi
� d

dt

ÆV

Æ _qi
+
ÆV

Æqi
= 0: (2.32)

In many cases the potential energy is a function of only the qi, allowing us to remove the ÆV
Æ _qi

term. In this case, the conservative forces due to the potential energy is simply the gradient of
V with respect to the q. Non-conservative external forces can be added to these equations as a
result of D’Alembert’s principle:

d

dt

ÆT

Æ _qi
� ÆT

Æqi
= Qi � ÆV

Æqi
; i = 0; � � � ; n� 1: (2.33)

In particular, the methods that use Lagrangian equations of motion model various potential
energy functions to generate shape restorative forces to a rest shape configuration when de-
formation occurs. By choosing a good set of generalized coordinates that implicitly maintains
constraints, we greatly simplify the equations of motion.

Applications of Lagrangian dynamics to computer animation

As deformable objects often need to interact with other objects in the scene, the values that the
generalized coordinates take on may have to be constrained. We need to evaluate the constraint
forces needed to maintain the kinematic dependencies among the generalized coordinates. Re-
call the use of a generalized force Qi in equation 2.33. Rather than include the constraint
forces in Qi, we can partition Qi into its unconstrained forces, which we will keep in Qi and
the forces of constraint which we can store in Q0

i[133]. The addition of m constraints restricts
the n free parameters qi of the system. One strategy is to reformulate the system to have only
n�m generalized coordinates, but this can be tedious or difficult to do algebraically. A widely
used strategy is the method of Lagrange multipliers which introduces m new variables for each
constraint. The physical system is transformed into a a set of n+m free variables with n+m
equations:

�L = L� (�1f1 + � � ��mfm): (2.34)

The modified Lagrangian equations of motion are:

d

dt

ÆT

Æ _qi
� ÆT

Æqi
= Qi +

mX
j=1

�j
ÆCj

Æqi
: (2.35)
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If the constraints are all linear with respect to the qi, the Lagrange multipliers �j can be found
as the solution to a linear system involving the Jacobian matrix of the constraints JC = ÆC

Æq
.

The multipliers are then used to evaluate the constraint forces:

Q0
i =

mX
j=1

�j
ÆCj

Æqi
: (2.36)

This method has been used for modelling attachment and point-to-plane constraints[133].
For nonlinear constraints, Platt and Barr introduced the method of augmented Lagrangian
constraints[99] which provide estimates for the Lagrangian multipliers by integrating a dif-
ferential equation, _�i = Ci(q), to iteratively update �i in addition to the Lagrangian equations
of motion. They use this method to maintain volume preservation and simulate plastic defor-
mations.

Applications to parameterized geometry

Due to the generality of Lagrangian dynamics, the method has been applied to superquadrics
[113], NURBs [115] and FFD lattices[30, 140]. In addition, spring-mass systems can be cast
as a Lagrangian mechanics problem by simply treating the particle coordinates as the general-
ized coordinates qi of the system. Terzopoulos et al. introduced the idea of modelling elastic
deformations with potential energies. Various metrics for solids, surfaces and curves could be
defined that are invariant to rigid body motion, but which change value for deformations[114].
With these tensors, they were able to create deformation energies and subsequent restorative
forces.

Deformations which are linear with respect to generalized coordinates can be used to sim-
plify greatly the related matrices needed to solve these equations of motion. Witkin and Welch
used deformations that depended linearly on the qi[135]. Their formulation allows precom-
putation of terms in the equations of motion to allow interactive animation. A useful class
of linear deformations are tensor product shapes whose points can be represented as a linear
combination of control points with local basis functions. By assigning masses to a distributed
set of particles with these shapes, the Lagrangian equations of motion can be created.

2.3.8 Finite element approaches for physical modelling of muscles

Engineers have approximated solid materials by representing them as a composite of simpler,
finite elements. The idea is that objects with complex shapes or nonuniform physical conditions
can be simulated by a piecewise representation of smaller elements. Each element has a finite
domain that has a value of zero outside of the domain. The dynamics for the whole solid
material is then the solution of many smaller problems that are easier to solve. Relating finite
element methods to Lagrangian dynamics, each finite element can be formulated with its own
Lagrangian equations of motion for its smaller set of degrees of freedom.

A common finite element technique is to use 3-D brick elements made up of a different
number of nodes (Figure 2.18). Zhu et al.[139] use 8-node 3-D brick elements (Figure 2.18)
to represent muscle as a collection of voxel elements. They use low-resolution voxel meshes
to capture gross shape changes, but the visual representations appear coarse as a result. To
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Figure 2.18: 3-D brick finite elements used to model muscle tissue. Left: the 8-node element
used in [139]. Right: the 20-node element used in [19].

get smoother shapes, the number of voxels must be increased dramatically and computational
requirements subsequently become prohibitive. In addition, the muscle force model they use
is only valid under very idealized conditions such as parallel fibre arrangements, maximum
activation and uniarticulate joint action. Chen and Zeltzer[19] used 20-node 3-D brick elements
(Figure 2.18) to model musculotendon material. In contrast to Zhu et al.[139], they use the
more accurate Zajac’s dimensionless version of the three-element Hill model[138] to simulate
contractile forces. They used this approach to simulate gastrocnemius muscle under relaxed
and active conditions. Reaction constraints[99] were used for attachment to bone. Their work,
while effective, only demonstrated single muscles working in isolation. This may be due to
large computational requirements needed to simulate the many brick elements that would be
needed for a multiple muscle situation.

Overall, the brick-element representation may be suitable for fusiform-shaped muscle
where muscle fibres run in parallel from end to end and tendon material is located only at the
endpoints. However, although the boundary shape may be adequately deformed, little insight
is gained on the internal mechanisms of muscle tissue. There are many other skeletal muscles
that have more complex fibre architecture and tendon regions that cannot be adequately repre-
sented with brick elements. The ability to capture internal fibre arrangements and contraction
mechanisms in addition to boundary shape deformation is important for functional study of
muscle tissue. We will demonstrate this capability with the B-spline solid muscle developed
in this thesis. The use of B-spline basis functions can be considered a finite element method
as these basis functions have a finite domain. In contrast to brick elements, B-spline finite
elements implicitly maintain continuity conditions between elements by overlapping the do-
mains of adjacent elements. By assuming implicit smoothness conditions, this choice of finite
elements can allow a smaller number of elements to be used, thus decreasing simulation times.

2.3.9 Layered approaches to modelling

Given the techniques of deformations and Lagrangian dynamics, they can be employed together
to model deformable objects. Motivated by the existence of skeletons in vertebrate animals,
animation systems have used articulated bodies to represent jointed animals, including humans.
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This representation has been successfully used to configure body positions as well as a compact
representation for the figures by using the joint angles of each link as generalized coordinates.
This has allowed motion to be specified as a time-varying vector of joint angles. Kinematic
techniques that specify these joint trajectories include keyframe interpolation, motion-captured
data and spacetime optimization[134]. Equations of motion have also been formulated for ar-
ticulated figures for physically-based animation[4]. The superficial body geometry of animals
can be modelled directly or digitized from physical models, but it is tedious to specify the
location of each point on the skin manually for each frame of animation. Consequently, an-
imation techniques employ strategies that use higher level representations which allow fewer
parameters to be adjusted.

Skin over skeleton layer

To deform skin with skeletal articulation, one can embed an articulated figure skeleton within
the geometry and associate each part of the skin geometry with one or more joint frames of
reference[73]. When a point has more than one frame associated with it, the frame’s influence
on the joint is weighted so that the sum of weights is one. This method is used in many in-
teractive games in the late 1990’s to create whole mesh deformations. The weights must be
manually tweaked to get reasonable motions. Others have tried to create descriptive parame-
terizations of skin movement during joint motion to describe muscle-based deformations while
the skin mesh is locally anchored to underlying bones. The work in [112] creates a linear
space of skin vertex transformations based on several key poses of an arm. The arm deforms
realistically as transitions are made from pose to pose. These poses must be defined manu-
ally and increase exponentially as the number of parameters increase. For limbs having many
superficial muscle features, this can lead to prohibitively large data requirements. Since these
methods feature skin deformation depending only on the joint kinematics, the skin will lack
any dynamic effects such as vibrations due to the inertial properties of muscle or other soft
tissues that make up the limb.

Skin over deformable layer

To address this shortcoming, several methods added a deformable layer on top of the articulated
skeleton. The skin was either directly generated from the deformable layer or associated with
the deformable layer. Change in the deformation layer would propagate to the skin either
physically or via a direct feature-based deformation method.

Gourret et al. simulated human skin deformation in the hands during grasping tasks by
creating a finite element layer of parametric volumes[47]. They solved a state equilibrium
problem to recalculate the final deformation, but dynamical effects were ignored. Dynamic
effects become significant for areas of skin covering large muscular regions because the mass
is significant enough for the inertial oscillations to be visible. Lee et al. use muscle vectors be-
tween the skull and the skin to create dynamicaly realistic facial expressions[75]. The layered
structure of skin is a triple layer model of springs with different properties.

For whole body deformations, Chadwick et al. introduced layered construction of char-
acters by using a layer of FFD’s over the skeleton and animating the associated lattices by
parameterized them deformation as functions of joint angles[16]. They were able to obtain
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secondary stretch and squash motions as the body changed from pose to pose. Dynamic ef-
fects were obtained by treating the FFD lattice nodes as mass points interacting with each other
through viscously damped Hookean springs. Gascuel used a deformation layer consisting of
radial springs attached to a rigid skeleton to deform a spline-based skin surface[38].

To model smooth skin geometry, the blending properties and smooth profiles of implicit ob-
jects have been used to generate skin. Wilhelms used ellipsoidal primitives as the deformation
layer for muscle and tendon. The skin was generated by finding the boundary of the shape by
extracting the isosurface of the combined volume of ellipsoidal and skeleton geometry[129].
Shen and Thalmann interpolate NURBs surfaces through the isosurface of an internal layer of
implicit objects that form the body shape[108]. Implicit objects can be used for physically-
based modelling. In addition to shape representation, Gascuel has used the implicit functions
as potential fields to compute forces that can be used for collision modelling between implicit
shapes[37].

Anatomically-based deformable layers

Traditionally, sculptors and animators have studied anatomy in order to correctly capture the
subtle contours of muscle and fat on the skin in both static and dynamic motions[42]. Several
methods have been developed to model the deformable layers in an anatomically-based manner.
Wilhelms and van Gelder used muscle-approximating polyhedral elements attached to skeletal
geometry[130]. These polyhedral elements could change shape and used to deform the vertices
of a skin mesh. Scheepers et al. used ellipsoids and bicubic patches as muscle models that can
be layered over the skeleton[105]. They generated an isosurface from the musculoskeletal
assembly to interpolate bicubic patches over the muscle and bone. In both of these examples,
dynamics were absent. The force-generating properties of muscle were not modelled, making
these techniques only suitable for geometric representation and deformations. As many of
these models deform the skin only as a result of changing joint angles, the effects of isometric
muscle contraction cannot be observed. The exception is in Scheepers et al. [105], where
they provide a separate tension parameter to provide independent control of isometric muscle
bulging.

There have been some attempts of physically-based layered models. Lee and Terzopou-
los [75] use viscoelastic layers to represent different layers of skin over attached to muscles
that contract to create facial expressions. Turner and Gobbetti use a three-part layered elastic
model, consisting of a stick figure skeleton, covered by a deformable layer of spheres for sim-
ple muscle approximation and a Hookean-spring layer for fat[120]. Skin is the outermost layer
and is modelled as an elastic surface. The area of physically-based layered models for creating
humans and other animals is where this thesis continues.

2.4 Thesis context

We briefly review how the thesis relates to the background material and previous work pre-
sented in this chapter.

Anatomic context: By presenting a continuous solid model for muscle, we allow virtual re-
constructions of fibre architecture to be captured and examined from novel viewpoints.
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The procedure for fitting a solid model from medical images and digitized 3-D points
allows a static reconstruction to be transformed into a deformable, simulated muscle
model, aiding in functional studies. By utilizing a 3-D parameterized model, we can
apply Lagrangian equations of motion for the muscle model as well as obtain measure-
ments automatically that were previously tedious or difficult to obtain.

Biomechanical context: By providing better shape reconstruction and physical modelling ca-
pabilities, these geometric and physical muscle models can be used in musculoskele-
tal systems for biomechanical analysis. The capability of combining the standard Hill
3-element model with a solid model that has large attachment areas and internal fibre
arrangements permits detailed study of force generation and the resultant motion on
the underlying skeleton. Conversely, evaluating the effects of detailed models can give
biomechanists more confidence on the suitability of using simplifications in other muscle
models.

Computer graphics context: Finally, we extend layered construction techniques for charac-
ter creation by providing an anatomically-based deformation layer that can model a more
diverse set of muscle shapes. These muscles are capable of exhibiting inertial oscillations
and volume preservation during contraction. Since their dynamics can be self-generated,
isometric contractions are possible because shape changes are not exclusively generated
by skeletal joint motion. By attempting to create a muscle model that can be used in
anatomy, biomechanics and computer graphics, we have created a framework suitable
for animal reconstruction on a visual and physical level.



Chapter 3

B-spline Solids

Art is the expression of the invisible by means of the visible.

Fromentin

For everyday objects in our physical world, we use mathematics to develop geometric mod-
els of their shapes, and computer graphics to visualize these models. Mathematical boundary
representations are primarily used to represent these objects. This is usually an adequate rep-
resentation since there is often no need to generate the internal contents of an object. However,
when modelling muscle architecture, it is important to visualize internal features such as fibre
arrangements. We introduce the use of a triple tensor product B-spline solid as a mathematical
model for musculotendon. The characteristics of B-spline functions make them ideal for repre-
senting the smooth, geometric component of muscles. The three dimensional parameterization
of the solid allows us to reference any point within the volume of the muscle.

In computer graphics, tensor-product solids have been used as free-form deformation lat-
tices (see Section 2.3.5 for more details). The lattice defines a three dimensional space which
becomes warped as the control points of the lattice are moved. Typically, geometry such as
spline surfaces or polygons are embedded in the space so that the vertices or control points
undergo a transformation that can roughly follow the deformation of the warped space. Sur-
prisingly, there has been little exploration of the actual rendering of these lattice solids. In [58],
tensor-product Bezier and B-spline solids and their mathematical properties are described in
detail. We will briefly overview some of the important mathematical properties of B-spline
solids which are important in the development of our musculotendon model.

Rappoport et al. developed an algorithm for preserving the volume of a Bezier solid used
for free form deformations[103]. We extend this original volume formulation to B-spline
solids. Although Rappoport et al. describe how the volume can be computed using only
boundary control points, we will provide a constructive proof that clarifies the conditions over
which this computational shortcut can be taken. We introduce how to set up a constrained op-
timization problem to conserve B-spline solid volumes in conjunction with other constraints.
This technique does not use physically-based methods, but Chapter 5 will introduce volume-
preservation in a physically-based context.

Given the B-spline solid formulation, we can display the solids interactively and display
various isosurfaces throughout the solid. We define two sets of generalized coordinates that

42
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boundary control points

internal control points

Figure 3.1: A B-spline solid with boundary and internal control points.

can be used to manipulate the solid’s shape: control points and spatial points. The former
is the traditional method of modulating the shape of tensor-product geometry. However, the
latter allows direct manipulation of shape. For spatial points, we will describe how to assign
material coordinates for reference to the solid’s parameterization, including finding material
coordinates for arbitrary spatial points. In the case where a point may not belong to a solid, we
explain how to find the closest solid point to the external point. These mathematical properties
and operations will be used for developing methodology in subsequent chapters.

3.1 B-spline solid mathematical formulation

A B-spline solid is represented by the following triple tensor-product parametric function:

x(u; v; w) =
lX

i=0

mX
j=0

nX
k=0

Bu
i (u)B

v
j (v)B

w
k (w)cijk; (3.1)

where the cijk are points in space indexed by i, j and k. These set of points in

c = fcijk 2 R3ji = 0; � � � ; l; j = 0; � � � ; m; k = 0; � � � ; ng (3.2)

form a control point lattice which will influence the shape of the B-spline solid (Figure 3.1).
The vector x represents the evaluated point computed from the triple tensor-product of these
B-spline basis functions (in this case, the scalar polynomials: Bu

i (u); B
v
j (v); B

w
k (w)) with the

control points in c. The ordered triple (u; v; w) represents the material coordinates that map
to corresponding spatial points in the volume of the solid. We can represent this triple as the
material coordinate u, as described in Section 2.3.2.
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3.2 Properties of B-spline basis functions

The B-spline basis functions are piecewise polynomial functions that have a finite domain of
interest, over which they take on non-negative values. Although B-spline solids represent a
triple tensor-product of these functions, we will focus on a single, univariate basis function for
clarity. We define a sequence of n+ 1, Kth order basis functions of the parameter u as:

B0;K(u); : : : ; Bn;K(u): (3.3)

The domain of this family of basis functions spans the knot vector U which is defined as

U = (u0; u1; : : : ; un+K)
T : (3.4)

In particular, basis function Bi;K(u) is a piecewise polynomial defined in the support interval
[ui; ui+K]. The B-spline basis functions obey the partition of unity rule:

nX
i=0

Bi;K(u) = 1; u 2 [uK�1; un+1]: (3.5)

There are n+1 control points (ci; i = 0; : : : ; n) that correspond to the n+1 basis functions.
The knots ui of the knot vector U form a non-decreasing sequence. If the interval [ui; ui+1]
is of the same length for all i, we have a uniform knot vector (Figure 3.2A). Otherwise, it
is termed a non-uniform knot vector (Figure 3.2C). Periodic knot vectors are used to create
closed curves, surfaces, and solids. The knots of a periodic knot vector represent one period
of the infinitely, repeating sequence (Figure 3.2B). The periodicity can be simulated with a
nonperiodic knot vector by extending the knot vector with additional knots at the beginning
and end of the sequence. This will define basis functions that will maintain continuity at the
parameter boundaries of the period.

Multiple knots can be added to the terminal ends of a knot vector to create lower orders
of continuity at these knot values. In particular, the order of continuity will decrease by i at
a knot of multiplicity i + 1. We can use this property to interpolate the first and last control
points of a B-spline curve by repeating the first and last knots in a knot sequence K times
(as done in Figure 3.2C). This control of continuity is an inherent part of the formulation of
B-splines. In contrast, stitching together Bezier curves requires explicitly setting constraints
between adjacent curves or surface patches to maintain continuity at the boundaries. Finally,
for shape refinement, techniques can be applied to insert knots into the knot vector without
changing the shape of the curve[128].

3.2.1 Evaluation of B-spline basis functions

We explicitly define the B-spline basis function. The valid domain of a parameter u, with
knot vector U is [uK�1; un+1]. The basis functions can be evaluated using the Cox de Boor
recurrence relation[58]:

Bi;K(u) =
u� ui

ui+K�1 � ui
Bi;K�1(u) +

ui+K � u

ui+K � ui+1
Bi+1;K�1(u): (3.6)
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Figure 3.2: B-spline basis functions. A: Degree 1 uniform B-spline basis functions. B: De-
gree 2, periodic, uniform B-spline basis functions. C: Degree 3, non-uniform B-spline basis
functions.
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We assign:

Bi;1(u) =

(
1 ui � u < ui+1

0 otherwise
(3.7)

The first subscript of Bi;K represents the ith basis function whose support consists of the knot
interval [ui; ui+K]. The second subscript is the order K of the basis function. Each ith basis
function has a non-negative value in the domain [ui; ui+K] and is zero everywhere else, making
the basis function have local influence. Notice that the K th order basis function is represented
as a weighted sum of two branches of (K � 1)th order basis functions. Since each branch
has non-zero values over a smaller domain, comparing the parameter value u to be evaluated
with each branch’s domain, it is possible to cull out entire branches of computation simply by
replacing a branch’s value with zero whenever u is outside the branch’s domain.

3.2.2 Evaluation of first derivatives

The first derivatives of a B-spline basis function of order K can be expressed in terms of B-
spline basis functions of lower order[43]:

dBi;K(u)

du
= (K � 1)

 
Bi;K�1(u)

ui+K�1 � ui
� Bi+1;K�1(u)

ui+K � ui+1

!
: (3.8)

By implementing the Cox de Boor algorithm as a recursive function, we can reuse the same
code to compute the first derivatives to evaluate partial derivatives of the triple tensor-product
B-spline solid for calculating gradient and normal vectors. Alternatively, for computing deriva-
tives of B-spline curves, there are computationally efficient methods, such as the de Boor
Algorithm[58] or Lee’s B-spline computation routines[76]. These methods use divided dif-
ference tables that can evaluate a B-spline curve and its derivatives from just the control points
without referencing explicitly the basis functions. However, extending these techniques to sur-
faces and volumes would be complicated by multiple divided difference tables to handle the
extra dimensionality.

3.2.3 Solid and boundary domain relationships

As we are working with B-spline solids, the control points c form a lattice that will define
the overall shape. Since the control points are weighted with basis functions, the knot vector
determines the shape of the basis functions and the influence the control points have on the
overall solid shape.

For a family of B-spline basis functions of order K, a non-periodic knot vector with K
multiple knots at the boundaries will cause the first and last basis functions to evaluate to one
on the boundaries of the parameter domain (Figure 3.2C). We can partition the control points
c of a B-spline solid into boundary points and internal points (Figure 3.1). A boundary control
point cijk is defined as any point such that its corresponding tensor product Bu

i (u)B
v
j (v)B

w
k (w)

contains any of the first or last B-spline basis functions derived from a non-periodic knot se-
quence.
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For the non-periodic knot sequence, if the first or last B-spline basis functions of any para-
metric domain evaluate to one at the boundaries, the partition of unity property

nX
i=0

Bi;K(u) = 1; 8u 2 [uK�1; un+1]; (3.9)

implies that internal control points have no influence on the boundary shape (their correspond-
ing tensor product terms evaluate to zero on the boundary). Therefore, the boundary control
points of a B-spline solid can be interpreted as the control points of a regular B-spline surface
that forms the solid’s boundary. This fact allows B-spline solids to be easily integrated into
standard 3-D modelling packages that use B-spline surfaces for geometric representation. The
boundary is determined exclusively by boundary control points. We will later use this property
to simplify volume computations of B-spline solids.

3.2.4 Interpretation of lattice indices

By using different combinations of periodic and non-periodic knots for the three sequences of
B-spline basis functions that define the solid, we can achieve diverse classes of shapes. Setting
dependency constraints amongst the control points allows us to create spherical, toroidal and
cylindrical shapes in addition to cubical and tubular shapes. Table 3.3 shows the various shapes
we have implemented. For the periodicity assignments, we have arbitrarily assigned periodic
or non-periodic properties to each of the knot sequences for u, v, and w respectively. These
periodic properties can be rearranged amongst the three parameters in any combination to get
the same shape, as long as the corresponding control point constraints are also rearranged.

3.2.5 B-spline solids as supersets for curves and surfaces

Curves and surfaces can be created from Equation 3.1 by holding one or two parameters con-
stant to define iso-surfaces and iso-curves respectively (Figure 3.4). This can be used to gener-
ate streamlines within a solid or visualize a boundary surface. For muscle modelling, stream-
lines can be used to visualize individual muscle fibres and boundary surfaces can represent
aponeurosis regions of thin tendon material attached to the muscle’s surfaces.

3.3 Interactive Display of B-spline Solids

Repetitive calls of Equation 3.6 can be expensive when evaluating many points to tessellate the
outer surface of a B-spline solid for display purposes. Fortunately, we can evaluate the tensor
product portion of the B-spline solid at a predetermined set of material coordinates and store
the values in a table to avoid recomputation[104].

We illustrate this for a one-dimensional example. Suppose we want to plot ten uniform sam-
ple points on a curve with the material coordinates of u sampled as follows: s0; s1; s2; : : : ; s9
on the domain [uK�1; un+1] so si = uK�1 + iun+1�uK�1

9
. The actual point evaluated on the

curve will be:

pi =
nX

j=0

Bj(si)cj: (3.10)
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Periodicity 
assignments

Control point 
constraints

u,v,w non-periodic

u,w non-periodic
v periodic

u,w non-periodic
v periodic

u,w non-periodic
v periodic

u non-periodic,
v,w periodic

none

none

for k = 0 ... n,
c0jk = c0j'k

for i = 0 ... l,
cijn = cij'n
cij0 = cij'0

c0jk= c0j'k'

for k = 0 ... n,
c0jk = c0j'k

u

v

w

u

v

w

u
v

w

u v

w

u

v

w

cubical

tubular

cylindrical

spherical

toroidal

Figure 3.3: B-spline solid shapes and their corresponding periodicities and control point con-
straints. If an index is primed, it refers to a different index value from the corresponding unin-
dexed one. For example, in the cylindrical solid for a given value of k, c0jk = c0j0k 8jjj 6= j 0.



CHAPTER 3. B-SPLINE SOLIDS 49

iso-curves iso-surface

Figure 3.4: Iso-curves and iso-surfaces extracted from a B-spline solid.

If the sample points si are fixed, we can evaluate all the Bj(si) in advance for all valid i and
j[104]. Since there are at most K non-zero B-spline basis function values for any material
coordinate, si, we can save space and computation time. To render the curve, these sampled
curve points can be joined together to get a piecewise linear approximation of the curve.

For the purposes of visualization, we usually only want to display the boundary surfaces of
a solid. This can be achieved by partitioning the boundary into a set of B-spline surfaces. Each
of these surfaces corresponds to a particular iso-surface (see Section 3.2.5).

We presample a grid created from sampled material coordinates over the surface of the solid
for the purposes of tesselation and display. This strategy is adequate as long as the sampling
density is high enough to capture the curvature of the surface and other shape features. By
changing the sampling interval of the material coordinates in each iso-surface, we can create
different levels of detail in our tessellation. This is useful in scenes where we may have many
muscles at various distances from the viewer. Figure 3.5 depicts the same solid tessellated with
different sampling densities.

Figure 3.5: Different levels-of-detail for display of the same B-spline solid.

As the control points change position, we can update a new tessellation point position p for
material coordinate, (up; vp; wp) with a fast vectorized dot product calculation, assuming the
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Figure 3.6: Normals can be generated at the tessellation points of the B-spline solid’s surface
for shading calculations.

knot sequence does not change:

p(up; vp; wp) = B(up;vp;wp) � c: (3.11)

B(up;vp;wp) and c are vectors where the corresponding [(i(m + 1) + j)(n + 1) + k]th entry
positions1 are defined by (Bu

i (up) � Bv
j (vp) � Bw

k (wp)) and control point terms (cijk). In the
course of interactive editing of control points, only the entries of c will change and need to
be recomputed. Since B is sparse and its entries are precomputed, incremental updates of the
surface tessellation points using Equation 3.11 are quick.

3.3.1 Normal calculations for shading

For real-time shading calculations with graphics hardware, we require the normal vectors for
each tessellation point on the surface (see Figure 3.6). The normals can be calculated analyti-
cally using Equation 3.1. For example, an iso-surface formed by holding u = ub, would have
normals:

n(ub; v; w) =
@x(ub;v;w)

@v
� @x(ub;v;w)

@w

k@x(ub;v;w)
@v

� @x(ub;v;w)
@w

k : (3.12)

The partial derivatives need only be applied to the basis function portion of Equation 3.1 and
they can be pre-computed for each tessellation point. Using table look-up, incremental updates
of the normal vectors on a surface can be performed as the solid is interactively deformed. For
proper lighting effects, it is important that the normals are outward facing. This is equivalent to
maintaining a positive surface orientation. If the normals are pointing inwards, the parameteri-
zation of v or w must be reversed so that tangent vectors are generated in the opposite direction
to change the orientation of the surface.

1The quantities m + 1 and n + 1 are the number of basis functions defined in the v and w knot sequences
respectively.



CHAPTER 3. B-SPLINE SOLIDS 51

3.4 Calculating and conserving volumes of B-spline solids

There is an efficient closed-form expression for the volume of a B-spline solid. The solution
is a dot product of two vectors whose values correspond to control points and basis function
values. We first derive an explicit formula for the volume of a B-spline solid, following closely
the work by Rappoport et al.[103], who derived a similar formula for Bezier solids. We prove
how we can accelerate volume computation by showing that the volume only depends on the
boundary control points that define the outer surface bounding the solid.

For a parameterized solid defined by a tritensor B-spline with nu, nv, and nw basis functions
in each parameter (and therefore of these respective degrees), the volume is defined as:

V =
Z unu

uK�1

Z vnv

vK�1

Z wnw

wK�1

det Jxdwdvdu; (3.13)

where det Jx refers to the determinant of the Jacobian matrix of the volume function,

x(u; v; w) =
nu�1X
i=0

nv�1X
j=0

nw�1X
k=0

Bu
i (u)B

v
j (v)B

w
k (w)cijk: (3.14)

with respect to the three parameters u, v, and w. The integrals are taken over the valid domain
of u,v, and w. The indices of integration are for three non-periodic knot vectors. For periodic
domains, the indices are adjusted to be the boundaries of one period. In the following discus-
sion, we will collapse all summation and integration symbols to one symbol for clarity, such
as:

X
ijk

=
nu�1X
i=0

nv�1X
j=0

nw�1X
k=0Z

=
Z Z Z

:

By looking at the subscripts and differentials, we can determine the scope of integration or
summation from this simplified notation. If no indices of integration are shown, then integra-
tion is assumed to occur over the entire parameter domain. In addition, we use the following
notational shorthand from [103]:

uijk =
d

du
Bu
i (u)B

v
j (v)B

w
k (w)

vijk = Bu
i (u)

d

dv
Bv
j (v)B

w
k (w)

wijk = Bu
i (u)B

v
j (v)

d

dw
Bw
k (w):

Now we expand the Jacobian det Jx to get:

det Jx =

�������
P

ijk c
x
ijkuijk

P
ijk c

x
ijkvijk

P
ijk c

x
ijkwijkP

ijk c
y
ijkuijk

P
ijk c

y
ijkvijk

P
ijk c

y
ijkwijkP

ijk c
z
ijkuijk

P
ijk c

z
ijkvijk

P
ijk c

z
ijkwijk

������� ; (3.15)
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where cijk = (cxijk; c
y
ijk; c

z
ijk)

T . By expanding this determinant and collecting terms, we can
divide out the control point terms from the basis function terms and rewrite the basis function
components in terms of another determinant:

det Jx =
X

ijklmnopq

cxijkc
y
lmnc

z
opq

�������
uijk ulmn uopq
vijk vlmn vopq
wijk wlmn wopq

������� : (3.16)

Notice that the summation in Equation 3.16 has undergone some reindexing to produce a col-
lection of nine summations. This is not as daunting as it would seem since we can combine
the nine indices into a common index I = ijklmnopq. Using this new index, we replace the
determinant on the right side of equation 3.16 with the notation: detI (u; v; w).

Now using Equation 3.13, we apply the triple integral only to the basis function part of
each term:

V =
Z
kJVkdwdvdu

=
Z X

ijklmnopq

cxijkc
y
lmnc

z
opq det

I
(u; v; w)dwdvdu

=
X

ijklmnopq

cxijkc
y
lmnc

z
opq

Z
det
I

(u; v; w)dwdvdu:

(3.17)

If we place the elements cxijkc
y
lmnc

z
opq in a vector C indexed by I = ijklmnopq, and place the

elements
R
detI (u; v; w)dwdvdu in a vector B indexed by I , we can replace equation 3.17 with

a simple dot product of two vectors indexed by I:

V = CT � B: (3.18)

Since our knot vectors are predefined and the integrals are over the entire parameteric domain,
we can precompute the elements of B for quick retrieval. When we edit control points, we can
selectively update the terms in C to quickly recompute the volume.

3.4.1 Computation of the elements of B

Rappoport et al.[103] used gaussian quadrature to compute the integrals in B. This is a sen-
sible choice when the integrand is a product of Bezier basis functions since all the functions
are defined on the same domain and gaussian quadrature can compute the exact integrals for
these polynomial forms[100]. However, B-spline basis functions each have different local do-
mains where anything outside the local support of the basis function is evaluated to zero. If the
gaussian quadrature is not aware of the local properties of B-splines, the method could result
in numerous useless function evaluations because many combinations of basis functions could
result in a product of zero. We will attempt to make use of our knowledge of the local do-
mains of basis functions to restrict the indices of integration to domains that contain non-zero
integrand values.
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In subsequent equations, we will remove the indices of integration for clarity. If we expand
each element in B, we produce:Z

det
I

(u; v; w)dwdvdu

=
Z
uijkvlmnwopqdwdvdu+

Z
ulmnvopqwijkdwdvdu+

Z
uopqvijkwlmndwdvdu

�
Z
uopqvlmnwijkdwdvdu�

Z
ulmnvijkwopqdwdvdu�

Z
uijkvopqwlmndwdvdu:

(3.19)

Focusing on the first term in (3.19), we can rearrange the integrand so that the triple integral
is transformed into the product of three single integration operations:Z
uijkvlmnwopqdwdvdu

=
Z d

du
Bu
i (u)B

v
j (v)B

w
k (w)B

u
l (u)

d

dv
Bv
m(v)B

w
n (w)B

u
o (u)B

v
p(v)

d

dw
Bw
q (w)dwdvdu

=
Z d

du
Bu
i (u)B

u
l (u)B

u
o (u)du �

Z d

dv
Bv
m(v)B

v
j (v)B

v
p(v)dv �

Z d

dw
Bw
q (w)B

w
k (w)B

w
n (w)dw:

(3.20)

Notice that each single integral contains an integrand which is a function of one variable only.
This allows us to separate the triple integral into three decomposable single integrals. We can
precompute the values of each of these single integrals separately for all possible combina-
tions. This technique is also applicable to the other terms of (3.19). Since the integrands have
a polynomial structure that is easy to integrate analytically, we computed the integrals in sym-
bolic form using Maple V[18], a symbolic math package. Symbolic expressions allow us to
use subexpression collection to reduce the number of mathematical operations executed during
the integration. Care must be taken to divide the range of integration into smaller intervals as
each basis function is actually a piecewise polynomial. However, by knowing the domains of
each basis function, we can decrease the number of subintervals to integrate because the valid
range of integration will be restricted to the intersection of the non-zero domains of all basis
functions involved in the integrand.

Now that we have detailed how to compute the components of B and C, the size of these
vectors is potentially very large at n3

un
3
vn

3
w. It turns out that we can apply the Divergence

Theorem to Equation 3.13, implying that we can compute the volume by integrating over only
the outer surface of the solid. We prove in Appendix A that components of B evaluate to zero
whenever the integrand contains only basis functions whose domains lie entirely within the
solid. This allows us to reduce the size of B and C by an order of magnitude. In addition, the
vector B will be sparse due to the local support of the B-spline basis functions, allowing us
to collect the non-zero entries in a compact data structure illustrated in Figure 3.7. For each
unique non-zero value in B, there is an associated list of the matching indices in C.

It is important that the boundary surface of the B-spline solid have a positive orientation
(see Section 3.3.1), with the normals pointing outwards. Otherwise, the volume will be a
negative value (although the absolute value is still correct). Similarly, if the B-spline solid self-
intersects, the portions that are intersecting will produce negative terms that will decrease the
overall computed volume.
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Figure 3.7: The vector B can be compactly represented by only storing the unique non-zero
values and associating these entries to their corresponding indices in C.

3.4.2 Gradient of Volume Formula

Once we compute the components of B, it is fairly simple to compute the gradient vector rV
for Equation 3.18 with respect to the control point components in c. We can reindex c to
concatenate the components of the N control points into a single monolithic vector of size 3N ,
where the ith control point’s three components are c3i; c3i+1 and c3i+2 with i = 0; : : : ; N � 1.
In subsequent discussion, ci refers to an individual component of c, while cijk is a specific 3-D
control point. The gradient vector for the volume equation,rV , will also have 3N components
as each entry is @V

@ci
, i = 0 : : : 3N � 1. These entries can be computed quickly by traversing

the data structure in Figure 3.7 and accumulating separate sums for the entries of the gradient
vector, rV . For each non-zero entry in B, it is multipled with all non-zero partials of its linked
entries in C and the resulting terms are added to sums stored in rV .

The volume formula (3.13) and its gradient vector rV provide us with the necessary in-
formation to use the volume constraint in any constrained optimization technique. The volume
gradient, rV , is especially useful as it is used to accelerate the convergence process of many
iterative optimization methods by helping to provide a better estimate of the search direction
for the optimal solution. To show their dependence on c, we will use V(c) to indicate the scalar
volume function of c and rV(c) to show the gradient vector function of c.

3.4.3 Deformation of volume-conserving B-spline solids

In the absence of dynamics, we can solve the volume preservation problem as a static, con-
strained optimization problem. The designer can manipulate control points, and the rest of
the control points are subsequently adjusted to conserve volume. Volume preserving deforma-
tions are described as being isochloric[118]. We will discuss volume-preserving motions in a
dynamics context in Chapter 5.

We use a constrained optimization technique to deform the B-spline solid while conserv-
ing volume and fixing selected control points. We can use sequential quadratic program-
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ming (SQP)[39] to perform optimization of a non-linear objective function with non-linear
constraints. A sequence of quadratic sub-problems are solved which produce an improving
sequence of estimates of the solution vector (the control points, c). For each sub-problem, the
quadratic objective function is minimized while constraining the search to a given constraint
set. If the constraints are nonlinear, they are locally approximated with linear constraints. Fur-
ther details of the SQP algorithm can be found in [39].

We formulate the objective function as the sum of the least-squares deviation between the
original control points and the current estimate,

f(c) =
3n�3X
i=0

wi

2
(ci � oi)

2; (3.21)

where there are n control points with their coordinates collected in c. The values oi represent
the components of the original control point configuration. By adding weights, w i, we can bias
a coordinate to change more or less than others.

Volume conservation is achieved using the scalar volume function, V(c)(Equation 3.18)
and its gradient vector rV(c) to satisfy the Kuhn Tucker necessary conditions for constrained
optimality[39]:

rf(c�) +
mX
i=1

��irgi(c�) = 0 (3.22)

��i gi(c
�) = 0; i = 1; : : : ; m (3.23)

��i � 0; i = me + 1; : : : ; m: (3.24)

The vector c� is the optimal configuration of control points for a problem with m constraints
(withme equality constraints andm�me inequality constraints). Condition 3.22 describes how
the gradients of the objective function, f , and of the weighted active constraints, gi, sum to zero
at a solution point c�. � represents a vector of Lagrangian Multipliers for each constraint that
roughly weights each constraint’s influence on the objective function value. Conditions 3.23
and 3.24 claim that at a solution point c�, the constraints will either be inactive (��i = 0) or
active (gi(x�) = 0; �i > 0). The inactive condition only applies if the optimization contains
inequality constraints, gi(c) � 0; i = me + 1; : : : ; m.

For our optimization problem, we only have equality constraints. In particular, the con-
straint for volume-preservation is

g(c) = V(c)� Vo = 0; (3.25)

where Vo is the desired target volume. The optimization problem can be stated as:

Minimize f(c) subject to g(c) = 0: (3.26)

We also can constrain selected control points to be fixed. Rather than formulating explicit
constraint equations for each fixed control points (three equations per control point), we simply
set the corresponding entries inrV and inrf(c) to zero. During the optimization algorithm, a
zero entry in the gradient vectors implies that modifying the corresponding control point com-
ponent will not affect the objective function or violate constraints. Consequently, the point will
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A B C

Figure 3.8: After modifying A to produce an initial configuration B, a volume-preserving
static optimization process is applied to produce C with the same volume as A. Several control
points are constrained not to move during this process to prevent the optimization process from
reverting back to its original form, A.

not be adjusted. The parts of the solid under the local influence of the fixed control point will be
subject to less degrees of freedom, but still be modifiable by neighbouring free control points.
Figure 3.8 depicts an initially deformed B-spline solid and the new control point configuration
after volume preservation with selected fixed points.

3.5 Generalized coordinates for B-spline solids

Recall from Section 2.3.2, that the generalized coordinate vector q defines a shape configu-
ration for an object. We describe control points and spatial points as two choices of gener-
alized coordinates that will influence how we formulate the generalized forces and potential
energy functions in the corresponding Lagrangian equations of motion (see Section 2.3.7) for
physically-based modelling.

3.5.1 Control points as generalized coordinates

Setting the control points, c, to be the generalized coordinates, q, allows us to use constraints
that can be expressed naturally in terms of control points. We have shown that properties such
as volume can be computed with a closed-form expression in terms of elements of c. This
allows volume-preservation to be directly added as an energy term to the Lagrangian equations
of motion. Unfortunately, control points do not necessarily correspond to actual points in
a solid and can reside completely outside the solid’s spatial domain. Manipulating control
points only indirectly modifies the solid’s shape. Hsu et al.[59] have developed least-squares
techniques for directly manipulating solid shapes, yet it may not be possible to satisfy multiple
point constraints exactly.

3.5.2 Spatial points as generalized coordinates

As an alternative, we can define the same number of spatial points, s, corresponding to different
material coordinates in u, with the distinction that these points are actually part of the solid.



CHAPTER 3. B-SPLINE SOLIDS 57

The spatial points, s, can also be treated as generalized coordinates, q. Forces can be applied
directly to spatial points without needing to transforming the forces to a different coordinate
space. Manipulating these points will allow direct manipulation of the solid, albeit as a finite
set of points. We are also guaranteed that these multiple point constraints will be satisfied.

3.5.3 Selecting material coordinates for the spatial points

In order to select spatial points, we need to determine how to choose their corresponding ma-
terial coordinates in the u,v, and w parameter spaces. We will concentrate on how to sample
material coordinates for the u parameter space, and generalize the results to v and w. Assume
there are n+ 1 B-spline basis functions for u of order K: B0;K(u) : : :Bn;K(u).

We would like to choose points that have predictable shape changes when we manipulate
them. Since control points offer intuitive, local control on the surface shape, we would like to
select spatial points that closely emulate this behaviour. By selecting the material coordinate
that is maximally influenced by a control point, we can create a strong correlation between the
modification of a spatial point with the control point. Forsey and Bartels[33] used the same
idea and termed these material coordinates points of maximal influence.

In our univariate example, each of the n + 1 basis functions have a corresponding control
point. By choosing parameter values for u that maximize each basis function, we can produce
a set of n + 1 spatial points. That is, parameter umax;i maximizes Bi;K(u) for i = 0 : : : n. We
have computed solutions for linear, quadratic and cubic B-spline basis functions. If the basis
functions are symmetrical in shape, as with uniform knot vectors, the maxima occur trivially
at the centre of each basis function. For non-uniform knot vectors, the solutions can be more
difficult to find.
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Bi,3(u)Bi,2(u) Bi+1,2(u)

Figure 3.9: Computing the maximum of a quadratic B-spline function.

B-splines of 2nd order (degree 1) are hat-shaped (see Figure 3.2A) and the maxima will
occur at the middle knot, umax;i = ui+1, in the support [ui; ui+2]. For quadratic B-splines
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(degree 2, order 3), we can find the maximum of Bi;3(u) by first setting the derivative formula
to zero:

dBi;3(umax;i)

du
= 2

 
Bi;2(umax;i)

ui+2 � ui
� Bi+1;2(umax;i)

ui+3 � ui+1

!
= 0 (3.27)

) Bi;2(umax;i)

Bi+1;2(umax;i)
=

ui+2 � ui
ui+3 � ui+1

: (3.28)

Using the partition of unity property, we can eliminate one of the basis functions since there
are a maximum of two B-splines of order 2 that have non-zero values at the maximum:

Bi;2(umax;i) +Bi+1;2(umax;i) = 1 (3.29)

) ui+3 � ui+1

(ui+2 � ui) + (ui+3 � ui+1)
= Bi+1;2(umax;i): (3.30)

Due to the arrangement of the B-spline functions, the maximum of Bi;3(u) will occur in the
interval [ui+1; ui+2] (see Figure 3.9). Using Equation 3.30 and the geometry of similar triangles
(see shaded triangles in Figure 3.9), the location of the maximum occurs at:

umax;i = ui+1 + (ui+2 � ui+1)
ui+3 � ui+1

(ui+2 � ui) + (ui+3 � ui+1)
: (3.31)

Finding the maximum of a general, non-uniform cubic B-spline basis function involves analysis
of the lower-order basis functions in the cubic B-spline’s support interval. The maximum may
occur in any interval depending on the knot values chosen. Rather than attempt to derive
a closed-form solution, the maxima were found using the Maple V symbolic-computation
package[62] for all possible uniform cubic B-spline functions with knot intervals of width one
and containing up to four multiple knots. These B-spline functions are displayed in Figure
3.10.
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Figure 3.10: All possible cubic B-spline functions from the knot sequence of
[0; 0; 0; 0; 1; 2; 3; 4; 4; 4; 4]. Maxima positions are indicated with solid circles.
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Now that we have defined points of maximal influence for degree 1, 2, and 3 B-splines,
the corresponding material coordinates for a 3-D parameterization will be n-tuples of all the
individual knot maxima:

umax;I = (umax;i; vmax;j; wmax;k); i = 0 : : : nu � 1; j = 0 : : : nv � 1; k = 0 : : : nw � 1; (3.32)

where I = (inv + j)nw + k and we have nu, nv, and nw B-spline basis functions in each of the
parameter domains of u, v and w respectively.

3.5.4 Material coordinates for arbitrary spatial points

A

B

Figure 3.11: For a given point, we can find the corresponding material coordinates (point A is
inside the solid) or find the closest point on a B-spline solid to a point B.

As well as using the B-spline solid equation to evaluate spatial points of the solid, the
inverse problem of finding the material coordinates for a point is equally useful. Given a point
in world coordinates, p, we define a procedure called closest(p), which returns the material
coordinates that coincides with p. If the point is external to the solid, closest(p) finds the
material coordinate that produces the closest point on the solid to p. Figure 3.11 illustrates
these operations.

The existence of closest(p) allows the detection of collision and interpenetration of the
solid with other objects. This is necessary to detect interaction of our muscle models with
the underlying bones as well as with other musculotendons. Being able to relate external
points to the local coordinate system of the solid is an important requirement of deformation
techniques for computer animation (Section 2.3.4). B-spline solids can act as general free-form
deformation lattices where a designer can pre-shape the lattice to closely bound the internal
geometry to be deformed. Skin geometry can be anchored to underlying muscle to deform skin
based on musculature movements.
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Using Equation 3.13 for evaluating a B-spline solid, we can cast the inverse problem as a
non-linear least-squares optimization procedure:

Minimize R(u) = kx(u)� pk22; (3.33)

where R(u) is the objective function that minimizes the Euclidean norm of the deviation be-
tween p and the point of the B-spline solid, x(u). We wish to find the optimal material coor-
dinate u� that corresponds to the point p exactly (R(u�) = 0)) or that is closest in terms of
Euclidean distance to the point.

Using a least-squares approach instead of a nonlinear root-finding problem permits both the
point inclusion and proximity problems to be solved with the same technique. Numerically,
global convergence can be obtained with a least-squares problem, but not necessarily for a root-
finding problem since there may be no real roots[26]. There is a chance that the solution found
with a least-squares solver may coincide with a local minimum, making it important to choose
an initial estimate close to the true minimum. The initial estimate is determined by choosing
among the stored spatial points that we use for the generalized coordinates of a B-spline solid.
For each of these spatial points, we keep track of the material coordinates. We choose the
closest spatial point to our test point. As the spatial points are distributed throughout the solid,
there is a higher probability that the spatial point we choose will be close to the true minimum.
In cases where we may be dynamically varying the test point and wish to quickly compute the
inverse or closest coordinate, we can use the last known solution as the initial guess for the
current problem. Using this method, we have successfully observed convergence after a few
iterations.

Least squares problems take advantage of the special form of the objective function and
iteratively evolve an initial guess towards the solution. The key process among the different
methods is the determination of the step direction and step length for modifying the current
iterate towards the solution. We use the Levenberg-Marquardt method implemented as a scaled
trust region approach by Moré[26] from the MINPACK numerical optimization library[85].
Convergence is global and when R(x�) = 0 (point inclusion), convergence is quadratic[26].

We modify the Levenberg-Marquardt algorithm to restrict the search for material coor-
dinates to within the valid parameteric domain. After the step length and direction is de-
termined, we check that the new material coordinate iterate does not lie outside the solid,
u 2 umin � umax. Whenever a component of u lies outside the respective boundaries, we
clamp the value to the boundary value. The iterates are allowed to move along the boundary,
but never leave the solid’s domain. Convergence is guaranteed by ensuring all derivatives are
defined inside the domain. Although technically, the derivatives do not exist at the parametric
boundaries due to lack of continuity, we use the one-sided derivatives from the direction of the
internal domain to the boundary.

Using closest(p), we nest the control points of one B-spline solid inside another, allowing
the inner solid to be deformed with the free-form deformation lattice formed by the surrounding
solid. This can be used to visualize other biological structures within muscles using arbitrary
geometry. Figure 3.12 illustrates nested B-spline solids being deformed.
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Figure 3.12: B-spline solids can be used to create volumes that tightly bind other geometry for
free-form deformations.

3.6 Summary

In this chapter, we have reviewed the important properties of the B-spline basis functions that
we wish to utilize for modelling muscles. Using these properties, we have developed a com-
plete set of techniques for interactively displaying and shading B-spline solids. We presented
a closed-form expression for the volume of the solid, including data structures for fast evalu-
ation. The volume formula allows volume-preserving, deformations of B-spline solids using
optimization techniques.

Control points and spatial points were presented as two different sets of generalized co-
ordinates that can be used to allow different modes of shape manipulation. In addition, we
present methods for assigning the material coordinates to spatial points, as well as finding suit-
able material points for arbitrary spatial points. In the latter case, this technique can be used
to create point inclusion and closest point procedures. The next chapter uses these generalized
coordinate schemes to develop data-fitting techniques for creating initial shapes of B-spline
solids from different data sources.



Chapter 4

The Geometric Musculotendon Model

The shape of the organ [muscle] is susceptible of an incalculable variety, while the original
property of the muscle. The law and line of its contraction remains the same and is simple.
Herein the muscular system may be said to bear a perfect resemblance to our works of art.

Palley’s Theology

In this chapter, we use the notation and techniques developed from Chapter 3 to create a
methodology for generating useful initial shapes with B-spline solids from external data. In
Section 3.5, we introduced control points and spatial points as generalized coordinates for B-
spline solids. We will now develop the solution procedure for solving for a set of control points,
given a set of spatial data points. We solve exact systems of n control points for n spatial points
as well as under-determined and over-determined systems where we have m spatial points for
n control points with m 6= n.

We will focus on how to generate suitable spatial points from different sources of data.
By creating a common methodology for data-fitting, we show how to apply this technique to
several specific examples of muscle fitting. Each case focuses on a different application of
muscle modelling and illustrates the versatility and suitability of the B-spline solid model for
approximating the geometry of musculotendons.

4.1 Conversion between control points and spatial points

It is important to be able to translate back and forth from control points to spatial points while
working with B-spline solids as some operations are easier to work with in one configuration
space opposed to the other. We will need to formulate a linear system that relates the control
points to the spatial points.

To simplify the systems we are solving, we can flatten out the 3-D indexing of n control and
spatial points into a single index. We have nu, nv, and nw basis functions for each parameter,
with n = nunvnw. For the control points in c, we reindex the points, cijk; i = 0 : : : nu� 1; j =
0 : : : nv � 1; k = 0 : : : nw � 1, to create a new index I = (inv + j)nw + k. Control point, ci,
will have coordinates (cxi ; c

y
i ; c

z
i ). We can perform the same re-indexing on the spatial points

s to get si = (sxi ; s
y
i ; s

z
i ). Using the same index I , we express the triple tensor-product terms

62
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with:

�I(u) = Bu
i (u)B

v
j (v)B

w
k (w); and u = (u; v; w): (4.1)

The complete linear system can be described as

0
BBBBBB@

�0(umax;0) : : : �n�1(umax;0)
�0(umax;1) : : : �n�1(umax;1)

: : :
�0(umax;n�2) : : : �n�1(umax;n�2)
�0(umax;n�1) : : : �n�1(umax;n�1)

1
CCCCCCA

2
6666664

cx0 cy0 cz0
cx1 cy1 cz1

: : :
cxn�2 cyn�2 czn�2

cxn�1 cyn�1 czn�1

3
7777775
=

2
6666664

sx0 sy0 sz0
sx1 sy1 sz1

: : :
sxn�2 syn�2 szn�2

sxn�1 syn�1 szn�1

3
7777775
;

(4.2)
or more succinctly as

�c = s; (4.3)

where � is the n � n matrix described in Equation 4.2, and umax are the material coordinates
assigned to the spatial points as described in Section 3.5.3. The matrix is sparse, as each row
will have an upper bound of K � L �M non-zero entries, where K, L, and M are the orders of
the B-spline basis function sequence for each parameter. In practice, we solve three separate
linear systems for each of the column vectors in c with the corresponding vector for s. The
elements of the array � can be pre-computed once and � is the same matrix for all three linear
systems. An LU factorization[100] of � can be performed, storing the factors for repeated
solution of Equation 4.3 with different s. The combination of sparsity and precomputation of
factors permits quick solution computation. This allows interactive editing of the solid’s shape
and real-time animation performance. The solution of these linear systems is a key phase of the
data-fitting process. It allows the interpolation of B-spline solids through external data points,
which we represent as spatial points.

4.2 Least-squares data-fitting

In Section 4.1, we described how to fit a B-spline solid consisting of n control points to n
spatial points. There may be situations where we may want to fit a B-spline solid of n control
points to a data set consisting of m spatial points where m 6= n. In these cases, we need to find
an appropriate solid shape that can minimize the deviation of all spatial points to the solid in a
least-squares sense (Figure 4.1).

Formerly, our system relating control points to spatial points is described as in Equation
4.3. We wish to find the control points, c, that minimizes

f(c) = k�c� sk22; (4.4)

which is the Euclidean norm of the residual vector �c� s.
In cases where m > n, we use QR-factorization[26] to find a least-squares solution. The

matrix � can be factored as � = QR where Q is an m �m orthogonal matrix and R is upper
triangular in the first n rows, with the remaining m� n being zero rows. Expanding Equation
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Figure 4.1: Data-fitting techniques for B-spline solids. Data points are in black and control
points are in gray. Images A, B, and C represent m = n, m > n and m < n, where m are
the number of data points and n are the number of control points. Image D illustrates the case
where an insufficiency of data points can lead to unwanted results.

4.4, we have

k�c� sk22 = kRc�QT sk22
=

 R1c �QT
1 s1

0 �QT
2 s2


2

2

= kR1c�QT
1 s1k22 + kQT

2 s2k22;
(4.5)

where R1 is the n� n upper triangular portion of R and Q1 contains the first n rows of Q with
the remaining m� n rows in Q2. The spatial points, s are also partitioned into two vectors s1
and s2 with the first n entries in s1 and the remaining m� n in s2. To minimize Equation 4.5,
we need to solve the system R1c = QT

1 s to reduce the first term in the last line of Equation 4.5
to zero. As R1 is upper triangular, c can be found easily with back-substitution.

For the case where m < n, QR factorization cannot be used. Since the system is underde-
termined, the Singular Value Decomposition (SVD) method can be used to find a least-squares
solution amongst the many possible solutions. The SVD factorization of � is UDV T , where
U and V are both orthogonal and D 2 Rm�n contains non-negative values on the diagonal
entries,

dii = �i � 0; i = 1; : : : ;minfm;ng; dij = 0; i 6= j; (4.6)

and zero elsewhere[26]. The least-squares solution is found by using the pseudoinverse, �+ =
V D+UT , with

D+ =

8><
>:

d+ii =

(
1=�i; �i > 0
0; �i = 0

d+ij = 0; i 6= j
; (4.7)
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Figure 4.2: Given the same number of data points, but different control points for a B-spline
solid, the solid with the fewer control points (left) produces a smoother looking B-spline solid
because high frequency details cannot be captured.

and c = �+s.

Although SVD can also be used to solve cases where m > n, less computation is required
to perform a QR decomposition. Consequently, we use QR decomposition for overdetermined
systems and SVD for underdetermined systems. Where the system is underdetermined, the
SVD technique tends to concentrate the control points at the data points. Visually, this can lead
to problems where m is relatively small compared to n, as oscillations in the shape can appear
between data points (Figure 4.1).

The overdetermined systems allow us to approximate a large data-set of points with a com-
pact shape representation of fewer control points. The use of least-squares methods with B-
spline solids and their inherent smoothness properties tend to act as a low-pass filter process
that produces smooth surface fairing than if the original spatial points were fitted to a B-spline
solid with an equal number of control points (Figure 4.2).

Although techniques exist for producing better quality faired surfaces[70, 126], these meth-
ods assume that the surface will remain static. For animation of musculotendons, the B-spline
solids will be constantly changing shape, requiring a faired surface to be recomputed for every
timestep. Not only may this prove computationally prohibitive, there is no guarantee of coher-
ence in control points (or spatial points) from frame to frame. For this reason, we use the linear
system defined in Equation 4.2 to quickly recompute the new control point configuration for a
changing set of spatial points in an animated B-spline solid.
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4.3 Data-fitting using the continuous volume sampling func-
tion

In section 4.1, we described how to solve for a set of control points given the same number of
spatial points. In order to achieve this, material coordinates had to be assigned to each spatial
point. Using this mapping, we can establish a methodology for fitting a B-spline solid to a set
of data points that represents the spatial pionts.

The data-fitting process can be described as a series of stages:

1. From various raw data sources, extract 3-D coordinate data that samples the physical
object we wish to represent. Samples can occur within the volume of the object as well
as on its boundary.

2. Using the 3-D data, construct a continuous volume sampling function (CVSF) that con-
structs a continuous, volumetric parameter space over which we can generate an arbi-
trary number of samples that span the solid’s domain. The CVSF can be described as:
CVSF(~u; ~v; ~w), such that ~u; ~v; ~w 2 [0; 1]. We normalize the three parameters to allow
reuse of the CVSF for solids of varying number of control points.

3. We uniformly sample the parameter space of the CVSF to generate the same number of
spatial points as we have control points in our model. Material coordinates are assigned
to these spatial points as described in Section 3.5.3.

4. Using the sampled data points as spatial points, x, solve the linear system described in
Equation 4.3.

Once the B-spline solid is created with an initial shape based on the data points, we can
subsequently manipulate the shape for minor adjustments or animate global changes through
physically-based modelling or deformation.

We have developed this procedure for three different sources of data which may arise for
different muscle modelling applications. Stages 1 and 2 must be custom-designed for each
different data source, while 3 and 4 are independent of the original form of the raw data. We
will outline the first two stages for three different examples: a stack of contour curves, a set of
digitized muscle fibres, and profile curves for interactive creation of muscle.

4.4 Stack of contour curves

We may have a series of images which represent cross-sectional (axial) slices of various body
segments. For example, we used portions of the Visible Human data-set[89] in the lower leg
region to isolate human soleus muscle (Figure 4.4). Each image was obtained from the Visible
Human Male data-set from the anatomical portion of the data set (versus the MRI and CT
sections). The resolution of an image was originally 2048x1216 pixels, at 24-bit colour, at 1
mm intervals between axial slices. To reduce storage requirements and to prepare for boundary
extraction, the images were scaled down to 800x500 pixels and reduced to 256 gray levels.
As the muscle boundaries we were extracting did not vary dramatically from slice to slice, we
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Figure 4.3: Posterior (left) and anterior (right) views of B-spline solids derived from Visible
Human soleus and gastrocnemius data.

obtained images at 10.0 mm intervals to decrease the amount of data to process. This also
illustrates the benefit of using B-spline solids to smoothly interpolate between an incomplete
set of image contours to create a whole muscle (Figure 4.3).

As we could not reliably segment the individual posterior and anterior regions of the soleus
by automatic means, an anatomist examined each of the data images and delineated the differ-
ent regions, outlining the boundaries using a dark thick line with an image paint program. This
facilitated the use of active contours (“snakes”)[67] to quickly guide a deformable closed con-
tour curve to the marked boundaries. Active contours operate by finding a curve configuration
that navigates an energy gradient created from the gray scale image of the anatomical slice.
The curve settles in the local minima of the energy landscape. By tracing the boundaries with
dark lines, we accentuate these energy troughs, so the active contours quickly become attracted
to the contours. Once the curve has reached equilibrium, it is sampled to extract a piecewise
line segment representation of the contour. The set of 3-D points that make up these contour
curves are used to create a CVSF.

4.4.1 Creating the CVSF

Given a set of n curves extracted from the axial slices: C0; : : : ; Cn�1, we index the curves with
the vertices that it contains. If curve i has m vertices, we represent each point on the curve as
Ci;j, where j = 0 : : : ; m� 1. We wish to generate a CVSF that produces a uniform sampling
of points throughout the volume spanned by these image contour curves.

Our strategy is to interpolate the contour curves such that traversing the parameters will
span the solid in an intuitive manner. We designate ~u to increase radially outward from a
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active contour ("snake")posterior soleus

Figure 4.4: The left image is an image slice from the Visible Human dataset, showing the
muscle contours outlines in black. On the right, an active contour (in white) has attached itself
to the dark contour.

central axis of the solid to its contour boundaries. Parameter ~v will traverse the perimeter
around the axis and ~w will range from the bottom of the stack to the top (Figure 4.5).

To define a centre curve along the axis of the muscle, we compute the centroid points, ĉi of
each contour and interpolate a B-spline curve through these points. We denote the centre axis
as axis( ~w), where we can reparameterize the curve from ~w 2 [0; 1]. Interpolating a closed B-
spline though the points of each contour curve Ci, produces the curves Ci(~v); i = 0 : : : ; n� 1.
Our algorithm for constructing the CVSF from contour curves can now be stated as:

Given (~u0; ~v0; ~w0) 2 ([0; 1]� [0; 1]� [0; 1]),

1. Construct a B-spline curve, profile~v0( ~w) that interpolates all points
Ci(~v0); i = 0 : : : ; n� 1.

2. Compute p0 = axis( ~w0) and p1 = profile~v0( ~w0).

3. Obtain the final sampled point, p, by linear interpolation:
p = p0(1� ~u0) + p1~u0.

Linear interpolation in step 3 produces a uniform radial sampling from the centre axis
to the outer boundary. However, if we were to simply define parameterizations that linearly
interpolate between the contour levels , our iso-lines running longitudinally down the solid
would be aligned to the planes of the image slices (Figure 4.6C).

The iso-lines should be independent of the original number and orientation of the contour
curves. Instead, we parameterize axis( ~w0) and profile~v0( ~w0) by arclength to produce a sam-
pling that uniformly spans the spatial dimensions of the data. To reduce twisting about the axis,
we repeatedly increment the indices j for each curve, Ci;j, using the update rule,

jnew = (jold + 1) mod m; (4.8)
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Figure 4.5: Contour curves extracted from the Visible Human data-set are used to create a
CVSF to generate a B-spline solid. Parameter directions are displayed for the CVSF.

until the sum of squared distances between points in adjacent contour levels,

dist2 =
m�1X
j=0

(Ci;j � Ci+1;j)
2; (4.9)

is minimized. Figure 4.6D shows the effects of solid-fitting with and without twist correction.

With the defined CVSF(~u; ~v; ~w), we can freely sample spatial points as follows,

sijk = CV SF (
i

Nu � 1
;
j

Nv

;
k

Nw � 1
); (4.10)

where i = 0; : : : ; Nu� 1; j = 0; : : : ; Nv� 1; k = 0; : : : ; Nw� 1. In closed, contour curves, the
~v parameter is periodic. Consequently, the denominator is set to Nv in Equation 4.10, to reflect
the fact that ~v = 0 and ~v = 1 will produce the same point if the other two parameters are the
same value.

By transforming the original static images from the Visible Human data-set to a deformable,
B-spline solid model, we can subsequently animate its shape, simulate contractions and visual-
ize fibres in its volume. Unfortunately, from an anatomical standpoint, the fibres reconstructed
from a contour curve-derived B-spline solid generates iso-curve fibres that do not match mus-
cle architecture observed in real muscle (Figure 4.7). The contour curves inherently contain
only boundary information, with no information about the internal structure of muscle. By
using fibre set data, we can build a more appropriate model that can capture fibre architecture.
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Figure 4.6: Sources of distortion in data-fitting of B-spline solids without arclength parameter-
ization and twist correction.

4.5 Fibre sets

In order to depict the correct arrangement of fibres that make up muscle tissue, it was necessary
to look at alternative data collection techniques to traditional medical images of axial sections.
It is extremely difficult, if not impossible to track individual fibres between adjacent axial
sections. Working with anatomy experts1, the following procedure was developed for retrieving
3-D coordinate information on muscle fibres. We describe the procedure as performed with
human soleus muscle.

4.5.1 Specimen preparation for serial dissection

The human soleus muscle has three architecturally, distinct regions: posterior, marginal and
anterior (Figure 4.8). The muscle specimen was serially dissected to obtain fibre arrangements
throughout the entire volume of the muscle. The specimen was placed on a calibrated base
plate to establish a common reference coordinate system for all specimen layers. The position
and orientation of the base plate was calibrated with three cameras using the direct linear
transformation (DLT)[1] procedure (Figure 4.9).

Using the three camera setup, images were taken at different stages in the serial dissection
of the human soleus. In serial dissection, the layers of muscle tissue are removed one at a

1Anne Agur and Nancy McKee from the Department of Anatomy and Surgery, University of Toronto.
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Figure 4.7: Comparison of generated fibres for the posterior soleus region from different data
sources. The image on the left shows fibres incorrectly running from top to bottom in a side
view of posterior soleus derived from contour stacks. The right image shows the correct fibre
arrangement, running posterior to anterior, in a solid generated from fibres obtained by serial
dissections.

time from the most superficial layers to the deeper, interior ones. The human soleus specimens
were dissected in the posterior to anterior direction. At each level, the end points of 50-100
representative fibres were pinned with colour-coded beads. The fibres were chosen to be evenly
distributed along the length of each muscle layer (Figure 4.10B).

The muscle specimens were attached to the fibula and tibia bones of the lower leg in situ.
The bones were rigidly attached to the base plate. The position of the colour-coded beads were
extracted from each of the three images using a modified form of DLT[8]. These muscle-related
coordinates were sampled points taken along representative fibres distributed throughout the
muscle specimen (Figure 4.11).

4.5.2 Fibre set CVSF construction

For each architecturally distinct muscle region, each muscle fibre can be represented with an
ordered n-tuple, F = (p0; : : : ;pn�1), where n points have been sampled from the fibre with
p0 and pn�1 representing the fibre end points. Each fibre is given two indices to reference its
position within the muscle. The fibre Fi;j represents the jth fibre from the ith layer of serial
dissection. If a third index is added, Fijk denotes the point pk of the fibre Fij .

Fibres are not constrained to have the same number of samples. This allows flexibility in
choosing samples as a minimum of two points can be used for relatively straight fibres, with
more points for fibres that are curved. The number of fibres do not have to be the same within
each layer, allowing more fibres to be sampled for muscle layers that are larger in area and
would require more fibres to maintain the same sampling density per area of muscle.

Using this indexing scheme for fibres and their points, we can design the CVSF as follows.
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Figure 4.8: There are three architecturally-distinct regions in the human soleus: marginal,
posterior and anterior fibres. Images courtesy of Valerie Oxorn, Copyright 1998-1999.

Given (~u0; ~v0; ~w0) 2 ([0; 1]� [0; 1]� [0; 1]),

1. Let ~u0 measure the amount of depth within a muscle. Let numLayers be
the number of layers obtained with serial dissection. The layers are indexed
0-relative. Let numFibresi be the number of fibres in layer i. From ~u0, we
compute the indices using floor functions:

i = b~u0(numLayers � 1)c; j = b~v0(numFibresi � 1)c: (4.11)

2. Create the B-spline curve, bcurvei;j( ~w) that interpolates the points of Fi;j.
We parameterize the curve by the arclength. For fibres consisting of two
endpoints only, we use degree one B-spline curves. For all other fibres, we
use degree two curves. Cubic curves introduced unwanted oscillations that
may overestimate fibre lengths.

3. Obtain the following four points:

point00 = bcurvei;j( ~w0)

point01 = bcurvei;j+1( ~w0)

point10 = bcurvei+1;j( ~w0)

point11 = bcurvei+1;j+1( ~w0):

These four points define the corners of a bilinear space over which we will
interpolate to get the final point.
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Figure 4.9: Camera setup for digitizing fibres. The muscle specimen is placed in situ on top of
a base plate. Three cameras record a 2-D image in preparation of the DLT process.

Figure 4.10: Serial dissection of human soleus muscle is conducted by placing the specimen
on the base plate (A). The fibres of the soleus are marked with colour-coded beads for identifi-
cation and 3-D coordinate extraction (B).
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Figure 4.11: Fibre sets for human soleus data. On the left, are all the fibre sets shown together.
Each architecturally-distinct fibre set is displayed in isolation on the right.

4. Determine the interpolation parameters:

û = ~u0(numLayers � 1)� i; v̂ = ~v0(numFibresi � 1)� j (4.12)

5. Linearly interpolate between the pair of points:

point0 = point00(1� v̂) + point01v̂

point1 = point10(1� v̂) + point11v̂:

6. Perform the second part of the bilinear interpolation:

CVSF(~u0; ~v0; ~w0) = (1� û)point0 + ûpoint1: (4.13)

The bilinear interpolation in the procedure occurs in the space spanned by the four B-spline
curves computed with parameter ~w. Figure 4.12 illustrates this process.

Using the CVSF, we have built B-spline solids that can capture muscle architectural details
of internal fibre arrangements. Fibres can be generated by creating streamlines (refer to Section
3.2.5), where each iso-curve represents a muscle fibre (two parameters are held constant while
the third varies). Since the streamlines have an analytical expression, we can compute physical
characteristics within the muscle model that would be tedious to perform on a real specimen.
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Figure 4.12: CVSF construction for fibre sets. The CVSF sample point is the result of a bilinear
interpolation process on the fibre set data.

4.5.3 Fibre lengths

With the streamlines representing fibres, we can compute the arclength to estimate fibre length.
The arclength can be computed using numerical integration schemes such as Simpson’s rule
[100]. Alternatively, a less-accurate, but faster estimate can be computed by chord length
approximation (summing the lengths of the line segments joining sampled points on each fibre).
As the number of sampled points increase, the length converges to the true arclength. Figure
4.13 illustrates computed lengths of fibre streamlines generated in a model of the posterior
soleus region.

4.5.4 Fibre pennation angles

The angle a fibre’s orientation has with respect to the tendon is traditionally approximated as
a single, lumped average for the entire muscle[138]. Observations taken from the dissected
soleus muscle in Section 4.5.1 show that pennation angle can vary significantly within a single
muscle. The existence of a 3-D muscle model motivates the possibility of developing a more
accurate method to measure pennation angle. Pennation angle is usually measured by exam-
ining the fibre angle within a planar cross-section of muscle relative to the tendon attachment
area. Mechanically, the pennation angle of the fibre should be measured relative to the local
tangent plane of the tendon aponeurosis that it is attached to. This orientation information is
not obtainable from a cross-sectional view of the musculotendon.

With a B-spline solid model, we have the muscle represented with a solid continuum, com-
plete with derivatives defined at all its points. We can compute pennation angles directly by



CHAPTER 4. THE GEOMETRIC MUSCULOTENDON MODEL 76

normal
vector

tangent vectors

fibre vector

Figure 4.13: Fibre measurements such as fibre length and pennation angle can be computed
analytically on the virtual muscle model. In this example, sampled fibres from the posterior
soleus are measured for fibre length and pennation angle and the measurements are labelled
as a pair, (fibre length, pennation angle), beside each fibre. The bottom image illustrates how
the pennation angle can be calculated by measuring the angle the fibre tangent makes with the
local tangent plane.

computing the tangent plane of the attachment point of the surface each fibre inserts into. We
represent a particular streamline created by holding u = u0 and v = v0 constant and varying w
by

x(u0; v0; w); w 2 [wmin; wmax] (4.14)

where x is the B-spline solid Equation 3.1. Therefore, the unit tangent vector at the attachment
site, along the streamline is

tu0;v0 =
@x(u0;v0;w)

@w

k@x(u0;v0;w)
@w

k : (4.15)

The unit normal vector of the tangent plane of the aponeurosis is computed from the cross-
product of the tangent vectors making up the plane:

nu0;v0 =
@x(u0;v0;w)

@u
� @x(u0;v0;w)

@v

k@x(u0;v0;w)
@u

� @x(u0;v0;w)
@v

k : (4.16)

The angle, �, the fibre’s tangent vector, tu0;v0 makes with the tangent plane is:

� =
�

2
� cos�1 (tu0;v0 � nu0;v0) radians (4.17)

This pennation angle equation is closer to the true pennation angle because it takes into ac-
count the differences between the local orientation of the surface the fibre is attached to and
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Figure 4.14: Generation of fibres. 50, 100, and 500 fibres were generated in a model of the
posterior soleus using uniform pseudorandom number generation and Sobol sequences. The
Sobol sequence produced better distribution of fibres. However, as the number of fibres get
larger, the differences are less noticeable, making Sobol sequences more valuable for lower
sampling densities.

the fibre’s local orientation by computing instantaneous derivatives at the point of attachment
(Figure 4.13). This improved measure of pennation angle allows muscle force components to
be calculated more accurately at a finer resolution than previous lumped-average estimates of
fibre pennation.

4.5.5 Visualizing individual fibres

Once the B-spline solid is fit to the fibre set data, we can visualize arbitrary fibres within the
solid by generating streamlines. In our solids, one of the parameters will coincide with the
longitudinal direction of the fibre. In our examples, we vary the w parameter. We can represent
these streamlines as 3-D space curves,

streamline(u0; v0; w); (4.18)

where u = u0; v = v0, and w 2 [wmin; wmax].

Sampling using parameter values at uniform intervals produces an unnaturally, regular grid-
like distribution of fibres. We can randomly generate fibres, but we may get clumps of fibres
where the pseudorandom number generation has selected fibres that are spatially close together.
Solids with a cylindrical topology will have the characteristic that the same parameter interval
covers a denser spatial region closer to the axis than at the perimeter of the cylindrical bound-
aries. We can adjust the random sampling to bias the probability of choosing parameters of
larger radius to create a spatially even distribution. We have experimented with linear ramps
and increasing quadratic functions. Ideally, we would like every sample to be chosen to give
an overall non-structured appearance, simultaneously avoiding clumped fibres in regions of the
muscle model. We use a two-dimensional Sobol sequence to achieve this[100]. Figure 4.14
compares these different fibre generation methods.
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Sobol sequences for fibre generation

A Sobol sequence is considered to be a quasi-random or sub-random sequence where the points
are chosen to maximally avoid each other, distributing the fibres evenly across the solid (Figure
4.14). As we increase the sampling density, newer fibres are generated between the space of
existing fibres, never generating the same parameter values twice. We use the Sobol sequence
implemented in [100], which generates new numbers from the manipulation of binary functions
called direction numbers. Other equidistributed sequences, poisson-disk sampling, or stratified
sampling techniques[41] can be used for creating uniformly distributed fibres.

4.6 Profile curves

If you have drawn the bones of the hand and you wish to draw the muscles covering and
joining the bones, then draw threads, though not muscles.

Leonardo da Vinci

The first two data sources presented offer a migration path from sources of actual anatomical,
muscle data to construct a virtual 3-D B-spline solid model. However, there may be occa-
sions where interactive creation of solid shapes is desirable. For example, for an application
involving muscle reconstruction of extinct animals, it would be impossible to obtain soft tis-
sue specimens of real anatomy. A computer artist may wish to design a novel creature with a
unique musculoskeletal system that does not exist. Generally, a creature designer will use com-
parative anatomy to guide where major muscle groups are placed on a fictional animal. These
applications provoke the need to be able to design the shapes of B-spline solids interactively,
with visual guidance from a human designer.

The attachment of musculotendon onto a skeleton can be characterized by three important
curves: origin, insertion and axial. The origin and insertion curves indicate the attachment
areas of the tendon portions of a musculotendon to the bony surfaces of the skeleton. The axial
curve indicates the direction the muscles takes from one end of the curve to the other - its line
of action. We developed a CVSF that constructs the solid muscle using these profile curves.

We represent the origin and insertion as two closed, periodic B-spline curves, origin(~v)
and insertion(~v). We used quadratic (degree 2) B-spline curves, but higher order curves can
be used. The axial curve is an open, non-periodic, degree 2 B-spline, axial( ~w). In practice,
quadratic curves provide a good compromise between smooth curves and reduced oscillations
in the curve. We would like the CVSF to have the following properties that guarantee the solid
will interpolate the profile curves on its boundaries:

CVSF(1; ~v; 0) = origin(~v);

CVSF(1; ~v; 1) = insertion(~v);

CVSF(0; ~v; ~w) = axial( ~w); 8~v 2 [0; 1]:

Note that the last condition implies there is some redundancy where several parameter coordi-
nates with different ~v map to the same axial point. This occurs because the cylindrical solid we
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Figure 4.15: Creation of a cylindrical solid. The inner surface of a tubular solid (left) is col-
lapsed to a single axial curve (right).

are using is actually tubular, with the inner ~u = 0 surface collapsing to a single curve (Figure
4.15).

In addition to interpolating these profile curves, we would like to have some control over
the midsection of the muscle. If both the origin and insertion curves were small, a swept curve
that linearly interpolates the two terminal curves would produce a solid shape with a narrow
midsection. This would restrict the number of useful shapes that can be created, especially
for muscle where the midsection of muscle is often wider than its ends. To remedy this, we
can generate automatically an initial mid-sectional curve, middle(~v), which can be positioned
anywhere along the axis. We chose ~w = 0:5 for a balanced weighting between the two end
curves. The middle, along with the end curves, influence the shape of the musculotendon
along its length, similar to a swept, lofted model. Rather than linearly interpolate between the
sections directly, we developed a nonlinear weighting to account for the observation that the
shape does not uniformly change from the midsection to the extremal sections. Furthermore,
we wish the sections to be roughly perpendicular to the local orientation of the axial curve in
the area. That is, we wish to produce a type of deformable, generalized cylinder[107].

4.6.1 Reference frames for the axial curve

To generate points that deform as the axial curve moves, we need to define a reference frame
that can be centred for any ~w of axial( ~w). There are several candidates.

The Frenet frame[31] defines the reference axes from the first and second derivatives of a
space curve. Specifically,

t =
_x

k _xk ;
m = b� t;

b =
_x� �x

k _x� �xk ;

which are known as the tangent, main normal and binormal vectors respectively. These axes
follow the orientation and curvature of the curve. These three vectors can be the columns of
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a matrix, LFrenet = [t m b] that can be used as a rotation matrix to transform points to and
from this frame (the transpose of LFrenet is the inverse transformation). Unfortunately, the
Frenet frame is not defined for line segments (due to second derivative values of zero) and
experiences sudden discontinuities in orientation at inflection points on the curve. This can
cause undesirable twisting along the shape’s axis.

We use Bloomenthal’s rotation minimizing frame[12] to avoid sudden large changes in
orientation of the local frames along the axial space curve. This reference frame can be repre-
sented as a 3� 3 matrix, Lrotmin. By ensuring these axes are orthogonal to each other and all
unit vectors, Lrotmin is orthonormal, and further L�1

rotmin = LT
rotmin. We denote Lrotmin; ~w to be

the reference frame with origin at axial( ~w).
We compute Lrotmin; ~w as follows:

Lrotmin; ~w = Lfirst;0Rq; (4.19)

where Lfirst;0 is a reference frame calculated by rotating the world axes of (1; 0; 0), (0; 1; 0) and
(0; 0; 1) so that the z-axis, (0; 0; 1) aligns with the tangent vector, t0 = (tx0 ; t

y
0; t

z
0), at axial(0).

As there are many possible orientations that can align these two axes, we choose the rotation
that minimizes the angle of rotation, �0, for the alignment,

�0 = cos�1 (tz0); (4.20)

about the axis
afirst = (�ty0; tx0 ; 0): (4.21)

The reason why we chose to use Lfirst instead of LFrenet is that the latter reference frame will
twist as we manipulate its space curve. Lfirst does not change orientation as drastically and is
more resistant to twisting along the axis because it is created relative to a constant world axes.
Whereas the Frenet frame does not exist for straight lines, Lfirst can always be defined as we
only need to know the line’s tangent vector.

Rq is a rotation matrix derived from a quaterion q which encodes the angle and axis of
rotation that transforms the tangent, t0, at axial(0) to the tangent, t ~w at axial( ~w). The tangent
of the axial curve is simply the unit vector,

t ~w =
_axıal( ~w)

k _axıal( ~w)k ; (4.22)

where _axial( ~w) denotes the first derivative of the axial space curve. The angle, � in radians and
axis of rotation, a is defined as

� = cos�1 (t0 � t ~w) (4.23)

and

a =
t0 � t ~w

kt0 � t ~wk : (4.24)

The quaternion q is computed as:

q = (cos
�

2
; ax sin

�

2
; ay sin

�

2
; az sin

�

2
); (4.25)

and can be converted to a 3� 3 rotation matrix using the algorithm described in [128].
Having developed a local coordinate system based on profile curves, we will describe an

interactive user interface for defining these curves.
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4.6.2 Profile curve sketching with direct manipulation

Our strategy is to allow the user to select points directly on the visible bone surface geometry
through which profile curves should interpolate, allowing direct manipulation and edition of
points. A musculotendon shape designer would proceed to select points to sketch out the
curves for the origin, insertion and axial profiles of the muscle. In a modelling system, the
bones can be represented using polygonal meshes or tensor product surfaces like NURBs or B-
splines. If the user is using a 2-D pointing device to pick points on a 3-D image of the skeletal
system, the problem is to find the corresponding 3-D points of the picked geometry.

One alternative is to locate the intersection of a projected ray from the picked screen coordi-
nate with the surface geometry. This problem is encountered in ray-tracing applications[128].
The solution is not quick enough for interactive applications because of the computational ex-
pense involved in locating which geometry will first intersect this ray, and then mathematically
computing the intersection point of the ray with the geometry. Furthermore, the original picked
point is derived from a pixel which is already a discrete approximation of the true point on the
viewing plane.

To take advantage of current depth buffer-based graphics hardware, we can extract the
screen coordinates (x; y; z), where x and y are image coordinates and z 2 [0; 1] contains the
depth buffer value for that pixel. With these coordinates and using a standard 3-D application
programming interface like OpenGL, we can perform the inverse transformations of the mod-
elling, camera and projection matrices in the graphics pipeline to determine the corresponding
world coordinates for the picked point on the screen.

As we are dealing with discretized representations of the geometry, there is always the dan-
ger of imprecision. To minimize this potential inaccuracy, we closely bound the geometry with
the near and far clipping planes to increase the dynamic range of the depth buffer. Current depth
buffers have 16 to 32 bits of precision, providing enough significant digits for finding adequate
world coordinates. A nice side-effect of using this method is that if we require more precision,
the designer can zoom the camera closer to the bone geometry, so that accuracy is bound to the
discretization error of the picked visible pixel. Figure 4.16 illustrates several stages where a
designer can sketch a musculotendon directly onto the bone by successive construction of the
profile curves.

4.6.3 CVSF construction

Having created a local reference frame for our axial curve and having obtained point samples
for the origin, insertion and mid-section curves, we now describe how to compute
CV SF (~u; ~v; ~w).

We are given (~u0; ~v0; ~w0) 2 ([0; 1]� [0; 1]� [0; 1]).

1. Create interpolating curves, origin(~v), insertion(~v), and middle(~v) from the
obtained point samples created interactively from the user.

2. Evaluate points pO = origin(~v0), pI = insertion(~v0), and pm = middle(~v0),

3. Express pO, pI , pm in terms of the axial local frame of references,
Lrotmin;0, Lrotmin;1, and Lrotmin;0:5 respectively, to get
p0O = pOL

T
rotmin;0, p

0
I = pIL

T
rotmin;1, and p0m = pmL

T
rotmin;0:5.
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1) Sketch origin and insertion curves 2) Sketch axial curve

3) Build B-spline solid from profiles 4) Edit solid by manipulating profile curves

Figure 4.16: Stages of development of B-spline solids from profile curves. The middle curve
is generated automatically in step 3. In the fourth step, the solids can be shaded and textured
with striation patterns.
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4. Interpolate between p0
O, p0m, and p0I . Although we can linearly interpolate

between these points, the resulting swept surfaces are not satisfactory and we
will get only C0 continuity on the mid-section curve. Rather, we nonlinearly
bias the swept surfaces towards the mid-section curve by using a quadratic
function in the following interpolation algorithm:

t = �4 ~w0( ~w0 � 1)
if ~w0 2 [0; 0:5)

// Interpolate from the origin curve to the mid-section curve
p0 = p0O(1� t) + p0mt

else ~w0 2 [0:5; 1]
// Interpolate from the mid-section curve to the insertion curve
p0 = p0mt+ p0I(1� t)

5. Transform points back to world coordinates and scale by ~u:

CVSF(~u0; ~v0; ~w0) = axial( ~w0) + ~u0Lrotmin; ~w0p
0: (4.26)

By allowing a muscle shape designer to interactively modify the origin, insertion and axial
curves, we can completely specify a new B-spline solid which interpolates these profile curves.
This technique allows the larger number of control points of the solid to be completely specified
by a fewer set of points that make up the curve. In Chapter 5, we will show how the CVSF can
be used to generate stable physically-based motion as well as dynamical effects not possible
with static deformation. In the absence of physical simulation, profile curves can be considered
a deformation technique to shape the solids because the points of the solid are referenced and
transformed relative to a local coordinate system based on the profile curves.

4.7 Summary

In order to define an initial configuration of control points for a shape, we have developed a
general methodology that can create data fits for exactly-, under-, and over-determined systems.
The key idea is to generate samples from data-sets by creating a continuous volume sampling
function (CVSF). The CVSF can subsequently be used to generate an arbitrary number of
samples referenced by a well-defined parameter coordinate system. The samples are used to
solve either a linear system or a least-squares problem for the control points that create the
B-spline solid that fits the data.

Once an initial shape for the solid has been created, the geometry can be deformed several
ways. The CVSF can be modified to create slightly different samples and the data-fitting pro-
cess repeated to create a modified solid, as in the case with profile curves. However, physically-
based methods are attractive techniques for generating automatic, realistic motion, creating
shape responses to other objects during collision, and providing an important bridge for func-
tional simulations of muscle. We develop several methods for physically-based B-spline solids
in the next chapter.



Chapter 5

The Physical Musculotendon Model

Muscles constitute the contractile or power system; they produce action by their contrac-
tion or shortening. In contraction they are lifted and bulged, while in their relaxed state
they are flabby and soft.

George B. Bridgman in Constructive Anatomy, 1920

In Chapter 4, we described data-fitting methods to define initial muscle shapes for B-spline
solids. We would like to embed dynamic behaviour into these solids for visualization of muscle
contraction, volume-preserving deformations and collision resolution with other parts of the
musculoskeletal system.

5.1 System definition

From a simulation perspective, the system represents the physical object or collection of objects
that we wish to describe the motion of. It must be described completely by a state vector that is
referred to as a the degrees of freedom of the system. The state vector consists of the generalized
coordinates, q, that describe the system and their first derivatives, _q, with respect to time, the
generalized velocities.

We can have different perspectives of the physical system. When studying musculotendon
units in isolation, the system is the B-spline solid defined by its control or spatial points. In
cases where a muscle is comprised of several architecturally distinct regions, the system defi-
nition expands to include all the B-spline solids that are part of the muscle tissue. For example,
the human soleus would form a system of three B-spline solids, one for each of the posterior,
anterior and marginal portions (Figure 5.1).

In the context of a musculoskeletal system, the degrees of freedom of the joints of the bones
can be added to the state vector. However, we partition the musculotendon and skeleton state
variables for modularity and conceptual simplicity. We can isolate the equations of motion for
the degrees of freedom of the rigid, articulated skeleton by considering the musculotendons as
external force actuators, that apply external forces to the skeletal system.

This separation of the musculotendon state from the skeletal state allows us to work with
an isolated set of equations of motion for individual B-spline solids. For example, we can
use an implicit integration scheme for the B-spline solid if numerical stiffness exists in the

84
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A B C

Figure 5.1: Different system perspectives for simulation purposes: A) Single portion of muscle,
B) Multiple architecturally-distinct regions of muscle, C) Musculoskeletal system.

musculotendon’s equations of motion while using an explict integration scheme on the rest of
the skeleton.

5.2 Equations of motion

In Chapter 2, we reviewed the Lagrangian formulation for developing equations of motion for a
system. The Lagrangian equations of motion are expressed in terms of the degrees of freedom
of a system. The formulation accommodates the incorporation of energy functions, constraints
and external forces, providing a complete framework for embedding physical, dynamic be-
haviour into the geometric B-spline solid model.

5.2.1 Lagrangian formulation for B-spline solids

We restate the Lagrangian equations of motion as:

d

dt

ÆT

Æ _qi
� ÆT

Æqi
= Qi � ÆV

Æqi
; i = 0; : : : ; n� 1; (5.1)

where qi are the generalized coordinates and are either control or spatial points. T and V
are kinetic and potential energy respectively. Qi is a generalized force that is applied to the
generalized coordinates. Various potential functions, V , and external forces Qi are designed
for desired physical behaviour. The vector q is formed by concatenating the coordinates of n
points so that the ith point has its coordinates located at q3i, q3i+1, q3i+2, i = 0; : : : ; n� 1. For
the ith control point, ci, or spatial point, si we can convert its x, y, and z components to the
positions in the monolithic q vector as follows:

ci = (cxi ; c
y
i ; c

z
i ) = (q3i; q3i+1; q3i+2) (5.2)
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or

si = (sxi ; s
y
i ; s

z
i ) = (q3i; q3i+1; q3i+2): (5.3)

In subsequent discussion, the subscript of a function or gradient operator denotes the choice
of generalized coordinate the function is expressed in, or the gradient operator is in terms of,
respectively. For example,rs is the gradient with respect to spatial coordinates, while Vc is the
volume function expressed in terms of control points, so that Vc � Vc(c) is implicitly under-
stood. In the absence of any subscript, either generalized coordinate system can be assumed.

5.3 Spatial points as generalized coordinates

Many external forces are easier to conceptualize and define in the spatial domain. To formulate
the Lagrangian equations of motion with respect to spatial points, we need to represent all
forces and energies as functions of the spatial points and their velocities. External forces can be
directly applied to spatial points as they are expressed with the same generalized coordinates.

Suppose we have n spatial points. If we associate a mass mi with each spatial point, si, the
total kinetic energy of all the points is:

T =
n�1X
i=0

1

2
mi _s

2
i : (5.4)

This is equivalent to the matrix equation,

T = _sTM _s; (5.5)

where _s is the vector formed by concatenating all the spatial velocities of each point. The
3n� 3n diagonal matrix M has the following diagonal entries:

m0; m0; m0; m1; m1; m1; : : : ; mn�1; mn�1; mn�1: (5.6)

Referring to the general form of the Lagrangian equation[72], we can express equations of
motion in terms of spatial coordinates as

M�s = fs �rsVs + fd; (5.7)

where fs is a vector of external spatial forces and rsVs is the gradient vector of a potential
energy or work function Vs with respect to s. A damping force, fd, proportional to the velocity
of the spatial points, _s, is applied to dampen oscillations and simulate energy loss caused by
phenomena such as internal friction in the musculotendons. We will provide examples of fs
and Vs in subsequent sections. During numerical integration, we solve for the acceleration �s,
in Equation 5.7. As the mass entries will stay constant during our physical simulations, the
entries of the matrix M are constant and the changing values occur only on the right-hand-side
of Equation 5.7. Once �s is found, successive integrations produce the updated spatial positions
and velocities.
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5.4 Control points as generalized coordinates

By examining the B-spline solid equation (Equation 3.1), we can think of the control points,
c, as parameters that describe the deformation of all points in the solid. In order to introduce
dynamics, we need to embed mass into the solid, associating mass to each point in the solid.

Witkin and Welch[135] showed that by representing the deformations as linear functions
of the generalized coordinates q, Lagrangian equations of motion can be formulated that can
be computed rapidly. In particular, we can assign mass points to selected material coordinates.
For B-spline solids, we already have a convenient set of material coordinates, ui = umax;i (see
Section 3.5.3) that correspond to the spatial points s. Therefore, we assign a mass mi to each
of the spatial points si; i = 0; : : : ; n� 1.

To work with control points, c, as generalized coordinates, we need to convert between the
generalized control point velocities and spatial point velocities and between the generalized
control points forces and spatial forces. For a given spatial point, si, with material coordinates
ui, si can then be treated as a function of the control points, si(c). This function allows us to
relate the spatial velocity, _si to the generalized velocity of the control point, _c:

_s = Jxc (ui) _c; (5.8)

where x refers to the B-spline solid equation (Equation 3.1) and the entries of the Jacobian ma-
trix, Jx

c (ui) are the partial derivatives of x taken with respect to the control point coordinates,
c evaluated at the material coordinates, ui.

The spatial forces can be converted to a generalized force acting on control point coordi-
nates through the following relation[135, 140]:

fc = (Jxc (ui))
T fsi ; (5.9)

where fsi is the spatial force applied to point si and fc is the corresponding generalized force.
As Jxc is a sparse matrix due to the local properties of B-splines, fc will have relatively few
non-zero values corresponding to the control points that will be affected by the spatial force.

The next sections will describe various potential energy forces and external forces that are
modelled or applied to the physically-based B-spline solids. The choice of whether to use
spatial points or control points as generalized coordinates depends on which set of coordinates
can be used to more naturally express various constraints with minimal computation.

5.5 Volume-preserving potential forces

In Section 3.4, we introduced an expression of the volume of a B-spline solid in terms of
control points (Equation 3.17), Vc. A volume-preserving potential function can be created by
introducing a rest volume, V0, that is the desired volume to hold constant:

Vvolume(c) =
kvolume

2
(Vc � V0)2; (5.10)

where Vvolume is the potential energy for volume preservation and Vc is the volume formula
expressed in terms of c. Referring to the Lagrangian equation of motion, the corresponding
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volume-preserving forces are:

rcVvolume(c) = kvolume(Vc � V0)rcVc; (5.11)

where rc is the gradient vector of the volume potential function, Vvolume(c), with respect to
the coordinates of q. If we are working with spatial coordinates, s, we can express the volume-
preserving forces with respect to s directly in terms of Vc and rcVc:

rsVvolume(s) = kvolume(Vs � V0)rsVs; (5.12)

with Vs computed by performing a coordinate transformation, c = ��1s, and evaluating the
volume with Vc, and

rsVs = (Jc
s)

TrcVc; (5.13)

where Jc
s is the Jacobian matrix of c expressed in terms of s. If we were to represent c =

��1s, so that c and s are one-dimensional monolithic vectors with all the point coordinates
concatenated together, the matrix ��1 would correspond exactly to J c

s .
The matrix ��1 is computed one column at a time by reusing the LU factors of � to solve

the following n successive systems to find each column of ��1:

�j = ij; j = 0; : : : ; n� 1; (5.14)

where j is the jth column of ��1, ij is the ith column of the identity matrix, In�n, and n is the
size of the monolithic vectors, c and s.

5.5.1 Relationship between volume and deformations

Terzopoulos et al.[114] introduced methods of defining energies of deformation using the sym-
metric matrix G, where the matrix entries are:

Gu
ij(u) =

Z Æx

Æui
� Æx
Æuj

dV; (5.15)

where V represents the volumetric domain of the material coordinates. This matrix is known
as the metric tensor or first fundamental form. If two solids have the same metric tensors, they
must have the same shape. In contrast, lower-dimensional geometric forms such as surfaces
and curves require more conditions for two shapes to be declared identical[114]. Potential
functions describing energy deformations use the metric tensor to create scalar functions by
approximating norms of the deviation of the metric tensor to a reference shape matrix. The
metric tensor can be thought of characterizing the relative deformations of the infinitesimal
axes along each material coordinate of the B-spline solid equation, x(u) (Equation 3.1)[17].

The volume-preserving formula is related to the metric tensor and therefore is closely re-
lated to shape deformation characteristics. There is a direct relationship between the volume
of a B-spline solid, V , and its metric tensor G[99]:

V2 = det(G): (5.16)

However, as our volume is only computed over the solid’s boundary, we do not have to integrate
over the entire volumetric domain, as in the case with the metric tensor. In contrast to using a
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Figure 5.2: Volume-conserving motions: Viscoelastic links embedded in the solid are con-
tracted (black line segments) while simultaneously maintaining constant volume.

rest shape matrix as in [114], our B-spline solid shape is free to change its shape as long as it
keeps the same volume. This is important for simulating contracting muscles where the shapes
change while preserving volume. Muscles have been shown in classic experiments to preserve
volume[81].

Unfortunately, no force will be generated on internal points because the gradient vector of
the volume-preserving energy function (Equation 5.11) has zero components corresponding to
the internal points. This can be explained by observing that the volume is defined by only its
boundary points and is independent of the internal point configuration. Therefore, we must
design alternative forces to specify the internal point configurations over time. For the internal
points to be volume-preserving,

jJx
u (c)j = 1; (5.17)

where Jx
u (c) is the Jacobian matrix of the B-spline solid equation’s (Equation 3.1) partial

derivatives with respect to the material coordinates, u, evaluated with the control points, c.
Equation 5.17 is a nonlinear constraint that the control points, c, must satisfy. Multiple non-
linear constraints for each spatial point inside the solid can be prohibitively expense to solve.
The fact that volume is dependent only on the boundary allows other less computationally-
expensive methods to determine the internal configuration of points.

5.5.2 Stiffness coefficient for volume forces

The stiffness term kvolume controls the strength of the attraction towards the target volume.
Larger values of kvolume create a more narrow tolerance range for the target volume. A large
kvolume value or a large component of rV may create stiff differential equations requiring the



CHAPTER 5. THE PHYSICAL MUSCULOTENDON MODEL 90

use of implicit integration techniques[100] or smaller timesteps for simulation. We have im-
plemented a backward Euler integration technique and were able to achieve numerical stability
with larger timesteps (several orders of magnitude larger), but with increased computational
cost to compute force derivatives with respect to the generalized coordinates and velocities.

In order to use explicit integration techniques, we normalized the gradient vector coordi-
nates by dividing each entry by the maximum absolute value of all components. This prevents
excessively large gradient vector components that can cause numerical instability, while still
allowing the use of kvolume to modulate the potential energy’s attractive strength. Although
the gradient vector has been scaled, corresponding generalized coordinates are perturbed in the
right direction, albeit with smaller step lengths. Using kvolume, we can control the tolerance of
error from the target volume during simulations.

The use of volume-preserving potential forces, allows us to influence the motion of general-
ized coordinates so that volume is maintained (Figure 5.2). However, there is no consideration
given to other physical properties such as local viscoelastic material characteristics in the solid.
Other physical forces need to be modelled in conjunction with the volume potential force to
constrain shape displacements of the solid. This motivates the technique of embedding vis-
coelastic networks in the B-spline solid.

5.6 Viscoelastic networks

A viscoelastic network is a collection of mass points interconnected with links. Equal and op-
posite viscoelastic forces are applied on the two points connected by a common link (Figure
5.3). The forces within a link can be generated by various elements such as springs, dampers
and other nonlinear tension generators such as contractile units used for modelling the active
forces developed in muscles. The vector sum of all link forces on a point determine the direc-
tion of application of these forces.

Chadwick et al.[16] established a spring-mass network over the control points of free-form
deformations (FFDs), allowing the embedded geometry to display propagated physically-based
motion. The control point lattices were fairly regular in shape compared to the control point
lattices of B-spline solids. As the link lengths are less homogeneous in an arbitrary B-spline
solid compared to a rectangular FFD, the use of control points for a viscoelastic network in a
B-spline solid shape is not as convenient. A viscoelastic network between spatial points allows
links to correspond to spatial constraints between solid points. Control points can be moved
arbitrarily from the solid’s boundary surface, so that their locations can have little correspon-
dence to spatial relationships.

By allowing a designer to vary force magnitude models in the network, nonuniform physi-
cal effects can be embedded in the solid. For example, using a model of human soleus muscle,
we can assign links in the top surface to have elastic effects to approximate the aponeuro-
sis tendon material. Within the same solid, links running along fibres can be modelled with
springs of different stiffnesses or more sophisticated Hill-based muscle force models. Figure
5.4 illustrates this arrangement.
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p
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Figure 5.3: Viscoelastic networks: Mass points are interconnected by links that generate equal
tension between two points. Inset: The individual forces on each point are summed to apply
the resultant force at that point. Points p and q generate equal tension so that the pair of points
shared by a link experience equal and opposite forces.

muscle fibres (contractile links)

tendon aponeurosis (elastic links)

Figure 5.4: Nonuniform physical properties within a musculotendon: The top surface of a solid
can have elastic properties while fibres within the solid can demonstrate nonlinear contractile
forces.
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5.6.1 Link force models and control inputs

The choice of force model for each link depends on the desired application and goals of simu-
lation. If we are given a time series of fibre lengths obtained from experimental measurements,
a spring can be used to contract the links to a desired length. The rest length of the spring
becomes the control input which would be data-driven. Figure 5.2 shows a series of images
produced by contracting links embedded in a human soleus model derived from a fibre set
CVSF (see Section 4.5).

If the objective is to simulate fibres using neural excitation signals as the control input, a
more suitable model is a Hill-based model where fibre characteristics such as series, parallel
and contractile elements can be used to model fibre forces. Refer to Section 2.2.5 for a review
of different mathematical models for these elements.

The advantages of using Hill-based models over a linear spring are the ability to perform
forward dynamics experiments with a higher degree of accuracy. The published research on
skeletal muscle provides parameter values for Hill-based elements that can be matched for the
muscle under study[137]. Using Hill-based models, we can further differentiate between linear,
elastic tendon fibres and the nonlinear force-generating properties of muscle fibres. The only
control input needed for simulation would be a single neural signal. The same Hill parameters
can then be used with a variety of different motions instead of being tuned for just one special
case.

We have experimented with creating deformable models from solids constructed from Vis-
ible Human data sets and fibre sets using viscoelastic units. Solids extracted from the Visible
Human data set are already in a deformed state because the muscles were captured in situ,
packed against muscles, bones and other soft tissues. Using a spatial viscoelastic network, we
averaged the radial and longitudinal lengths of links, setting the average link length to be the
rest length. The resulting solid with the embedded viscoelastic network produces a muscle
model with radial symmetry along its axis, for an approximation of an isolated, undeformed
muscle rest shape (Figure 5.5).

The estimate of the true rest shape from Visible Human data may only be helpful for gross
shape modelling, as the true rest shape is probably a function of the fibre architecture. In
Chapter 4, we stated that the Visible Human data lacks architectural information, and therefore
detailed fibre set data must be used for more accurate physical modelling.

5.6.2 Composition of forces

Using the Lagrangian dynamics framework, the viscoelastic network forces and volume poten-
tial forces can act together on the same system.

Figure 5.6 illustrates how we have simulated a contracting soleus muscle with and without
volume conservation. An interesting observation was that the fibres changed their orientation
as they shortened when both volume preservation and contracting forces were present. Without
the volume-preservative forces, these fibres kept the same orientation.

Ultrasound imagery studies[77] of contracting human soleus in vivo confirm that the fibres
do change their pennation in a direction similar to the virtual experiments performed. This
example illustrates how simulated experiments can help to diagnose and isolate potential causes
of observed phenomena.
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Figure 5.5: Computation of muscle rest shapes: A) B-spline solid constructed from Visible
Human contour data. B) Rest shape computed by averaging link rest lengths radially and for
each longitudinal section. C) Subsequent re-deformation of rest shape.

The introduction of global volume-restorative forces can add structural stability to muscle
shape. In previous work with spring-mass systems[83], cross-links are often added to prevent
shearing and collapsing of shape. One problem of using viscoelastic networks in isolation are
that solid matter is approximated with a discrete set of mass points and weightless links. The
absence of matter between the mass points provides a lack of restorative forces that should
normally exist in a solid continuum, especially in an incompressible solid (Figure 5.2). The
addition of volume-restorative forces can replace the role of the cross-links for structural stabil-
ity. We need only provide a few links to bias the directions of shape change during contraction
and let the global volume forces determine the corrective displacements of points to maintain
a volume-conserving shape.

5.7 Anchored Fields

For applications where accuracy is not crucial, we may want to produce physically-based local
deformations in a solid and need tools to simultaneously influence many generalized coordi-
nates at once. We designed a simple modelling tool called the anchored field that creates a
local, spherical deformation field by specifying the radius of influence of a field and constrain-
ing the distance the point source of the field can travel with respect to an anchor point (Figure
5.7). A spring-damper system exists between the anchor point a and the field source p which
has a mass of m:

m�p = k(a� p)� d _p (5.18)
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Figure 5.6: Muscle contraction without (top image) and with (middle image) volume preserva-
tion. The top image (light) is superimposed on the middle image (dark) for comparison (bottom
image). Selected fibre links connecting spatial points are shown at 100%, 75%, and 50% con-
traction. Notice that in the case with volume preservation, the fibre orientations change due to
volume-preserving forces, especially at 50% contraction.
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Figure 5.7: The anchored field.

The interaction of the mass, m, and the spring, k, and damping, d constants dictates whether
the oscillation behaviour between the two points is underdamped, overdamped or critically
damped:

d2 � 4mk < 0 underdamped
d2 � 4mk > 0 overdamped
d2 � 4mk = 0 critically damped:

(5.19)

The deformation field is applied to all spatial points (or control points) in the solid that resides
under the radius of influence of the anchored field. Once a point leaves the field’s influence, it
reverts back to its original position.

A particular point, qi, will be displaced by a vector, di,

qnewi = qoldi + di; (5.20)

where

di =
qoldi � p

kqoldi � pk(radius� kqoldi � pk): (5.21)

The formulation of di has the effect of perturbing the point qi to the boundary of the defor-
mation field. The further the point qi lies from the field source p, the less displacement it will
experience until the displacement disappears altogether at length radius from p. This ensures
that the points smoothly transition back to their original positions as they gradually leave the
field’s influence.

During simulation, the motion of p is simulated using Equation 5.18 to generate damped
oscillations as the field deforms the solid. The user can interactively change the radius of
the field, the relative positions of the anchor point and field sources, or the spring-damper
characteristics of the connection between the two points (Figure 5.8). We have created variants
of the anchored field that constrain the position of the anchor point a to iso-curves within the
solid. In particular, we can constrain the anchor point to stay on the axis of the B-spline solid
to move the field source in the solid’s natural coordinate system. This effectively reduces the
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Figure 5.8: The anchored field being used to model a B-spline solid.

degrees of freedom of the tool to a single meaningful slider that is customized to the solid’s
shape and simplifies the three-dimensional use of the tool.

The key differences of anchored field and free form deformations (FFDs) are in the domain
of influence of each tool. The user has control over the radius of influence and the strength
of the field using anchored fields. For FFDs, the entire object is constrained to be embedded
within the lattice at all times. To change the range of influence of an FFD control point on the
deformation of its internal geometry, the lattice must be rebuilt with different basis functions
or the lattice points must be readjusted and the internal geometry remapped with respect to the
new lattice. As B-spline solids are tensor-product volumes, anchored fields can also be applied
to FFD lattice points.

5.8 Profile-curve driven dynamics

Volume-restorative forces, viscoelastic networks and anchored fields offer methods to constrain
the deformation of shape. During numerical simulations, the use of viscoelastic networks can
become problematic if the muscles are attached to skeletal limbs undergoing fast, transient mo-
tions. During these quick motions, it is important that the muscle’s shape remains structurally
stable yet still have enough compliance to exhibit inertial effects such as damped vibrations.

Terzopoulos and Witkin[116] developed a hybrid formulation that models objects using a
rigid reference component and a deformable component. The reference positions are expressed
relative to a local body frame which experiences rigid body dynamics. Using the same idea,
we can connect a spring between an anchor point, a, and its assigned spatial point in s:

fs = kanchor(ai � si); (5.22)

where the subscript i denotes a particular pair of a and s. The anchor position a will be
redefined as the solid’s volume changes and underlying limbs undergo rigid body motion. By
adjusting the stiffness and damping, we can respectively control how quickly the solid responds
to external movement and how quickly oscillations subside.
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Figure 5.9: Downward arm motion causes inertial-induced “jiggles” in pectoralis major muscle
(from A-C). Mass points and restorative forces are in yellow.

Equation 5.22 provides a restorative force for each spatial point. During fast transient
motions, there will be an initial displacement of the spatial point that will create a restorative
spring force to drive the point back toward the anchor point. This allows inertial effects to
be visualized in musculotendons attached to a skeleton animated using dynamic simulation or
kinematic manipulation of the joints. In contrast, simulating a sequence of static equilibrium
problems for each frame of an animation would not exhibit inertially-induced oscillations – the
“jiggles”1.

Calculation of Anchor Positions

We would like the solid to change as the underlying skeleton moves, changing the position and
orientation of the attachment areas as well as the musculotendon’s length. A natural source for
an initial anchor position is through the use of the profile curves’ CV SF (see Section 4.6):

ai = CV SF (~ui; ~vi; ~wi): (5.23)

The parameters (~ui; ~vi; ~wi) correspond to the normalized material coordinates of the spatial
points si.

Profile curves consist of significantly fewer defining points than the entire solid, providing
a high-level interface for shape definition as opposed to the manual manipulation of the control
and sample points. We constrain the origin and insertion curves to be rigidly attached to their
bones as well as the end points of the axial curve.

For the axial curve, there are two alternatives. The axial points on the curve can be associ-
ated with the closest bone and expressed in the bone’s frame of reference. This may be suitable
if the axes do not undergo large displacements on changes in configuration during joint move-
ments. However, the axial curve will only statically deform as the underlying bones change
position.

Alternatively, we can treat the points of the axial curve as mass points and allow the curve
to have its own dynamic behaviour. This allows independence of the axial dynamics from the

1This term is attributed to Caleb Howard, digital artist.
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underlying skeleton. For example, the curve can vibrate in tension during a static pose in the
skeletal limbs. The axial curve can also sag under gravity, creating a corresponding effect in
the global shape of the B-spline solid. The dynamics of the axial curve can create overall global
changes in shape which are layered with local vibrations created from Equation 5.22.

5.9 Reaction constraints

In order to control interpenetration of spatial points in the solid with external objects, we need
a mechanism to apply local constraints on these points. We can constrain their behaviour using
a technique developed by Platt and Barr[99] called reaction constraints. We briefly review the
main concepts. The idea is to compute the net force, Foutput, acting on a point as a sum of
unconstrained and constrained force components,

Foutput = Funconstrained + Fconstrained: (5.24)

Given the current sum of all external and potential-derived forces in Finput, the force is exam-
ined and the valid forces that do not violate a desired constraint are projected out in
Funconstrained. Another force, Fconstrained, is added to critically damp the point to the constraint
surface.

The constrained force is computed as,

Fconstrained = kd+ c
d

dt
d; (5.25)

where d is a vector (or scalar) describing the deviation of the spatial point from the constraint
surface. The coefficients k and c are the strength of the constraint and damping. If c =

p
2k,

critically-damped motion occurs[99]. The constraint force is similar to the use of Baumgarte
constraint stabilization used in simulation software[57] to correct for numerical drift that can
eventually violate constraints during simulation.

The final force, Foutput is applied to the spatial point, replacing the original Finput. It is
important that the corresponding reaction force,

Freaction = Finput � Foutput; (5.26)

is applied to the object interacting with the B-spline solid at the spatial point to obey Newton’s
third law2.

5.10 Collision forces

Musculotendons are part of an organic machine made up of an assembly of bones and other
musculotendons. Consequently, we need to detect and compute the physical reactions of mus-
culotendons at bone-muscle and muscle-muscle contact regions. Our approach for collision
detection and resolution is a compromise between an exact computation for every point on
the B-spline solid’s surface and the other extreme of no interpenetration prevention at all. We
monitor collision conditions with bone and muscle only at the boundary spatial points, s. If
collision conditions are met, we apply a local point-to-plane constraint on that spatial point.

2For every action, there is an equal and opposite reaction
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Figure 5.10: The closest bone or musculotendon to an external point can be quickly found.

5.10.1 Closest Point Detection

For a given spatial point on a B-spline solid, we need to find the closest candidate point on a
nearby object where contact can occur. Johnson and Cohen[66] developed an algorithm frame-
work for minimum distance computation using lower-upper bound trees (LUB-trees). The ad-
vantage of their approach is that objects are not limited to being convex and the framework can
be used with a heterogeneous set of geometric representations. We use LUB-trees to perform
proximity queries of arbitrary spatial points to a set of objects, consisting of either polygon
bone meshes or B-spline solids for musculotendons (Figure 5.10). Details of how the minimal
distance algorithm works with the framework can be found in [66]. We briefly summarize the
approach.

Each geometric object (bone or musculotendon) is treated as a top-level node, where each
top node is the root of a tree containing a hierarchy of bounding volumes. Lower and upper
bounds on the distance of the point to each volume are computed. As the algorithm proceeds,
we can progressively remove a candidate volume from the search list whenever its lower bound
is found to be greater than another volume’s upper bound distance. When no more volumes
can be removed, we can further refine existing volumes and repeat the process until only one
unrefinable volume remains.3 This volume contains the closest point.

We define a procedure, [B1; B2] = refine(B), that takes the bounding volume, B, and
refines it into two smaller subvolumes, B1 and B2 that are each smaller than B and partition
the original contents of B. If the volume can no longer be refined, [ ] = refine(B), this
indicates that the volume contains either a B-spline solid or a single triangle from a polygonal
mesh.

We seek to find the minimal distance between an arbitrary point p and a collection of
geometric objects. Since the algorithm deals with bounding volumes, it does not assume that

3In the event there is more than one remaining volume, we choose the first volume in the list.
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the volumes are part of the same object. Therefore, we can pool the bounding volumes for
several bones and musculotendons together to create the set of candidate objects, O, to find the
closest point to p. We introduce the function

[objectID; localpt] = FindClosest(p; O); (5.27)

where p is a given point in world coordinates and the function returns a unique object identifier,
objectID, and a local coordinate, localpt, that is expressed relative to the object’s coordinate
system. For bone geometry, the local coordinates are relative to the frame of reference of
the geometry which originates on the centre of mass and is aligned with the principle axes of
the geometry’s inertia tensor. Details of the computation of the body frame are in Chapter 6.
For the B-spline solid, the local coordinates are the material coordinates u. The remaining
volume in the proximity algorithm will contain either a B-spline solid or a single triangle from
a polygon bone mesh.

5.10.2 Lower and upper bound computation

Given a bounding volume, B, we define functions, lower(B;p) and upper(B;p) that return
the lower and upper bound distances of the bounding volume to the point p. If the volume
contains a B-spline solid, we use the routine closest(p) defined in Section 3.5.4 to find the
closest point on the solid to p exactly without needing to refine the volume further. Therefore,
the lower and upper bounds will be set to the computed distance between p and the closest
point on the B-spline solid:

lower(B;p) = upper(B;p) = kp� closest(p)k: (5.28)

When these bounding volumes enclose a polygonal mesh, we use a hierarchical tree of
oriented bounding boxes (OBBs)[46] to represent the bounding volume and to provide a way
to refine the volume into smaller subvolumes (Figure 5.11). An oriented bounding box has its
axes aligned to the eigenvectors of the covariance matrix of the vertices of the polygonal mesh.
Each OBB can be recursively subdivided into two child OBBs. The polygons within one box
are partitioned into two groups and OBBs are constructed on each subgroup. OBB can be used
with non-convex polygonal objects, which is an important requirement for bone geometry. For
a polygonal mesh, the bounding volumes will either be an OBB or contain a single triangle (at
the leaves of the OBB tree).

For an OBB, we compute the lower bound by finding the shortest distance from the point
p to the OBB by solving a constrained least-squares problem,

f(p) = (o+ sd1 + td2 + ud3 � p)2; (5.29)

where o is a reference origin point on the bounding box and d1, d2, d3 are the direction vectors
that correspond to the orientation and length of the three orthogonal edges of the bounding box.
The solution vector (s�; t�; u�) is restricted to s� 2 [0; 1]; t� 2 [0; 1]; u� 2 [0; 1], and the closest
point, p�, is computed as:

p� = o+ s�d1 + t�d2 + u�d3: (5.30)
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Figure 5.11: The right image displays the hierarchical assembly of oriented bounding boxes
(OBBs) for the bone geometry on the left.

Here, lower(B;p) is defined as

lower(B;p) = kp� p�k: (5.31)

To compute the upper bound, upper(B;p), we arbitrarily choose a polygon vertex residing in
the OBB and take its distance to the point, p. Ideally, we would like the bound to be tighter,
but the computational requirements to search for the lowest upper bound would outweigh the
time it takes to simply choose a vertex.

For finding the closest point on a triangle to a given external point p. We use Eberly’s[29]
algorithm. The procedure projects the point onto the plane of the triangle. If the point lies
within the triangle, the projected point is the solution. Otherwise, the closest point to the pro-
jected point is located on the boundary of the triangle. Details of Eberly’s algorithm can be
found in Appendix B. As in the B-spline solid case, the distance to this closest point corre-
sponds to both the upper and lower bounds on the minimal distance.

5.10.3 Algorithm for FindClosest

The function,
[objectID; localpt] = FindClosest(p; O); (5.32)

makes use of the procedure, AddToSortedList(ActiveList; B) that decides whether to add a
candidate volume, B, to a sorted list, ActiveList or not add the volume if it deduces that B
cannot contain the closest point based on comparisons with existing lower and upper bounds
in ActiveList. We present the algorithms for FindClosest and AddToSortedList.

The algorithm for FindClosest is as follows:

1. Input: an external point, p, a set of objects Oi in O

2. Set WorkList = [ ].

3. Compute bounding volume trees, Bi = BoundingV ol(Oi) for every object.

4. Add all Bi to WorkList.

5. For all i, compute the lower bounds on distance between Bi and p,
Bi:lowerbound = lower(Bi;p).

6. For all i, compute the upper bound on minimum distance between Bi and p,
Bi:upperbound = upper(Bi;p).
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7. Set ActiveList = [ ]

8. Call AddToSortedList(ActiveList; Bi) for all Bi in WorkList.

9. Reset WorkList = [ ].

10. For all Bi in ActiveList, refine bounding volumes.

11. if refine(Bi) 6= [ ],

12. add Bi to WorkList.

13. if refine(Bi) = [Ci; Di],

14. compute upper and lower bounds for Ci,Di.

15. add Ci,Di to WorkList.

16. Repeat steps 7-15 until all members of ActiveList can no longer be refined.

With each pass of the algorithm, ActiveList will be reduced in size as fewer volumes are
added by AddToSortedList. The procedure AddToSortedList(ActiveList; B) determines
if B should be added to the current ActiveList. If it is added, it is placed in sorted order
according to its lower bound value.

The algorithm for AddToSortedList(ActiveList; B) is as follows:

1. Input: The current sorted list contents, ActiveList and a candidate volume
B.

2. If ActiveList = [ ], add B to ActiveList and return.

3. Set W to be the first item in ActiveList.

4. while (W contains a volume in ActiveList ) f
5. If B:lowerbound � W:upperbound, return.

6. If B:upperbound < W:lowerbound

7. insert B before W and discard W and all volumes after it.

8. return

9. If B:lowerbound < W:lowerbound

10. insert B before W

11. return

12. Set W to next item in ActiveList.

13. g
14. Add B to end of ActiveList

15. return

AddToSortedList attempts to add volumes to ActiveList, which is sorted in ascending order
according to the lowerbound value. In the listing, line 5 prevents B from being added to
ActiveList if there is no possibility that B can contain the closest point because its lower
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Figure 5.12: The point-to-plane constraint is applied conditionally. In the case of p1, the point is
on the outward side of the closest shaded triangle, so reaction constraint forces are not applied.
For point, p2, the point is penetrating into the triangle and must be constrained to the plane of
the triangle.

bound is greater than an existing upperbound on the shortest distance. Line 6 can potentially
cull out large groups of candidate volumes in ActiveList when the new volume B contains an
upperbound on the distance which is less than the lowerbound of the current volume, W , being
examined in ActiveList. By preventing unnecessary volumes from being added to the list, the
search for the closest point is quickly reduced to a few possible candidate volumes.

In FindClosest, once we have one remaining bounding volume in ActiveList that can-
not be further refined, we find the exact point that corresponds to the shortest distance from
this volume. In our applications, the bounding volume will contain either a triangle from the
polygonal mesh models of the bones or a B-spline solid coinciding with the musculotendons.

5.10.4 Point-to-plane Reaction Constraints

Once the closest point is found on an object, we can find the local plane information at that
point in the form of the normal of the tangent surface on a B-spline solid or the normal to the
plane of the triangle in a polygon mesh. This permits a point-to-plane reaction constraint to
be established. The current force acting on a spatial point is modified by applying a reaction
constraint force to project out the components of the original force that would have violated
the plane constraint. Implementation details can be found in [99].

Given a plane equation P (x) with a unit normal n located at the closest point, xclosest,
we apply this constraint conditionally when we detect interpenetration of the external point, p
within the local surface. This is done by examining the sign of P (p) where P (x) is the plane
equation:

P (p) = n � (p� xclosest): (5.33)

By ensuring that the surfaces of the bone and musculotendon are oriented so that the normals
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Figure 5.13: Application of musculotendon forces on bones: The left image applies forces at
all spatial points attached to the bone. The right image applies forces only at the end points of
the axial profile curve.

are directed outwards, we can detect when an external point has gone underneath the local
plane. If P (p) � 0, the point p is either on the plane or below it. Otherwise, the point lies on
outward side of the plane and no reaction constraint is needed (Figure 5.12).

5.11 Application of Forces on Bones

Musculotendons are the primary force actuators that create locomotion and changes of body
posture. For forward dynamic simulation of musculoskeletal systems, provisions to model
these forces can be established by directly taking into account the B-spline solid geometry.

We provide two approaches. The first approach creates pulling forces that act on the origin
and insertion attachment areas of the tendon to the bone surface. The second approach only
applies forces at an axial contact point to the bone surface and is used in conjunction with pro-
file curves. Figure 5.13 illustrates the differences. The first approach offers a greater degree of
resolution of forces, while the second approach is less-computationally expensive and requires
fewer parameters to be defined.

Low-level forces

We apply the forces to the bone at all the musculotendon spatial points s in contact with the
bone. This includes the spatial points at the junction between the tendon and bone surface, as
well as surface spatial points on the B-spline solid that come in contact periodically with the
bone during collision.
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Figure 5.14: Forces generated on the musculotendons through volume-preserving potential
forces, contractile forces, and contact forces. Simulation runs at 4.23 Hz where the majority of
time (at least 40%) is spent updating the collision contact points.

At the attachment areas, the spatial points on the contact surface can be considered to be
embedded in the bone as well as the tendon. Therefore, we transmit the resultant forces on the
spatial point to the coincident point on the bone. For the surface contact points, we apply the
reaction force created by the point-to-plane constraint in Section 5.10.4. The reaction forces
of the muscles pressing against the bone allows the skeletal system to see the inertial forces of
the musculotendons as external forces. This allows us to simulate the musculotendon B-spline
solids as independent systems from the rigid body dynamical system of the skeleton. At the
same time, the external forces represent the effects of the mass properties of muscle influencing
motion in adjacent bones (Figure 5.14). In biomechanics, accounting for the mass properties
of musculotendon in simulations of musculoskeletal systems has rarely been done.

Forces through profile curves

The above approach may require many parameters to be specified and simulated. If we are
mainly concerned with the net resultant forces at the origin and insertion areas, we can model
a single force generator for the entire musculotendon.

Using profile curves, the axial curve can be used as an approximation to the centroid curve
of the musculotendon. We can create a force model dependent on the length and velocity of
shortening of the axial curve using an elastic strain model or a more accurate Hill-based force
model[138]. These forces can then be applied at the attachment ends of the axial curve. To
ensure conservation of momentum, the vector sum of the forces at the contact points with the
bone must be zero. This will occur as the axial curve shortens enough to generate tension as
it pulls against the attached bone. Figure 5.15 illustrates how forces derived from the profile
curves are used to generate motion in a lower leg skeleton assembly. Further discussion of
these results can be found in Chapter 8.



CHAPTER 5. THE PHYSICAL MUSCULOTENDON MODEL 106

Figure 5.15: Forces based on the profile curve information of the B-spline solid musculoten-
dons are used to create motion in a lower limb skeleton assembly.

5.12 Summary

This chapter describes the physical modelling of the B-spline solid musculotendon model. We
have described how the equations of motion of a B-spline solid can be formulated with a di-
verse set of force models. Potential energy forces can be used to create forces of deformation,
including volume-preserving forces. Viscoelastic networks can be designed to model nonuni-
form or directional forces within a muscle, such as contractile forces at various orientations
or the different material properties of tendon and muscle fibres. Anchored fields create con-
trollable, local deformations with physically-based oscillations. Profile-curve driven dynamics
provide numerical stability of solids under fast, transient motions while displaying dynamic,
inertial effects. Reaction constraints enable point-to-plane constraints at selected spatial points
and are used to model collision effects between the musculotendons with bones, as well as with
other muscles. Finally, the musculotendons can be treated as force actuators that create loads
on the attached bones for limb motion in skeletons.



Chapter 6

Bones, Ligaments, and Skin

No knowledge can be more satisfactory to a man than that of his own frame, its parts, their
functions and actions.

Jefferson - Letter to Thomas Cooper

Muscles and tendons actively create motion and change body shape in humans and other ani-
mals. However, they do not act in isolation. They interact with other passive biological mate-
rials, such as bones, ligaments, and skin (with the fat layer). This chapter discusses modelling
considerations for these passive structures.

6.1 Bones

Bones create the skeleton framework to which musculotendon and ligaments are attached and
provide the solid link segments that create an articulated figure. As the stiffness of bone ma-
terial is several times larger than neighbouring musculotendon, we consider bones as rigid
objects. This allows each bone’s state to be described with position and orientation only.

The centre of mass of the bone is taken to be the reference point for position. Orientation
can be described with a set of three local, orthonormal vectors originating from the centre of
mass. This creates a local coordinate system for the bone. This frame of reference is positioned
and rotated within an articulated figure skeleton. Existing models of bones are readily available
as polygon meshes. Consequently, we assume our bone geometry consists of polygonal meshes
where each polygon is consistently oriented so that face normals points outward (Figure 6.1).

6.1.1 Calculation of mass properties

The mass properties we typically need for use in physical simulation are the centre of mass and
inertia tensor for the bones. Typically, the only information available is the bone’s boundary
surface. In these situations, the assumption of uniform bone density is made. In reality, bone
has non-uniform density throughout its volume. For example, birds have lower interior bone
densities due to development of internal air pockets (a process known as pneumatization),
creating light, but structurally strong, wide bones[10].

107
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Figure 6.1: Bones are polygonal meshes with normals facing outward. Each bone will be
transformed to have a local axis with origin at the centre of mass and axes corresponding to the
principal directions of its inertia tensor.

We present two methods to calculate these mass properties. The continuous bone geometry
method assumes uniform density and a closed boundary surface for the bone. The discrete
bone geometry method approximates the bone’s shape with a discrete cloud of mass points.
The latter method can accommodate cases where nonuniform density distribution in bone is
desired by including points of varying mass within the bone’s volume.

Finding the centre of mass, r, for the bone determines an origin for a body reference frame
centred on the bone. Computing the inertia tensor matrix produces moments of inertia on the
diagonal and products of inertia on the off-diagonal entries1:

J =

2
64 Ixx �Ixy �Ixz
�Iyx Iyy �Iyz
�Izx �Izy Izz

3
75 : (6.1)

Furthermore, we can use the eigenvectors (principal axes) of the matrix, J , to define a new
body frame of reference for the bone where the inertia tensor is a sparse, diagonal matrix[44].
The products of inertia become zero, and the moments of inertia are the eigenvalues (principal
moments) on the diagonal. The sparse inertia tensor accelerates computations during simula-
tion.

6.1.2 Continuous bone geometry

If the bone is represented with a closed polygonal mesh, the mass and volume properties can
be computed with an exact integral taken over the bone’s boundary surface. To determine that

1We follow the convention that the products of inertia are preceded with a negative sign. Some structural
analysts omit the negative sign.
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a polyhedron is closed, every edge must be shared by two faces. If an edge only has one
associated face, that face is adjacent to a hole or open boundary. The assumption is made
that the object has uniform density because nothing can be deduced about the internal volume
density distribution from just its boundary surface. We describe several of these mass property
integrals which need to be evaluated.

Mass

The mass, m, of a bone is computed from its volume, V , and density, �,

m = �V: (6.2)

The volume is computed by integrating over the entire domain enclosed by the object’s bound-
ary surface,

V =
Z
B
dV; (6.3)

where B � <3 is the domain of the bone.

Centre of mass

The centre of mass, r, for the bone is calculated as follows:

r =
�

m

� R
B xdV

R
B ydV

R
B zdV

�T
: (6.4)

The inertia tensor matrix entries are evaluated as:

I 0xx = �
R
B(y

2 + z2) dV
I 0yy = �

R
B(z

2 + x2) dV
I 0zz = �

R
B(x

2 + y2) dV
I 0xy = I 0yx = �

R
B xy dV

I 0yz = I 0zy = �
R
B yz dV

I 0zy = I 0xz = �
R
B zx dV:

(6.5)

Notice that the matrix is symmetric. For simulation, the inertia tensor needs to be computed
with respect to the body frame’s origin located at the centre of mass. This can be computed
directly from Equations 6.5 using transfer-of-axis relations[84], using the centre of mass, r =
(rx; ry; rz)

T ,
Ixx = I 0xx �m(r2y + r2z)
Iyy = I 0yy �m(r2z + r2x)
Izz = I 0zz �m(r2x + r2y)
Ixy = I 0xy �mrxry
Iyz = I 0yz �mryrz
Izx = I 0zx �mrzrx:

(6.6)

The inertia tensor matrix, J , can be diagonalized to make the products of inertia disappear.
Since J is symmetric and contains real values, we can use the Jacobi method to perform the
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diagonalization[100]. The Jacobi method is a sequence of orthogonal, similarity transforma-
tions of J , called Jacobi rotations, which gradually reduce the off-diagonal elements of suc-
cessive J to zero. The Jacobi method always works for real-symmetric matrices. Although the
algorithms are computationally expensive for large matrices, the inertia tensor J is only 3� 3
in size and can be quickly diagonalized with this method. Figure 6.1 illustrates a bone with its
principal axes.

Mirtich[84] developed a technique for computing the integrals involved for the mass, centre
of mass and inertia tensor by integrating only over the boundary domain. Using the Divergence
theorem[111], the volume integrals are converted into a sum of surface integrals over the in-
dividual polygons of the bone geometry. Each surface integral over a polygon is rewritten as
an integral over a planar projection of the surface facet. Finally, Green’s theorem[111] allows
the planar integrations to be replaced by a sum of line integrals around the edges of the poly-
gon. Mirtich’s algorithm is particularly useful for bone geometry as it has no restrictions on
convexity or genus of the shape.

6.1.3 Discrete bone geometry

If the physical mesh is not a closed surface, Mirtich’s approach will not work. An alternative
is to treat each vertex of a mesh as a mass point. Care must be taken to ensure a uniform vertex
distribution over the bone’s surface (and ideally within the volume of the bone) to minimize
the approximation error for the inertia tensor. If this is not possible, varying masses can be
assigned to different regions of bone to compensate for any nonuniform distribution of vertices.
The equation for the centre of mass, r, and the inertia tensor, J , are discretized versions of the
continuous counterparts:

r =

� P
mixi

P
miyi

P
mizi

�T
P
mi

; (6.7)

and

I 0xx =
X

mi(y
2
i + z2i ) (6.8)

I 0yy =
X

mi(z
2
i + x2i ) (6.9)

I 0zz =
X

mi(x
2
i + y2i ) (6.10)

I 0xy = I 0yx =
X

mixiyi (6.11)

I 0yz = I 0zy =
X

miyizi (6.12)

I 0zy = I 0xz =
X

mizixi; (6.13)

where mi is the mass for vertex i with coordinates (xi; yi; zi). Subsequent conversion to a
diagonal inertia tensor about the centre of mass follows the procedure for continuous geometry.

A final alternative is to obtain inertia moments and centre of mass information from an-
thropometric studies. Unfortunately, the majority of data available only offers the gross mass
properties of a limb, lacking information about individual bones.
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Figure 6.2: The joint position is specified in the body frame coordinates of both of its adjacent
links (the inboard and outboard links).

6.2 Articulated figure

The skeleton is represented as an articulated figure comprising several links interacting with
each other through joints. We restrict the articulated figure to have a tree topology, with a
single root with one or more possible chains of links (Figure 2.5). The root link is considered
the parent. Each link has one parent and zero or more child links. Each link contains optional
geometry and a parent joint that defines relative position and orientation relationships with its
parent link.

6.2.1 Joint modelling

A joint is ultimately represented by a transformation matrix. However, it is convenient to
parameterize the joint transformation with one to six degrees of freedom to define and constrain
this transformation. We implement joints by allowing direct manipulation of the degrees of
freedom and converting the variables to a transformation matrix.

Of particular interest is the ability to interactively change the orientation or position of
a joint’s axis of rotation. This has applications in biomechanics where a joint articulation
between two bones can experience a changing axis or centre of rotation, as is the case with the
knee[88].

Joint centre modification

Commercial simulators like SD/FAST[57] position a joint relative to the body frame coordi-
nates of the adjacent links (Figure 6.2). We adopt this joint convention to have the ability to
freely modify the joint rotation centre by recomputing the new joint position in terms of the
body frame coordinates for each link. The body frame coordinates of the joint are used to
adjust the translation component of the transformation matrix to properly position and rotate
the link’s geometry relative to the joint. The body frame origin remains at the link’s centre of
mass. As discussed in Section 6.1.1, this permits a sparse diagonal inertia tensor. In contrast,
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many kinematics-based editors for articulated figures locate the origin of the body frame at the
joint position. While this arrangement may simplify matrix transformations, it limits the type
of joints that can be modelled and produces dense inertia tensor matrices.

Joint axis modification

For ball-and-socket joints, the orientation is represented with a quaternion, qjoint. To allow
direct manipulation of the orientation, we provide three visible reference axes that correspond
to the column vectors of the current orientation. Selecting an axis defines it as the new rota-
tion axis for subsequent interactive editing. Although we can manipulate all three degrees of
freedom simultaneously, we have found it easier to conduct a series of single axis rotations, af-
fecting one degree of freedom at a time. Each incremental orientation can be converted directly
to a quaternion,

qnew = (cos(�=2); sin(�=2)ax; sin(�=2)ay; sin(�=2)az); (6.14)

where (ax; ay; az) is the current rotation axis and � the angle of rotation in radians. Using
quaternion multiplication[128], qnew can be multiplied with qjoint to produce the orientation
that would result from rotating qnew relative to qjoint:

qnewjoint = qjoint qnew: (6.15)

The three reference axes can be oriented independently of the joint to change the axes of rota-
tion.

The ability to freely change the joint position and axis of rotation is useful for modelling
biomechanical joints as these characteristics do not stay constant during joint motion. It is
possible to place a joint centre of rotation inside a bone instead of on the articular bony surface
to simulate various joint dislocations (Figure 6.3).

Joint interpenetration detection

To prevent interpenetration of bones during joint articulation, we utilize the oriented bounding
boxes previously computed for the bone geometry (see Section 5.10.2). The RAPID implemen-
tation [46] of oriented bounding boxes allows intersection tests between two oriented bounding
box trees. However, in a musculoskeletal system, there can be a potentially very large number
of bone pairs that can collide. Testing every combination would be prohibitively expensive. We
use the V-COLLIDE library[60] to quickly find pairs of objects that may be interpenetrating.
World axis-aligned bounding boxes are maintained for each bone in the scene. These boxes
are used to provide a quick overlap test to identify bones potentially in collision. All potential
pairs are then subjected to a more accurate oriented bounding box intersection test.

If we use physically-based collision resolution schemes between bones involved in a joint,
objects would continue moving in reaction to collision forces due to inertia, making it difficult
to precisely control pose when articulating a skeleton. The computational time for simulation
would reduce the interactivity of the joint editing process. This justifies the use of a simpler,
kinematic mechanism for joint manipulation. We can achieve very fast, but limited, collision
detection and resolution by storing the last, previous set of joint angles that were collision free.
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A B

C D

Figure 6.3: The joint centre is (A) can be interactively moved to produce different joint articu-
lations (B and C). In (D), the joint axes were re-oriented to allow rotations about new axes.
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Figure 6.4: On the left are the axis-aligned bounding boxes used for detection of potential pairs
of bones in collision. The sequence of joint articulations on the right demonstrate how the joint
has restricted movement to prevent bone interpenetration.

If a collision is detected within the skeletal system during joint manipulation, we reset the
skeleton to the stored set of joint angles (Figure 6.4). As long as there are small incremental
changes from pose to pose while manipulating the bones of the skeleton, a good sense of
collision detection and resolution is maintained.

6.3 Ligament modelling

Ligaments differ from musculotendons in that the former is passively elastic while the latter
can actively contract. Although both tendon and ligaments contain collagen, elastic ligaments
can contain twice as much elastin than collagen, giving them spring-like properties. Function-
ally, ligaments are used to guide joint movement and maintain the stability of joints during
movement. Visually, they are cord-like in appearance and can twist along their lengths. They
tend to be shorter than musculotendon because they connect closely adjacent portions of bone.

We also model ligaments geometrically using the B-spline solid primitive, using profile
curves to interactively sketch them on the joint articular surfaces (see Section 4.6). Figure
6.5 illustrates ligaments modelled for a human knee. For physical modelling, we can either
use an embedded viscoelastic network or profile curve physics. In contrast to musculotendon,
the force models consist only of elastic and viscous elements, as there is no active contractile
component as in muscle.
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Figure 6.5: The outer collateral and patellar ligaments are modelled using B-spline solids. On
the right, the strain in the outer collateral ligament exceeds the safety level, which is indicated
by a colour change.

For biomechanical analysis, it is useful to visualize strain in the ligaments which is defined
as:

� =
lL � lLo
lLo

; (6.16)

where lL is the ligament length and lLo is a pre-defined rest length. If strain exceeds a certain
percentage, we can change the colour of ligaments to indicate overstrain conditions. To mea-
sure lL, we take the computed arclength of the axial curve from the ligament’s profile curves.
The arclength is evaluated numerically using Simpson’s rule[100]. Figure 6.5 visualizes an
injury-causing strain condition in the knee.

6.4 Skin modelling

Skin is the superficial layer that covers the layers of skeleton, musculotendon and fat to visually
manifest the body’s form. The contours and valleys that create body shape are directly influ-
enced by the musculotendons underneath. Modelling of individual layers within skin (the epi-
dermis and the dermis layers) is beyond the scope of this thesis, but explicit modelling of these
layers has been accounted for in previous research in physically-based facial animation[75]
and subsurface scattering of light in skin reflectance models[49].

We restrict our representation of skin to be a boundary surface geometric model. We will
use a polygonal mesh, but the methods we present to deform skin can be generalized to para-
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Figure 6.6: A geometric mesh representing the skin of the dinosaur can be deformed by asso-
ciating skin points with the closest musculotendon or bone. Inset: Lines connect up selected
skin points with their closest underlying features.

metric surfaces[69] and subdivision surfaces[27]. The choice of geometric representation is
an important factor in the effectiveness of expression of features such as wrinkles, creases and
folds. Wrinkles tend to develop in a perpendicular direction to muscle fibres or tendons[42].
Folds can disappear as portions of skin are stretched.

In relation to anatomical modelling, we aim to influence the skin geometry by the skeleton,
musculotendon and fat layers only. Portions of the skin need to be associated with these un-
derlying tissues. The fat layer, located between skin and muscles, can have variable thickness
throughout the body.

In the following methodology of deforming skin, we require that the geometric representa-
tion can be modified to interpolate a set of points, p. These points are adjusted in response to
movements in the underlying musculoskeletal system. For a polygonal mesh or interpolating
subdivision surface, we can use the mesh vertices. For a B-spline surface, we use spatial points,
described in Section 3.5.2. From the assembly of skeleton, ligament and musculotendon, we
use the FindClosest function (Equation 5.27, defined in Section 5.10.1, to associate each skin
point (Figure 6.6), p, with the closest point on the nearest bone, musculotendon or ligament.
Suppose for a particular skin point, pi, we locate a closest feature point, fi. By using different
connectivity constraints between these two points, we can emulate various phenomena. For
example, we can choose to constrain the skin points to coincide with the closest feature point
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Figure 6.7: Each point of the skin geometry can be associated with its closest feature. Con-
straining the skin points to the closest feature point produces a “shrink-wrapping” effect. The
top image shows the skin before being “shrink-wrapped” to appear as the bottom image. The
same configuration with opaque and transparent skin is displayed for comparison.

on bone or muscle, “shrink-wrapping” the skin over the anatomy (Figure 6.7). This technique
assumes that skin points are relatively well-distributed and densely sampled. The skin should
also be relatively close to the underlying anatomy. Otherwise, distortions or visible tearing can
occur.

Alternatively, the relative position of pi with respect to fi can be maintained by expressing
pi in the local coordinates of a frame of reference centred on f . In the latter case, we can
define the frame axes by taking the cross-product of the unit normal and tangent vectors at the
feature location. We use the tangent plane and normal of the B-spline solid surface point for
musculotendons and of the closest triangle for bone geometry. In this manner, the underlying
anatomy can be used as a feature-based deformation technique for skin.

In the following methodology of deforming skin, we require that the geometric representa-
tion can be modified to interpolate a set of points, p. These points are adjusted in response to
movements in the underlying musculoskeletal system. For a polygonal mesh or interpolating
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subdivision surface, we can use the mesh vertices. For a B-spline surface, we use spatial points,
described in Section 3.5.2. From the assembly of skeleton, ligament and musculotendon, we
use the FindClosest function (Equation 5.27, defined in Section 5.10.1, to associate each skin
point (Figure 6.6), p, with the closest point on the nearest bone, musculotendon or ligament.
Suppose for a particular skin point, pi, we locate a closest feature point, fi. By using different
connectivity constraints between these two points, we can emulate various phenomena. For
example, we can choose to constrain the skin points to coincide with the closest feature point
on bone or muscle, “shrink-wrapping” the skin over the anatomy (Figure 6.7). Alternatively,
the relative position of pi with respect to fi can be maintained by expressing pi in the local
coordinates of a frame of reference c Dynamical effects for fat can be created by adding a
spring-damper system anchored at the skin points using the same technique we applied for
musculotendons in Section 5.8. For areas of negligible fat, the dynamics already present in
underlying musculotendon models can be propagated to the skin points directly through the
deformation process. Consequently, it may not be necessary to have dynamical models embed-
ded directly in the skin geometry unless fat layers will have a significant effect. The results of
this model are shown in Chapter 8.

6.4.1 Limitations

The simple skin deformation scheme presented does not prevent skin self-interpenetration.
Implicit constraints between skin points or force fields can be used to handle self-collisions.
In particular, techniques developed for cloth animation[101] can be applied. The generation of
realistic folds and wrinkles may require additional preconditioning of the skin geometry. For
example, a polygon mesh used for skin can have finer tessellation in areas where folds, creases
and wrinkles will be developed. Subdivision surfaces are a potential, useful representation
for skin because they allow multiresolution depiction of details, arbitrary topology and local
refinement of skin areas[27].

6.5 Summary

We have presented various models for the passive components of an anatomical modelling
system: bones, ligaments, fat and skin. These elements are necessary to completely define
body shape in addition to musculotendons. Each bone is re-transformed into a body frame
of reference that produces diagonal inertia tensors to accelerate simulations. Interactive joint
modelling provides a direct method for users to change the joint centres and axes of rotation of
a joint. The versatility of the B-spline solid model is illustrated by reusing them to represent
ligaments. Length measurements are acquired from the axial profile curve to visualize strain
conditions in the ligament to illustrate injury-causing conditions. Finally, we can envelope
the underlying bone and musculotendon layers with fat and skin. The ability to deform a
skin model motivated by underlying, anatomical features is useful for applications in character
modelling and animation of humans and other animals.



Chapter 7

System Architecture

The best carpenters make the fewest chips.

German Proverb

In previous chapters, we described the individual components that comprise the anatomical
modelling and animation system. These individual models must co-exist in a common software
environment that supports intercommunication between elements. For example, musculoten-
dons must be aware of the bones to which they are attached. The bone’s rigid body motion
has a direct influence on the deformation of the muscle. Conversely, the musculotendons need
to apply forces that can alter the rigid motion of the attached bones during physical simula-
tion. This chapter outlines the system architecture, DANCE (Dynamic Animation and Control
Environment)[86], on which the anatomical modelling system is built.

7.1 Design Considerations

As with any large-scale application, the standard requirements of modularity and extensibil-
ity are important. Given the exploratory nature of research, the ability to change or enhance
system components is important. Communication between various components in the system
should be minimized or involve minimal passing of data to localize the effects of changes in a
component. To achieve these goals, an object-oriented software architecture was established,
identifying a set of abstract, base classes (Figure 7.1) that are managed by a central driver class
(Figure 7.2).

The DANCE system features a command-line scripting language interface based on the
Tcl language[90] (Figure 7.2). A scripting language provides flexibility in formulating tasks
for the application and allows useful concepts such as iterations, flow control and procedure
calls. Graphical user interface (GUI) elements such as panels of buttons and scroll bars are
completely external to the system, allowing customization of the GUI for different applications.
As GUI elements are selected, they generate corresponding script commands that are processed
by DANCE. In addition, for operations that require constant visual feedback in the anatomical
modeller, a direct manipulation interface for visual operations like joint editing, musculotendon
sketching, and physical simulation was provided.
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View

Light
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plug-ins

Figure 7.1: System class types: System components are subclasses and partitioned into plug-
ins and core components.

We have found that a majority of system features could be reduced to one of several base
classes that we defined. By keeping the number of classes small, the conceptual view is greatly
simplified and communication between different combinations of class types is minimized.
The base classes were chosen to contain mutually-exclusive sets of features to leave software
developers with an unambiguous choice of implementation paths for any particular feature.
Actual features are created by subclassing instances of the abstract base class in the form of
dynamically-linked external modules, known as plug-ins. As plug-ins are dynamically loaded,
there is no need to re-compile other plug-ins or the central driver code. Plug-ins enable devel-
opers to focus on specific implementation details of features without excessive exposure to the
central driver or internals of other features of the system. From a plug-in’s perspective, every
other feature provides services that require no knowledge of implementation.

The central driver class, dance, coordinates activities of the base classes. Each different
type of base class is assigned its own manager so that retrieval of a specific instance is initiated
by querying the corresponding manager (Figure 7.2). All system diagrams in this chapter
follow the Universal Modelling Language (UML) standard[34]. Appendix C provides a primer
of the notation we use from UML.

7.2 DanceObject Class

Every object in the system is derived from a fundamental, DanceObject class. The purpose of
having a universal class in the DANCE system is to ensure that every class can always retrieve
basic information protocols from every feature, such as a unique identifier and type informa-
tion. A common base class allows container classes to be built that can store heterogeneous
items by making the containers accept only DanceObjects. For example, in the routines for im-
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Figure 7.2: List managers for different system components are subclassed from the DanceOb-
jectList class. The DanceTcl class contains the Tcl scripting commands for the DANCE system.

plementing FindClosest (Section 5.10.1), utilize an internal list of DanceObjects (comprising
musculotendons and bones). By defining the list contents to be of type DanceObject, newer
implementations or different classes can be added without needing to change the algorithm’s
data structures.

7.3 Base Class

From the common DanceObject class, several important base abstract classes are derived that
define the major roles of all components in DANCE. Although the specific application we
describe here is an anatomically-based modeller and animation system, the same software ar-
chitecture can be used to create other physically-based applications.

The subclasses are implemented either as plug-ins or core components (Figure 7.1). All
subclasses can actually be plug-ins, but we anticipate that some components will be universally
needed by many applications and have built them into the main system. Core component
classes reside as part of the main executable along with the DANCE driver class and contain
the final implementation, not being subclassed further. The advantage of using plug-ins is that
modification or enhancements to a model can be done independently of other components and
the implementations can be subsequently shared with other practitioners (Figure 7.3).

The main plug-ins consist of: System, Actuator, Simulator, and Geometry classes. These
are expected to present the largest variation in implementation instances and are subclassed
extensively. As the classes are abstract, a simple interface is enforced from the perspective of
the DANCE driver. This allows container class operations to be performed at a high-level of
abstraction. For example, routines to visually display all systems only need call the output
method for each system instance stored with the SystemManager list (Figure 7.2).

The System class represents any entity that can be described by a set of state variables and
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DanceObject Plug-In System
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Figure 7.3: Plug-ins are a subclass of the base DanceObject class. This abstract class is in-
stanced to implement different components. In this example, the system abstract class is a type
of plug-in that in turn can be subclassed to create articulated objects, particle systems, and
deformable objects.

that will undergo physical change of state. Any physical system that can be described with a
set of generalized coordinates is valid. In the anatomical modeller, the articulated skeleton is a
system whose configuration is specified with the degrees of freedom of each joint in the figure.

The Geometry class provides a visual representation for parts of the system. For example,
each link in the articulated skeleton has its own bone geometry. We subclass Geometry to pro-
duce an IndexedFaceSet that can represent standard polygonal meshes. Within this class, we
have implemented the routines for computing mass properties (Section 6.1.1) and encapsulat-
ing collision detection routines for storing oriented bounding boxes (Section 5.10.2).

Actuators exert forces or torques on systems. They are the main creators of motion in a
physically-based system. A diverse range of physical phenomenon can be modelled. Actuators
in our system range from simple, gravitational fields to the biomechanical force models of the
musculotendons. Actuators can have their own geometric representations and state variables.
For example, B-spline solids and their control points are used to depict musculotendons and
ligaments. An important distinction between actuators and systems is that the former can
exert forces or torques on the environment. Controllers can be constructed as special kinds of
actuators that contain instructions for the generation of forces and torques based on state and
time variables. Actuators can manage other actuators through hierarchical relationships.

Simulators update the state of systems over time, using either physically-based or kinematic
processes. In our anatomical system, the articulated figures can be simulated by integrating
the equations of motion to provide physically-based motion in the skeleton. Alternatively, a
kinematic simulator can drive a system through a pre-defined set of motion curves. The ability
to have several different simulators coexisting allows the state variables of all systems to be
paritioned among different simulators. Systems with very different natural time frequencies
in their motion can be assigned appropriate simulators using integration techniques specially
designed to control the numerical stability of that subset of state variables. Both the skeleton
and B-spline solids have their own simulators in our application.

There are several, minor classes uses for interaction and graphical display: views and lights.
Multiple viewpoints of the scene are handles with the view class. Each view can be rendered
differently (solid or wireframe shaded), and illuminated with several light sources. Each view
has a direct manipulation interface for navigating the scene and manipulating various sys-
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Figure 7.4: Each view can have a different perspectives of the same scene. Scene elements,
such as joints, can be directly manipulated. GUI elements are completely external to the main
DANCE system.

tem and actuators parameters. The camera angle can be changed both in static and animated
displays, allowing unobstructed views for observation. Figure 7.4 illustrates a multiple view
session with the anatomical modeller.

7.4 Application Programming Interfaces

To ensure multiplatform operation, application programming interfaces (APIs) were chosen
that are available on all major operating systems. OpenGL was used for 3-D graphics, Tcl/Tk
for the scripting and graphical user interface, and GLUT for window management and input
event handling. Consequently, DANCE can be run on Windows and Unix-based operating
systems.

7.5 Summary

In this chapter, we provided an overview of the DANCE system architecture on which the
anatomically-based system was constructed. The architecture is important for enabling effi-
cient communication and coordination of various system features. An open architecture en-
ables different parts of the system to be continually enhanced and modified to experiment with
different approaches to modelling anatomical components such as muscle models. The actua-
tor base class allows us to model muscles as force-generating elements that can influence the



CHAPTER 7. SYSTEM ARCHITECTURE 124

state variables of systems like the skeleton. An interesting potential use of the ability for actua-
tors to control other actuators is the development of coordination algorithms to explore control
of muscles to create useful motions.



Chapter 8

Results

An acre of performance is worth the whole world of promise.

James Howell

This chapter illustrates several examples demonstrating different aspects of the anatomic mod-
elling system. We present three different applications of the system from each of the anatomi-
cal, biomechanical and computer graphics perspectives.

8.1 Contraction of soleus muscle

For muscle simulations requiring high accuracy, especially to capture internal fibre orienta-
tions, we used the fibre set CVSF (developed in Section 4.5) to reconstruct B-spline solid
muscles that preserve fibre orientation in the volume as well as on the surface. In particular, we
have constructed a virtual model of the posterior soleus from a human cadaver. We modelled
the aponeurosis layers (tendon plates) on the top and bottom faces of the posterior soleus as a
passive, elastic layer of viscoelastic links. A global damping coefficient was applied to each
spatial point of the muscle model to account for internal friction and viscosity between and
within muscle fibres.

For the contractile forces, we implemented a Hill-based muscle model as described in
[124]. Since our muscle model offers finer structural detail than the lumped-architectural mod-
els previously used in biomechanics [93, 24, 124], we made several adjustments to the Hill
model used. Although there are some series elastic effects in muscle fibre, the contribution
from tendon dominates. Since we model the tendon attachments separately from the muscle
fibres, we only need the contractile element (Section 2.2.8) in our Hill model to create a sim-
pler Hill configuration. We did not include the parallel element because we are performing a
contraction simulation where parallel element effects are negligible or non-existent. Being able
to examine muscle at finer architectural detail permits better study of the inter-relationships of
muscle fibre parameters for functional study.

Unfortunately, several muscle parameters provided in [124] could not be applied to our
simulation. Parameters such as maximum isometric length and force were computed from
averaged measurements or taken in directions different from the fibre directions in our model.
The pennation angle parameter is inapplicable in our soleus reconstruction because we model
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Contracted (no volume preservation)

Contracted (volume preservation)

Figure 8.1: Soleus model (no aponeurosis) is contracted with and without volume conservation.
Simulation runs at a rate of 14.5 Hz on a Pentium III 500 MHz CPU.

the fibre orientations explicitly in three dimensions. In contrast, the pennation angle is another
averaged parameter for fibre angles. In order to avoid manually specifying parameters for each
of the numerous individual fibres of our model, we used single ratios that set the isometric
length parameters to be a percentage of the current fibre lengths at the start of our simulation.
For the maximum isometric force, we used the same value for all fibres. Unfortunately, the
accuracy of our parameter approximations is uncertain because there is currently no available
experimental data to compare with. One goal of providing this model is to help direct the
design of new experiments that can be used for future validation and detailed functional study
of muscle.

In Figure 8.1, we display the results of two simulations of a contracting posterior soleus
with and without volume preservation. We also removed the elastic aponeurosis layer. Figure
8.2 graphs the change in volume during the simulation. At all times, the deviation in volume
never exceeded one percent of the target volume.

In comparison, Figure 8.3 depicts the same set of simulations with an passive elastic
aponeurosis layer. Figure 8.4 depicts the volume graph. For both scenarios with and with-
out aponeurosis, the effect of volume preservation is the pronounced change of fibre orien-
tation during contraction. Due to additional constraints in the top and bottom layers of the
aponeurosis-equipped soleus, changes in fibre orientation are slightly greater than without an
aponeurosis. These changes in fibre orientation qualitatively match similar fibre orientation
changes observed in ultrasound images of contracting muscle fibres (Figure 8.5). Since the
Hill model features a limited range of muscle lengths where active force development can
occur, initiating contraction by raising the activation level of the fibres resulted in the fibres
automatically stopping their contraction once they had shortened enough. In the aponeurosis-
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Figure 8.2: Volume graph depicting changing volume during simulation of a posterior soleus
(no aponeurosis). The target volume level is denoted by the dashed line. Volume computations
can be performed at rates higher than 100 Hz on a Pentium III 500 MHz CPU.

equipped soleus, active force development continued during equilibrium. In contrast, tension
disappeared altogether in the non-aponeurosis soleus. A possible explanation for this phe-
nomenon is that muscles fibres need to actively pull against the tension caused by the aponeu-
rosis layer. In the absence of an aponeurosis, the muscle fibres are free to contract against a
reduced load. We found that damping played an important role in achieving equilibrium by
dissipating the energy created during contraction.

The volume graphs demonstrate that it takes a slightly longer time for the aponeurosis-
equipped soleus to reach the target volume. This is due to the volume-preservation forces
working against the elastic restorative forces in the aponeurosis. In both graphs, the initial
deviation in volume is caused by the onset of muscle contraction. Gradually, the volume
restorative forces adjust the shape to reach the target volume. The rate at which this occurs
is directly related to the stiffness parameter assigned to the volume-preserving gradient force
(Section 5.5).

This example demonstrates the effective use of the B-spline solid muscle for detailed archi-
tectural and functional studies of muscle. The next example shows how the model can be used
in a biomechanical situation with an articulated skeleton.

8.2 Equilibrium Point Hypothesis Testing

The Equilibrium Point Hypothesis [56] states that limb configurations are the result of an equi-
librium condition created by the forces acting on a skeleton, including forces due to active
musculotendons. As a limb moves from pose to pose, the changing muscle activations sup-
posedly create a new equilibrium condition that corresponds to the new pose. Although later
studies have shown that the Equilibrium Point Hypothesis is not valid in every situation, it is
still a convenient idea for explaining various muscle coordination phenomena.

In Figure 8.6, we have outfitted a skeleton with a pair of antagonistic musculotendons. We
used a simple elastic model that generates force if the musculotendon length deviates from
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Figure 8.3: Aponeurosis-equipped soleus model is contracted with and without volume con-
servation. Simulation runs at a rate of 12.8 Hz on a Pentium III 500 MHz CPU. This rate is
slightly lower than the soleus without aponeurosis (Figure 8.1) due to the larger number of
viscoelastic links in the aponeurosis.

a target rest length. The musculotendons exhibit slackness (generate no force) whenever the
musculotendon is shorter than the target length. The left image of Figure 8.6 shows the skeleton
without any muscles in static equilibrium with gravity. The centre image has the limb equipped
with passive muscles. Even in the absence of active force generation, the passive muscles ex-
hibit enough tension to change joint angles. In the third case, we activate the muscles and
achieve a new pose for the limb. Small damping forces were added to the joints to simulate
the friction created between joint articular surfaces and sinovial fluids. The damping also aids
the musculotendons by allowing the forces to be dedicated mainly to limb motion rather than
stabilizing excess joint motion due to a lack of energy loss that would normally occur in na-
ture. In Figure 8.7, we replaced the simple muscle force model with a Hill-based model used
by [124] and simulated the resulting musculoskeletal system. From the baseline simulation in
the top left image, we varied a single parameter of the left musculotendon in the other three im-
ages. With this technique, sensitivity analysis can be done to determine the possible functional
effects of changing muscle parameters. This can be used for reconstructive surgery planning to
determine any changes in range of motion due to altered muscle characteristics after surgery.
Notice that the final poses created separately by reducing activation and reducing maximum
isometric force result in similar poses. Due to the redundancy of muscles and the force-length-
velocity dependencies, these simulations can be used to determine alternative strategies for
completing motion tasks if one property of muscle becomes deficient. Simulations can also
be performed to help determine muscle parameters that would be required to achieve various
motions or tasks.
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Figure 8.4: Volume graph depicting changing volume during simulation of a posterior soleus
with aponeurosis layers attached. The target volume level is denoted by the dashed line.

8.3 Deforming Skin

In computer graphics, anatomically-based deformations can be achieved to deform a surround-
ing skin model. Figure 8.8 illustrates the various layers that can be modelled in the construction
of a synthetic creature for animation. By binding the points of the skin geometry to the un-
derlying skeleton or musculature as describe in Section 6.4, we can deform the skin as the
underlying anatomy changes. Figure 8.9 depicts various instances of skin deformation due to
underlying anatomy in portions of a Parasaurolophus dinosaur model (Figure 6.6). The top
images show the effects of “shrink-wrapping” the skin close to the musculature. This has the
visual effect of revealing greater muscle definition. The bottom image retains the relative dis-
tance of skin points to the underlying geometry while deforming the model. Generally, several
portions of the same model can be assigned different constraints to account for varying distri-
butions of fat along the body. Figure 8.10 shows how the effects of stretched tendon in limb
motions can be propagated to a skin model.

8.4 Summary

This chapter presents a cross-section of different examples that illustrates the unique contri-
butions of the anatomic modeller. The contracting soleus demonstrates a high level of detail
that captures accurate fibre orientations, shape and functional behaviour in anatomy. Multiple
muscle simulations with an articulated skeleton can be performed for motion analysis or to
test different control strategies for muscle coordination in biomechanics. The muscle models
not only have visual characteristics, but are capable of physically applying forces to gener-
ate motion in the attached skeleton. For more creative applications in computer graphics, the
anatomic modeller can be used as a feature-based deformation technique for modelling skin
deformations in animals. The examples present evidence that the musculotendon models can
be scaled to different levels of detail for various applications.
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relaxed contracted

Figure 8.5: Muscle fibres are shown in relaxed (left) and contracted (right) states in ultrasound
imagery. Notice the pronounced change in fibre orientation (white line) from the relaxed to
contracted state.

no muscles passive muscles active muscles

Figure 8.6: The presence of activated muscle can change the pose configuration of a skeletal
limb.
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Figure 8.7: One Hill model parameter is adjusted from the baseline simulation in the top left
corner.
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Figure 8.8: The construction of an animal can be thought of as a layering process from bone
to musculature to fat and skin. In the bottom right, the red links indicate associations with
musculotendon while the blue links are with bone.
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Figure 8.9: Various examples of how underlying musculature and bones can deform a sur-
rounding skin model. Scenes are shown with adjacent views of transparent and opaque skin.
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Figure 8.10: A yellow tendon straightens out as it is stretched and deforms the surrounding
skin near it. A) The links between the skin and underlying anatomy. B) Superficial view of the
tendon creasing the skin along the back of the left leg. Skin updates are performed at a rate of
8.3 Hz on a Pentium III 500 MHz CPU.



Chapter 9

Conclusion

Nothing tends so much to the advancement of knowledge as the application of a new
instrument.

Sir Humphrey Davy

The process of creating an anatomic modeller revealed important problems that needed to
be identified and addressed. One of the first steps is deciding the scope and relative importance
of anatomic components to model in the system. The musculotendon unit is a key ingredient
of the modeller, being responsible for the dual roles of superficial body shape definition and
force actuator of locomotion. Recognizing this important, intertwined relationship between
form and function initiated a search for a suitable mathematical primitive for musculotendon
that culiminated in the choice of the B-spline solid (Chapter 3). Once the B-spline solid was
selected, several subproblems arose that required solutions: the development of methods to
define initial musculotendon shapes from various data sources (Chapter 4) and the formulation
of physically-based models for shape deformation and force generation (Chapter 5).

9.0.1 Geometric shape definition

For geometric shape definition, we devised a data-fitting methodology that solves for the con-
trol points of the B-spline solid given a set of spatial points. The spatial points are generated
from a Continuous Volume Sampling Function (CVSF) that can be defined from different data
sources. This mechanism provides a clear procedure for converting discrete, sampled data to a
continuous solid model. We illustrated the power of the technique using data from the Visible
Human data-set, digitized fibre sets, and profile curves. The fact that B-spline solids can be
fitted to these very different data sources demonstrates the versatility of the CVSF procedure
as it is applied to various representations of muscle.

9.0.2 Physically-based models

Being able to represent a smooth, solid shape with a compact set of control and spatial points
allows multiple musculotendon simulations to be conducted without a prohibitively large num-
ber of parameters, as may be the case with some finite element methods. The spatial points
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provide direct manipulation handles for shape modulation, but also allow masses and forces to
be assigned to these positions. For example, spring-mass networks or reaction constraints can
be defined directly at these spatial points. For global forces based on potential energy functions,
Lagrangian equations of motion can be formulated for the parameters of B-spline solids. We
developed in Chapter 3 a closed-form expression for volume and used it to develop potential
energy functions that enabled dynamic simulation of volume-conserving shape deformations.

9.0.3 Collision and proximity tests

For collision detection and proximity tests, we created bounding volumes using oriented bound-
ing boxes for polygonal bone geometry and least-squares techniques for B-spline solids. Col-
lecting all the bounding volumes into a lower-upper bound tree allowed many, successive tests
to be conducted rapidly. Being able to find the closest feature point on a musculotendon or bone
to an arbitrary 3-D point allows useful operations to be performed. Local point-to-plane reac-
tion constraints can be established between objects for collision resolution and skin points can
be associated with underlying anatomy to deform the skin as the anatomy moves and changes
shape.

9.0.4 Inter-relationships between anatomic components

From a software engineering perspective, there was the practical problem of developing a soft-
ware architecture that would enable inter-communication between the various components of
an anatomic modeller. To attach musculotendons to bone, we described an intuitive direct
manipulation interface for sketching musculotendons onto the surfaces of bones using profile
curves to specify insertion, origin and axial curves (Section 4.6). In Chapter 7, we described
an object-oriented software architecture, where functionality can be added or modified through
plug-ins. In particular, musculotendons are treated as force actuators that have their own state
variables and geometric representation.

9.0.5 Other anatomic system elements

Although a large portion of this thesis concentrated on musculotendons, models for other
anatomic components were investigated (Chapter 6). We computed mass properties for bone
geometry and redefined the local frames of reference to produce diagonal inertia tensors for
efficient computation during simulation. Joint transformations were defined that account for
changing rotation axes and centres of rotation during joint articulations. Ligaments can be
modelled using the same B-spline solid primitives with different physical properties. Finally,
we present how the underlying assembly of skeleton, musculotendon, and ligaments can be
used as a feature deformation technique for propagating changes in body shape to a surround-
ing skin geometry muscle.

Techniques that bind skin geometry to underlying anatomically-based structures can ex-
hibit undesirable stretching or creasing. This occurs because individual points on the skin
are transformed without considering the viscoelastic forces they may experience from adja-
cent portions of skin. By approximating the skin as an elastic mesh, relaxation techniques
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demonstrated by Wilhelms and van Gelder[130] can evenly distribute the skin mesh to elim-
inate excessive stretching, but may smooth out desirable details. One solution is to allow an
animator to interactively map different elasticity properties over the entire skin geometry to
add regional control to the amount of stretching desired.

9.0.6 Form and function

These various contributions to the anatomic modeller, consisting of both geometric and phys-
ical models, can be used to culture further investigation in the relationship between form and
function of the anatomic elements of humans and other animals. Returning to the three per-
spectives of anatomy, biomechanics and computer graphics, the modelling system developed
in this thesis takes steps towards addressing needs in each of these cases.

Detailed functional study of muscle fibre architecture throughout a muscle’s volume can be
done directly from digitized, cadaveric specimens. Since pennation effects can be studied on a
per-fibre level, this finer degree of resolution can provide potentially more accurate estimates
of the force-length properties of musculotendon because it avoids using a single, averaged pen-
nation angle term for calculating the forces generated by an entire muscle. In surgical proce-
dures, such as tendon lengthening surgery, simulations with a more refined model can improve
the chances of obtaining desired post-operative behaviour of modified musculotendons.

The use of profile curves to specify insertion and origin regions of muscle more accurately
captures the mechanical situation in the tendon-bone interface than using piecewise line seg-
ments. The dynamics within a single muscle can be simulated independently from the attached
skeleton, allowing effects such as isometric contraction, muscle activation independent of joint
motion, and inertial oscillations in muscle. As volume preservation and collision reaction
is taken into consideration, we can begin to investigate the inter-muscle forces generated in
packed muscles, in addition to contractile forces of muscle. Deforming skin directly due to un-
derlying bone, musculotendon and fat can help animate humans and other animals realistically
in an automatic fashion for animation applications in computer graphics.

9.1 Future work

There remains many areas that can be improved and investigated for creating the ideal anatomic
modeller.

9.1.1 Musculotendon model

The B-spline solid model for musculotendons attempts to combining the geometric and physi-
cal aspects of muscles. Previously, models focused on one aspect to the exclusion of the other.
Currently, to model muscles which branch out from a common tendon region, a separate B-
spline solid would be required for each branch, with various constraints applied to attach them
together. It would be advantageous to model a branching network of muscles with a single,
unifying mathematical framework, where the branches are implicitly part of the model. Per-
haps subdivision solids[78] can be used, but a global parameterization for the muscle’s volume
would need to be created to reference individual muscle fibres.
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9.1.2 Skin model

Skin geometry models that are adapted to fold, wrinkle and bend with the contours of under-
lying anatomy need to be designed. Subdivision surfaces and other multiresolution schemes
that allow more definition to be seen in regions of high curvature are promising candidates
for adaptable skin models. As an alternative to modelling geometry directly, displacement or
bump mapping techniques can be used to add fine wrinkles and folds to the skin geometry. In
this case, the challenge lies in procedurally generating these texture maps based on geometric
characteristics of the skin.

9.1.3 Reconstruction applications

The existence of an anatomic modeller that allows information to be shared between its various
components encourages interesting reconstruction projects. Synthetic animals or muscular
reconstruction of fossilized skeletons can produce visualizations of non-existent animals in
a more vivid and animated manner than previous methods. If reconstruction of an animal
follows basic musculature patterns of related species with similar skeletal structure, a high-level
parameterization of anatomically-accurate muscle deformation in animals can be achieved.
These evolutionary relationships in musculature between closely-related species of animals
can potentially be captured and parameterized to allow automatic muscle reconstruction of a
given skeleton.

9.1.4 Control and functional study

In the area of motor control research, muscle models that have physically-based properties can
be used to develop mechanisms for muscle coordination and control in animals. This would
require whole body simulations of multiple muscle systems where each muscle is capable of
receiving an activation signal with accurate contraction dynamics. Using these muscles as force
actuators, the resulting motions created in the underlying skeletons can be observed.

On a finer scale, functional studies that investigate the role of muscle fibre architecture and
the corresponding forces and shape changes produced, may lead to explanations of the natural
design of anatomical structures in the body. With B-spline solid models produced from the fibre
set data, motor unit modelling can be applied to distinct regions of muscle fibres. This would
allow study of innervation patterns within a single muscle and their influence on the gradual
recruitment of fibres during muscle contraction. A completely functional model of muscle that
accounts for fibre architectural changes during contraction under various conditions will help
predict force production more accurately. Being able to perform simulations in a completely
virtual environment would allow important investigations of muscle behaviour under unusual
conditions, such as microgravity (Earth orbit conditions).

9.1.5 Need for validation

With the existence of a system that can allow these kind of musculoskeletal simulations, it is
important that methods are developed for proper validation of the results with biomechanical
analysis of real muscles. In many cases, the data necessary for comparative analysis is currently
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not available. The parameters used in our physical models should serve as a guide for exper-
imental design on proper data collection techniques for validation. Important parameters to
determine include spring and damping coefficients used in dynamic simulation and the proper
Hill parameters used in muscle force models. The latter is especially important because fibre
force production is handled at a finer resolution in the B-spline solid model than traditional
lumped-parameter models. As the model permits generation of nonuniform force generation
within a muscle as well as inter-muscle forces due to contact with other bones and muscles,
new experiments in biomechanics need to be designed to obtain accurate measurements of the
corresponding situations in humans and animals, preferably in vivo.

To take advantage of existing data, virtual simulations of classical experiments [45] for de-
termining the force-length-velocity properties of muscle can be performed. These experiments
can include isometric muscle length and isotonic muscle load conditions. Virtual sensors can
be placed on the muscle model to coincide with the physical locations of measurement appara-
tus in the original experiments. In this manner, data points can be plotted to reconstruct graphs
displaying force-length or force-velocity relationships. If the simulated data can be shown to
be quantitatively similar to classical results, a case for validation of the model can be made.

9.1.6 Digital humans and animals

The components included in this anatomic modelling system are responsible for locomotion
and body shape. To provide a complete system for general medical applications, we would
require many other internal organs for the successful emulation of a fully-functional digital
animal. In addition to the effort required to model individual organs, the software architecture
that will enable these organs to inter-relate with one another would have to be established.
Different components must be aware of each other physically and will depend on each other
to function properly. With these challenges in mind, the concepts presented in this thesis are
offered as a starting point for further research in this exciting, multidisciplinary area.



Appendix A

Volume Computation of a B-spline Solid

Recall that we can compute the volume of a B-spline solid as follows:

V = CT � B: (A.1)

We will show that an element of B becomes zero whenever any combination of three u, v and
w basis functions exists that lie totally within their parameter boundaries. Geometrically, this
translates to all three basis functions having a domain that lies entirely within the solid, exclud-
ing its boundary. Therefore, we will show that the volume of a B-spline solid can be computed
solely as a function of its boundary control points. In the following proof, we collapse multiple
integral symbols to a single integral and remove the indices of integration for clarity.

A.0.7 Proof

Recall that an entry of B has the form:

Bijklmnopq =
Z
det
I

(u; v; w)dwdvdu

=
Z
uijkvlmnwopqdwdvdu+

Z
ulmnvopqwijkdwdvdu+

Z
uopqvijkwlmndwdvdu

�
Z
uopqvlmnwijkdwdvdu�

Z
ulmnvijkwopqdwdvdu�

Z
uijkvopqwlmndwdvdu:

(A.2)
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In subsection 3.4.1, we showed how each term in (A.2) can be converted into the product
of three separate integral operations by factoring the integrand into three separate univariate
functions. For example, we do this for one of the terms of (A.2):Z
uijkvlmnwopqdwdvdu

=
Z d
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v
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w
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(A.3)

We will use the following notational shorthand for conciseness:

�ijk =
d

du
Bu
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u
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u
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(A.4)

Rewriting (A.2) using this notation, we have:

Bijklmnopq

=
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�ilodu

Z
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(A.5)

We can rewrite (A.5) as a new determinant:

Bijklmnopq =

�������
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R
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������� : (A.6)

If we can show that any of the rows or columns in (A.6) are linearly dependent, then the
determinant will evaluate to 0. First, let us look at the � terms in each column of the determinant
and apply the chain rule:

Z
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Similar applications to the other � terms results in:Z
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APPENDIX A. VOLUME COMPUTATION OF A B-SPLINE SOLID 142

We can expand the integrals using integration by parts:Z
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Similar expressions can be derived for the � and ! entries. We now have expressions that relate
the entries of the three columns of the determinant matrix. For the determinant to be zero, an
entire column must be linearly dependent with the other columns.

Showing linear dependency of the columns

The final step is to show that the columns of the determinant matrix in (A.6) will always be
linearly dependent whenever there exists a combination of three u, v, and w basis functions
that are defined entirely within the solid’s boundaries.

From the previous section (see equation (A.9)), the relationship between the columns of
(A.6) can be expressed as:Z
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If we can show that
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(A.12)

we will have linearly-dependent columns and the determinant in Equation (A.6) will be zero
under those same conditions.

In the special case of a periodic knot vector, the corresponding triple product expression in
(A.12) for the periodic parameter will always evaluate to zero since the parameter boundaries
will coincide. We will examine the remaining cases for non-periodic B-splines:

1. The triple product expression will have a non-zero value only when all the basis func-
tions of that expression in condition (A.12) have domains that include one of the solid’s
surface boundaries. In the case of a cylindrical solid, these surface boundaries are the
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iso-surfaces: u = u0, u = ur+1, w = w0, and w = wr+1. If a non-zero value occurs for
any triple product expression, condition (A.12) cannot be satisfied and the determinant
will also be non-zero.

2. If there exists a combination of three u, v and w basis functions whose domains lie
entirely within their respective parameter boundaries. This implies that these basis func-
tions will be zero at the boundaries, causing the triple products to be zero in condition
(A.12). Therefore, condition (A.12) will be satisfied.

We have shown that condition A.12 holds whenever a combination of three u,v, and w basis
functions in (A.12) exist that have domains that lie entirely within their respective parameter
boundaries, producing a linear dependency in the columns of (A.6), so Bijklmnopq = 0. There-
fore, we can compute the volume of a B-spline solid using only the elements of B whose basis
functions all have domains that are non-zero somewhere along the boundary surface. Since the
volume calculation in (A.1) contains a dot product, B and C can be shortened to include only
the non-zero elements of B and the corresponding indexed elements of C, accelerating volume
computations.



Appendix B

Calculation of Shortest Distance from
Point to Triangle in 3D

A

B

C p

x
closest

Figure B.1: Triangle ABC

The following summary of the algorithm for finding the closest point xclosest on a triangle
to an arbitrary point p in world coordinates is based on the algorithm provided be Eberly[29].
Given a triangle ABC (Figure B.1), a parametric equation describing the plane of the triangle
is:

tri(s; t) = A+ s ~AB + t ~AC: (B.1)

The triangle’s parametric domain in st space is bounded as follows (Figure B.2):

(s; t) 2 D � f(s; t)js 2 [0; 1]; t 2 [0; 1]; s+ t � 1g: (B.2)

The squared distance function for the point p to the point tri(s; t) is a quadratic equation:

d(s; t) = ktri(s; t)� pk2 (B.3)

= as2 + 2bst + ct2 + 2ds+ 2et+ f; (B.4)

where

a = ~AB � ~AB (B.5)
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s

t

Region 3

Region 4 Region 5

Region 1

Region 2

Region 6

s+t=1

0

Figure B.2: st domain for triangle

b = ~AB � ~AC (B.6)

c = ~AC � ~AC (B.7)

d = ~AB � (A� p) (B.8)

e = � ~AC � (A� p) (B.9)

f = (A� p) � (A� p): (B.10)

Since d(s; t) is a quadratic continuous, differentiable function, we can minimze the functions
by setting the gradient, rd, to 0:

rd = 2(as+ bt + d; bs+ ct+ e) = (0; 0): (B.11)

The solution,

s� =
be� cd

ac� b2
(B.12)

t� =
bd� ae

ac� b2
; (B.13)

produces the closest point, tri(s�; t�), on the plane to point p. If (s�; t�) lies within the tri-
angle’s domain D, then tri(s�; t�) is the closest point and the final solution. If (s�; t�) lies
outside the domain D, the closest point must lie on the triangle’s boundary. In this case, the
point tri(s�; t�) will lie in one of five possible planar regions outside the triangle (Figure B.2).
The region can be deduced by examination of the values of s and t.

The function d(s; t) has a minimum at tri(s�; t�) and forms iso-level curves (d(s; t) = L,
L is constant) which are ellipses in the st plane. For regions 1,3 and 5 in Figure B.2, the closest
point on the triangle will occur at the s; t coordinates where the lowest value level-set curve
tangentially contacts the corresponding edge bordering the respective region: edge s = 0 for
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t

Region 3

Region 1

Region 2

s+t=1s=0

A

B

Figure B.3: Level curves of distance gradient

region 3, edge t = 0 for region 5, and edge s + t = 1 for region 1 (as in the set of curves
marked B in Figure B.3).

For regions 2, 4 and 6, the level curves will contact one of the two edges closest to that
region or the vertex common to both edges. For example, if the global minimum of d lies in
region 2, the elliptical level curves will first contact either edge s + t = 1, edge s = 0 or
vertex (0; 1). In Figure B.3, the set of elliptical curves labelled A first contact the edge s = 0.
Mathematically, this can be translated to the condition that only one of (0;�1) � rd(0; 1) or
(1;�1) �rd(0; 1) is negative. The vectors, (0;�1) and (1;�1) are the direction vectors for the
edges defined by s = 0 and s+ t = 1 respectively, originating from their common vertex. If a
dot product with the edge vector is negative, the closest point will reside on the corresponding
edge. Once we have located the closest edge, we can find the closest point to the line segment
representing the edge. If both dot products are positive, the closest point is the common vertex
shared by the edges. Similar arguments hold for regions 4 and 6.



Appendix C

UML Primer

To document object-oriented designs, we use the Unified Modelling Language (UML)[34].
Classes are represented as rectangles and various relationships between classes are recognized.
Figure C.1 describes a subset of the class notation available in UML and used in this thesis.

A B

generalization

A B

composition

stereotype

<<role>>

base class

abstract class

A B
1 *

multiplicity

Class A is a base class of subclass B.

Class B inherits the interface of class A.

Class B is part of class A. B can only belong

to one whole, and cannot be shared between

objects.

A stereotype is a high-level classification of

an object, such as its role.

Indicates the quantity of each class that may

participate in a relationship with another class.

Most commonly used values are 1, *, 0..1 for

one, many, none or one respectively. To the left,

there are many objects of type B for one object

of type A.

An abstract class defines mainly an interface and

contains no significant implementation. The name

of the abstract class is in italics.

Figure C.1: UML class relationships
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