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Figure 1: Controlled simulations of a man running, created out of water (top) and smoke (bottom).

Abstract

We describe a novel method for controlling physics-based fluid sim-
ulations through gradient-based nonlinear optimization. Using a
technique known as the adjoint method, derivatives can be com-
puted efficiently, even for large 3D simulations with millions of
control parameters. In addition, we introduce the first method for
the full control of free-surface liquids. We show how to compute
adjoint derivatives through each step of the simulation, including
the fast marching algorithm, and describe a new set of control pa-
rameters specifically designed for liquids.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation;

Keywords: Adjoint Method, Inverse Control, Optimization

1 Introduction
In recent years, physics-based animation has become pervasive in
computer graphics, producing animations with striking nuance and
realism. In particular, significant advances in modeling the dynam-
ics of liquids and gases have yielded stunning animations which
could never have been created by hand. Unfortunately, just as with
any simulation, the animator cannot freely design the animation:
directly editing simulation parameters affects the dynamics in com-
plex and unpredictable ways. Therefore, researchers have begun
seeking high-level control methods for complex dynamics.

Nevertheless, the fine-grained control of physically-based sim-
ulation has remained out of reach. Such detailed control might
easily require hundreds of thousands of free variables; previous

systems required a derivative simulation for each variable, making
control feasible only at relatively coarse scales. To make full con-
trol tractable for large simulations, we need techniques that scale
well with the number of control parameters.

In this work, we present such a technique. Our system is given an
initial state, either smoke or water, and a set of keyframes provided
by the animator. The system then repeatedly simulates the fluid,
iteratively solving for external control parameters that help the sim-
ulation meet the user’s keyframes. This closely follows Treuille
et al. [2003], except for the crucial gradient calculation.

To compute the gradient, we use an approach from optimal con-
trol theory, the adjoint method, which drastically reduces the sys-
tem’s dependence on the number of control parameters. This re-
sults in a significant improvement over the state-of-the-art, letting
us control simulations of vastly larger scale, for long sequences
with many keyframes.

Finally, whereas previous work only dealt with controlling
smoke, we also apply this framework to the level set simulation
of liquids. Here, the main difficulty lies in formulating the adjoint
of the fast marching step. We show how this may be done by ob-
serving that the fast marching algorithm is locally continuous. This
makes the high-level control of free-surface liquids possible for the
first time.

2 Related Work
Animating fluid flows of smoke and water has a long history in
computer graphics and remains an active area of research. Early
procedural work was pioneered by Kajiya and Von Herzen [1984].
Later, Kass and Miller [1990] linearized the equation of water flow
to create realtime simulations. Modern physics-based fluid simula-
tion began with the work of Foster and Metaxas, who used the full
Navier-Stokes equations to model both water [Foster and Metaxas
1996] and gases [Foster and Metaxas 1997b], producing convinc-
ing fluid flows on relatively coarse grids. Shortly thereafter, Stam
[1999] addressed the timestep limitations in these earlier techniques
by introducing the Stable Fluids algorithm, which combined semi-
Lagrangian advection with an implicit viscosity solver. For smoke,
Fedkiw et al. [2001] extended this approach with a vorticity con-
finement force to help counteract numerical dampening.

Semi-Lagrangian advection has also proven effective in model-
ing water simulations. Kunimatsu et al. [2001] combined cubic



semi-Lagrangian advection with a volume-of-fluid method to create
near realtime animations of water. The work of Foster and Fedkiw
[2001] and Enright et al. [2002] addressed the mass loss inherent
in semi-Lagrangian advection by coupling a level set method with
particles, currently the state-of-the-art in water simulation for com-
puter graphics. In this work, we use semi-Lagrangian advection,
but we do not use the hybrid-particle technique. This is purely for
simplicity; we see no reason why our control method should not
extend to this more sophisticated model. Finally, researchers have
recently turned to pure particle methods, based on smoothed par-
ticle hydrodynamics (SPH), to model water flows with promising
results [Mueller et al. 2003; Premoze et al. 2003].

Because of the difficulty of editing simulations by hand, com-
puter graphics researchers have also considered how to control
physics-based simulations. Initial work was pioneered by Barzel
et al. [1996], who discussed the theoretical underpinnings of con-
trol in terms of visual plausibility, and demonstrated an algorithm
for controlling pool balls. Later, Popović et al. [2000; 2001] and
Chenney and Forsyth [2000] separately proposed control paradigms
for general rigid-body simulations.

Work on fluid control in graphics was initiated by Foster and
collaborators. Foster and Metaxas [1997a] proposed high-level user
controls over the fluid parameters. Later, Foster and Fedkiw [2001]
controlled the motion of water flow by exactly setting the flow’s
velocity at specific locations. However, neither of these approaches
allows the user to enforce high-level objectives for the simulation.

Very recently, Treuille et al. [2003] proposed a new paradigm
to control smoke simulations through user-defined keyframes. The
approach guides the simulation towards the constraints using a set
of control forces whose parameters are computed using a non-linear
optimization. Our method is largely based on this work. However,
instead of the inefficient forward gradient computation, we use a
technique, the adjoint method, that is orders of magnitude more
efficient. This allows us fully to control 3D simulations in a fraction
of the time it took Treuille et al. to compute 2D simulations. We
also apply this framework for the first time to the control of water
flows. We are not aware of any previous work on the direct control
of free-surface liquids.

Concurrently with this work, Fattal et al. [2004] demonstrate a
system for controlling of smoke simulations that also allows the
user to give high-level directions. As with our method, this ap-
proach adds control variables to the dynamics, but they avoid op-
timization entirely, instead offering a closed-form solution for the
control parameters. While this technique cannot guarantee the opti-
mality of any particular solution, the authors demonstrate very im-
pressive animations computed at roughly the computational cost of
an uncontrolled simulation.

Gradient computation with the adjoint method has a long history
in optimal control theory [Lions 1971]. Most relevant to us are
applications in computational fluid dynamics, where optimization
is important in areas such as drag reduction for automobile design
and data assimilation for weather forecasting [Ghil et al. 1997].

Adjoint techniques come in two varieties: continuous and dis-
crete. We refer the reader to the overview articles by Bewley et al.
[2001; 2002] for a thorough exposition of the continuous approach
including applications to fluid mechanics. The discrete nature of
our problem (voxelized grids, discrete timesteps, etc.) makes it, and
many other problems in graphics, particularly suited for the discrete
approach. Giles and Pierce [2000] discuss both the continuous and
discrete varieties in detail, and we have modeled our derivation of
the discrete adjoint method on their own.

3 Simulation
Physics-based simulation begins with an initial state q0 and re-
peatedly applies a sequence of operations fi to the state, so that
qi+1 = fi(qi) for all i≥ 0, thus advancing the state through time.

In our simulator, the state q = (v,ρ) consists of a grid of ve-
locities v and a grid ρ representing the fluid material (densities for
smoke, a surface level set for water).1 The functions fi model the
Navier-Stokes equations that describe fluids.

For smoke simulations, we use the semi-Lagrangian projection
model [Stam 1999; Fedkiw et al. 2001]. In each time step, we
perform four operations:

ADVECT→ DIFFUSE→ HEAT→ PROJECT.

These operations are standard in fluid simulation, and the details are
not important for understanding our control model. Briefly, AD-
VECT transports the materials and velocities through the velocity
field, DIFFUSE accounts for viscosity, the HEAT step applies an
upwards force proportional to the smoke density, and PROJECT en-
forces incompressibility.

Water simulation closely resembles smoke simulation, except
that the water is represented not as a density field, but as an im-
plicit function whose zero-isocontour defines the surface. [Foster
and Fedkiw 2001; Enright et al. 2002] The sequence of operations
is also slightly different:

ADVECT→ DIFFUSE→ GRAVITY→ PROJECT→ REDISTANCE.

The GRAVITY operation applies a downwards force to the wa-
ter, while REDISTANCE maintains the water surface as a signed-
distance function using the fast marching algorithm [Osher and
Sethian 1988].

4 Control
Having given an overview of the simulation process, we now con-
sider how to control the dynamics.

4.1 Control Parameters
To control any system, we must be able somehow to influence the
underlying simulation, namely, through a set of external control pa-
rameters. We combine all of these parameters into a control vector,
u, which encodes all of the external influences the system has over
the simulation.

In our fluid system, we found that the most useful controls are
the Gaussian wind forces presented in [Treuille et al. 2003]. These
allow the system to insert small wind forces to a local region of
the velocity field v, scaled with a Gaussian falloff. These added
velocities help guide the fluid towards the user’s keyframes.

In addition, when controlling level sets, a second type of parame-
ter, which we dub a source is also useful. Whereas forces are added
to the velocity grid, sources are added directly to the grid ρ , also in
a local region with the same Gaussian falloff. We do not allow this
type of control for smoke because that would let the system solve
for the keyframes trivially, removing mass at the smoke’s current lo-
cation and adding it back at the keyframe. For liquids, however, any
alteration to the implicit function away from the surface is nullified
when the level set is redistanced. Therefore, sources can only affect
the fluid interface itself, slightly perturbing it inwards or outwards.
We found that sources were crucial to help control level set-based
animations, both for matching complex shapes and for preserving
the mass of the simulation over time.

Both forces and sources are scaled by their respective control pa-
rameters before being applied to the underlying system. Therefore,
while we formulate the adjoint method for arbitrary differentiable
control, in practice, the forces are linear. In other words the func-
tion f that applies control parameters can be expressed as follows:

1We denote the level set by ρ , instead of the traditional φ , to avoid am-
biguity with our objective function ϕ .



f(q) = q+Mtu, (1)

where Mt is the matrix that converts the control vector to an incre-
mental state on timestep t.

4.2 Objective Function
Now that the system is able to influence the simulation, it must be
able to measure how well the user’s goals are met. To do this, we
create an objective function ϕ which both measures how closely the
simulation meets the keyframes, and also penalizes the system for
using too much control.

The user specifies a set of keyframes {q∗t } and corresponding
weight matrices {Wt} which describe the region of interest for each
timestep t. For example, Wt could be set only to match velocities,
to weight certain regions of space higher than others, or to ignore
the keyframe entirely. Additionally, the user specifies a “smooth-
ness” term α , which weighs how much to penalize the system for
excessive use of the controls. This allows the user to specify how
much the animation should conform to the underlying dynamics.

These two goals, fidelity to the keyframes and physical plausibil-
ity, respectively comprise the two terms of the objective function:

ϕ(u) =
1
2

n

∑
t=0

(

||Wt(γ(qt)− γ(q∗t ))||
2 +α ||Mtu||2

)

. (2)

Here, γ is a preprocessing function we apply to the state before
computing the objective function. For smoke, no preprocessing is
necessary, and γ is the identity. For water, however, directly com-
paring signed-distance functions turns out to be a poor metric. In-
stead, we would like the penalty to be proportional to the volume of
space in which the state and keyframe do not agree. We can approx-
imate this volume comparison by setting γ(x) = 2arctan(x)/π . This
differentiable, S-shaped function moves positive regions of the grid
to +1, and negative regions to −1; therefore, the objective function
will compare not level set distances, but discrepancies between the
positive and negative regions in the two grids.

4.3 Implementation
Both the control parameters and objective function can be smoothly
integrated into our framework by adding two new operations: at
the beginning of each step, an APPLYCONTROL operation updates
the state according to the control vector; at the end of the step,
the MATCHKEYFRAME operation increments the objective func-
tion according to how well the simulation approximates the user’s
constraints. MATCHKEYFRAME leaves the state itself untouched.

4.4 Optimization
These two special operations, APPLYCONTROL and
MATCHKEYFRAME, allow us to evaluate how well the con-
trol vector influences the simulation. Thus, the problem is reduced
to a continuous function minimization:

argmin
u

ϕ(q0,u).

There are many standard numerical methods for minimizing a
continuous function. As in Treuille et al. [2003], we use a limited
memory quasi-Newton optimization technique [Zhu et al. 1994].
Since this is a derivative-based optimization, we must not only eval-
uate ϕ , but also compute its gradient, dϕ/du.

In computer graphics, this gradient computation has traditionally
been the bottleneck for control because each parameter required its
own derivative computation. One of the the main contributions of
our paper is to show how the adjoint method, long used in the opti-
mal control community, can be adapted to this and other derivative-
based problems in computer graphics.

5 The Adjoint Method
We now take a step back to consider gradient computation ab-
stractly. We shall begin by showing how the adjoint method can
be viewed as a special case of linear duality. Then we will apply
these ideas specifically to the problem of fluid control.

5.1 Duality
At the heart of the adjoint method is a substitution of variables that
allows us to compute the gradient of a function quickly. This sub-
stitution can be viewed in terms of linear duality [Giles and Pierce
2000]. Suppose that the matrix A and the vectors g and c are known,
and that we would like to compute the vector product

gT b such that Ab = c

in terms of the unknown vector b. A straightforward approach
would be to first solve for b and then compute the vector product.
An alternative would be to introduce a vector s and compute:

sT c such that AT s = g.

This is known as the dual of the problem. The equivalence can be
shown through substitution:

sT c = sT Ab = (AT s)T b = gT b.

Of course, this new linear system is not necessarily any easier to
solve. However, consider a new case where the unknown vector b
and the known vector c are actually matrices B and C. By the same
logic, the vector-matrix product

gT B such that AB = C (3)

is equivalent to

sTC such that AT s = g. (4)

Now these two linear systems look quite different! The former in-
volves solving for the entire matrix B, while the latter is the same
single linear system as in our original example. Clearly, in this case,
huge benefits can be reaped by solving the dual formulation.

As it turns out, the control problem we would like to solve in-
volves calculating a vector-matrix product of this form. The adjoint
method exploits this powerful aspect of duality to drastically im-
prove the efficiency of this computation.

5.2 Gradient Calculation
Let us now delve more specifically into a particular type of opti-
mization problem often seen in graphics, of which physical simula-
tion is one example.

Suppose we have a fixed initial state q0, which we evolve into n
subsequent states q1, . . . ,qn according to the update rule

qi+1 = fi(qi,u), (5)

where each fi is an arbitrary differentiable function parameterized
by a control vector u. We aggregate these into one long vector:

Q =
[

qT
1 , . . . ,qT

n

]T
,

and one long vector function:

F(Q,u) =
[

f0(q0,u)T , . . . , fn−1(qn−1,u)T
]T

.

This allows us to write equation (5) as

Q = F(Q,u). (6)



This equation is essentially a constraint on the optimization; for
Q to represent a valid simulation generated by the sequence fi of
functions, equation (6) must hold.

Finally assume that we have a differentiable objective function
ϕ(Q,u) and we would like to compute its derivative with respect to
the control vector:

dϕ
du

=
∂ϕ
∂Q

dQ
du

+
∂ϕ
∂u

. (7)

Computing this directly is extremely costly, as the matrix dQ/du
consists of an entire state sequence for each control. As we shall
see, the adjoint method provides a way of side-stepping this com-
putation while still arriving at exact derivatives of ϕ .

Differentiating the constraint equation (6) gives us a linear con-
straint on the derivative matrix dQ/du. Thus, the first term of equa-
tion (7) calls for calculating

∂ϕ
∂Q

dQ
du

such that
(

I−
∂F
∂Q

)

dQ
du

=
∂F
∂u

. (8)

Notice that this is the exact situation described in equation (3),
implying that the vector-matrix product might be much more ef-
ficiently calculated using the dual! Using the same substitution as
equation (4), we introduce a vector R (equivalent to s above), and
the product in equation (8) can instead be computed as

RT ∂F
∂u

such that
(

I−
∂F
∂Q

)T
R =

∂ϕ
∂Q

T
. (9)

We call this new vector the adjoint vector. If we can calculate this
adjoint R, the overall gradient can now be computed simply:

dϕ
du

= RT ∂F
∂u

+
∂ϕ
∂u

. (10)

Now we must describe how to calculate R itself. First, rewrite the
constraint in equation (9) as

R =

(

∂F
∂Q

)T
R+

∂ϕ
∂Q

T
. (11)

The key to solving this lies in the sparse structure of ∂F/∂Q,
with its off-diagonal blocks representing each ∂ fi/∂qi. Much the
same way that Q is an aggregate of a sequence of forward states
q1, . . . ,qn, we may view R as an aggregate of a sequence of adjoint
states r1, . . . ,rn so that (10) implies that rn = (∂ϕ/∂qn)

T and

ri =

(

∂ fi
∂qi

)T
ri+1 +

(

∂ϕ
∂qi

)T
. (12)

Note that each adjoint state depends on the subsequent state; there-
fore, whereas the regular simulation states are computed forward in
time, these adjoint states must be computed in reverse.

5.3 Implementation
To make this more concrete, we now explain the specific steps
involved in the adjoint computation. First, the forward states
q1, . . . ,qn are calculated in order, as in an ordinary simulation, ex-
cept that each simulation state must be stored. Then, the adjoint
states r1, . . . ,rn are calculated, proceeding backwards through the
sequence, according to equation (12). As each adjoint state is com-
puted, the objective function is incremented according to equation
(10). When r1 has finally been calculated, both ϕ and dϕ/du are
known, at essentially the cost of two computations of ϕ .

We store the forward states qi because equation (12) depends
on them for the adjoint calculation. As a result, the algorithm has

Figure 2: States during the forward pass are stored to be used later
for computing the reverse pass.

memory requirements linear in the number of timesteps. This is the
main drawback of the adjoint method.

To address this problem, the central issue is granularity: at what
level should the functions fi be defined? At the finest level, it is pos-
sible to consider each machine instruction to be its own function; in
fact, this forms the basis of the “reverse mode” automatic differen-
tiation [Griewank 2000]. Unfortunately, a naive implementation of
this approach would require a tremendous amount of memory and
is infeasible for all but the smallest problems.

We opt instead to view the problem at a coarser-level of granu-
larity, matching the functions fi to the fluid simulation operations.
Each operation is responsible for storing data for the adjoint calcu-
lation: one operation might store all the relevant information, while
another might store only some data and recompute the rest on the
fly. This flexible framework, sometimes called checkpointing, al-
lows the system designer to trade computation time for memory
usage, depending on the hardware constraints.

If the memory requirements are still unmanageable, the user
must break the simulation into smaller subproblems. For example,
layered multiple shooting [Treuille et al. 2003] was designed for
fluid control applications to help avoid local minima, but it also sig-
nificantly reduces memory consumption by considering only short
sequences at a time. In practice, because of the granularity at which
we chose to implement the adjoint method, we did not find these
techniques necessary.

6 Adjoint Fluid Control
Having described the adjoint method in theory, we now demon-
strate how to apply it to our system. As mentioned in Section 3,
each function fi is one of the operations used to simulate fluids. In
other words, for smoke:

f0 = APPLYCONTROL,
f1 = ADVECT,
f2 = DIFFUSE,
f3 = HEAT,
f4 = PROJECT,
f5 = MATCHKEYFRAME,
f6 = APPLYCONTROL, etc. . .

and similarly for water. In both cases, we simulate the fluid for-
ward in time by applying each operation in turn. Then, the adjoint
state is initialized and passed through each operation’s adjoint step
in reverse order. Therefore, to calculate the gradient, we must know
what this “adjoint step” means for each operation f (for the remain-
der of this section, we omit the subscripts to avoid confusion).

We first consider the standard fluid operations, which do not di-
rectly affect the objective function ϕ . In this case, when updat-
ing the adjoint state according to equation (12), the second term
vanishes, and the adjoint step just becomes a multiplication by the
transpose of the derivative

(

∂ f
∂q

)T
.

The following subsections will demonstrate how to compute
this transpose derivative for each of the standard operations. Fi-



nally, we will consider the special cases of APPLYCONTROL and
MATCHKEYFRAME.

6.1 Heat
In smoke simulations, the HEAT operation adds upward velocities
proportional to the amount of smoke density in each grid cell:

v′y = vy +hρ .

Here, v′y is the y-component of the cell’s velocity after heat is ap-
plied, and h is a user-specified heat constant. Therefore, letting f
denote the HEAT operation: f(q) = Hq, where the matrix H adds
the scaled densities to the y-component of the velocities. This ad-
joint of the linear step is merely the transpose of the matrix:

(

∂ f
∂q

)T
= HT

In other words, we scale the adjoint state’s y-velocities, adding them
to its density grid.

6.2 Gravity
Even simpler, the GRAVITY operation for water applies a constant
downward force to the interior of the liquid. Since this force does
not depend continuously on the state, its derivative is the identity.
That is, the adjoint of this step leaves the state untouched.

6.3 Projection and Diffusion
Another class of operations (PROJECT and DIFFUSE) involves solv-
ing a linear system. In general, the adjoint involves solving the
transpose linear system. However, these operations are symmetric,
so the adjoint and forward computations are identical: we project
and diffuse the adjoint state in the same way as the original state.

Note that this requires an accurate linear solver. Another ap-
proach would be to take the adjoint derivatives through the linear
solver itself. However, we did not find this necessary.

6.4 Advection
Unlike the previous operations, ADVECT is nonlinear. To demon-
strate the adjoint operation, we describe advecting ρ through v (ad-
vecting the velocities is analogous).

In semi-Lagrangian advection, paths originating from each voxel
are backtraced through the velocity grid. Each grid cell is updated
by linearly interpolating the value at the end of its path. Let η(ρ ,x)
be the interpolation function that takes an input grid ρ and a corre-
sponding grid of x, and returns ρ resampled at positions x. Both
dη/dρ and dη/dx can be easily derived from the interpolation
equations.

For simplicity we present an Euler-step backtrace (these ideas
also extend to more complex integrators). Thus, we can write the
ADVECT operation f as

f(q) = η(ρ ,x0−v),

where x0 are the positions at the voxel centers and ρ and v are the
components of q.

We must compute the adjoint matrix (∂ f/∂q)T , in other words
(∂ f/∂ρ)T and (∂ f/∂v)T . Both can be computed in terms of the
known derivatives of linear interpolation:

(

∂ f
∂ρ

)T
=

(

∂η
∂ρ

)T
,

(

∂ f
∂v

)T
=

(

dη
dx

∂x
∂v

)T
=−vT

(

dη
dx

)T
.

6.5 Level Set Redistancing

The REDISTANCE operation is considerably more complex than
those described above. Given the highly discrete nature of this op-
eration, relying on the heapsort algorithm, one might expect it not
to lend itself to derivative calculation. One of the contributions of
this paper is to show that reasonable derivatives can be computed
by observing that the operation is locally smooth.

Our redistancing operation is based on the fast marching algo-
rithm as described in [Adalsteinsson and Sethian 1998]. We now
sketch the algorithm so that we may subsequently describe its ad-
joint. In general, the REDISTANCE operation reinitializes the level
set to a signed-distance function to avoid a slow degradation of the
surface.

The fast marching algorithm first considers all voxels neighbor-
ing the interface and estimates the signed distance by linearly ap-
proximating the surface location. The redistanced grid value ρ ′l at
grid cell l is the solution to a quadratic equation

aρ ′2l +bρ ′l + c = 0 (13)

where the coefficients a, b, and c are functions of ρ at l and at adja-
cent voxels opposite the interface. Voxels away from the interface
are computed in order of increasing distance from the surface. As
above, the grid value ρ ′l is computed as a solution to a quadratic
equation. However, in this case, the coefficients a,b,c of (13) are
functions of neighboring voxels that have already been redistanced.

Thus, redistancing involves solving a series of quadratic equa-
tions starting at the front and moving progressively outwards. A
min-heap data structure of unprocessed candidate voxels efficiently
manages the traversal order. Figure 3 shows the traversal order, and
the arrows indicate the flow of information during the algorithm.
At the interface, information flows across the front; elsewhere, it
always flows outwards.

Figure 3: Voxel traversal order during fast marching.

In deriving the adjoint of this operation, the main difficulty
is adapting differentiability to the discontinuous heapsort-based
traversal order. The key insight is that sufficiently small pertur-
bations of the water surface do not in general change the traversal
order. Therefore, when linearizing this operation, we consider the
order fixed and view each redistanced voxel as a small differentiable
function of its neighbors, ignoring the min-heap.

Since information travels outwards from the interface, the ad-
joint information travels in the opposite direction. Consequently,
when computing the adjoint we start with the voxel traversed last,
and work our way inwards towards the interface, against the direc-
tion of the arrows in Figure 3.

When updating each voxel, we ignore the specific method used
to solve the quadratic equation and instead take derivatives of the
(13) itself:

∂ρ ′l
∂ρ ′m

=

∂a
∂ρ ′m

ρ ′2l + ∂b
∂ρ ′m

ρ ′l + ∂c
∂ρ ′m

2a+b
,

where m is a grid cell on which a, b, or c depends.



When the adjoint is complete, the entire adjoint level set is zero,
except for grid points neighboring the interface. This is not sur-
prising: redistancing the level set depends only on the values of ρ
adjacent to the surface; therefore, the operation has zero derivative
with respect to all other values.

We note that while small perturbations of the level set do not
in general change the traversal order, in some cases they do, an
extreme example being topological changes. In practice, however,
we found that our approach to fast marching yielded derivatives no
less accurate than those for the other operations.

6.6 Keyframe Matching
Having considered the standard operations, we now move to
the special control operations. Whereas all of the previous
steps simulated the fluid without affecting the objective function,
MATCHKEYFRAME does the reverse: it leaves the state q un-
touched while incrementing ϕ according to equation (2).

To compute the adjoint of MATCHKEYFRAME, we note that this
is the only operation where ϕ depends directly on the state q. By
equation (12), the reverse operation involves incrementing the ad-
joint state by (∂ϕ/∂q)T .

6.7 Applying Control
The APPLYCONTROL operation adds control to the state according
to equation (1). Letting f again denote this operation, we see that
∂ f/∂q = I. Therefore, in the reverse direction, this operation leaves
the adjoint state untouched.

However, it still has very important role to play! Because ∂ f/∂u
is nonzero, equation (10) tells us that the APPLYCONTROL oper-
ation must increment the objective function gradient. Indeed, this
is the only operation that affects the gradient, forming the bridge
between the adjoint states and the gradient computation. Substitut-
ing derivatives of equations (1) and (2) into (10), we see that the
operation increments the gradient as follows:

dϕ
du
←

dϕ
du

+ rT Mt +αuMT
t Mt .

7 Results
We have used our system to generate a number of controlled smoke
and water simulations, and have demonstrated that it runs orders of
magnitude faster than the system described in [Treuille et al. 2003].
In 2D, this means that we can specify virtually unlimited control,
such as pairing every simulation variable with a control variable. In
3D, we can produce sophisticated animations completely infeasible
using earlier systems.

Figure 4 shows three examples of our system controlling a vis-
cous fluid. In these optimizations, a ball of clay-like material is
dropped onto a flat surface. A keyframe controls the shape of the
clay’s final resting position. In all of these examples, we found
that the system had a much easier time controlling the simulation if
controls were placed only after ground contact. We believe that this
is because impact creates a highly nonlinear shock, through which
linearizing the equations provides a poor approximation.

We have also used our system to control smoke simulations, as
can be seen in Figure 5. In this case, we converted meshes of the
Stanford bunny and armadillo models to density keyframes. Our
system then solved for simulations in which a ball of smoke rises
to form these shapes. With over 100,000 control parameters each,
these simulations would have been computationally intractable us-
ing previous control algorithms. Our system produced very close
matches to the keyframes. As can be seen in the accompanying
video, the animations faithfully reproduce fine scale detail such as
the tail and horns of the armadillo.

Our system also can be used to touch up existing simulations.
For example, Figure 6(b) shows a simulation in which a large drop
of water falls into a pool. To make the resulting splash more dra-
matic, the system follows an animator sketch of a droplet of water
rising out of the splash and crashing back down. Figure 6(c) il-
lustrates an even more dramatic, though less realistic, effect: three
droplets emerge symmetrically from the splash.

In figure 6(a), we show a result that was created with a keyframe
at every timestep from mesh data of a man punching. In this case,
our system interpolates the keyframes in a fluid-like manner by
choosing forces that direct the smoke through the keyframes. The
wisps of smoke trailing the man’s arm illustrate how the keyframes
can be hit while retaining the dynamic qualities of real fluids.

Our last examples, shown at the beginning of this paper in Fig-
ure 1, show fluid simulations of a fully articulated motion-captured
human. To show the versatility of our system, we optimized this se-
quence both for smoke and water. While the geometry and motion
are preserved across both animations, the dynamics remain faith-
ful to the underlying fluid: the smoke man billows vapor, while the
water man has drop-like globules of water flowing across his body.
These optimizations each used 1.5 million control variables and
600MB of memory over 45× 50× 36 grid cells and 46 timesteps.
In each case, the first half of the animation was solved, and then
the second half solved using the solution to the first half as initial
conditions. We split the simulation this way to speed convergence.

These results took between two hours (for the bunny) and two
days (for the water man) to compute. These runtimes bounds are
not “tight” in the sense that we ran simulations with overly strin-
gent convergence criteria to avoid halting before an adequate solu-
tion was reached. In the case of the clay simulations, for example,
the system had already found good simulations well before the op-
timization converged.

8 Discussion and Future Work
In this work, we have introduced a framework for controlling fluid
simulations using a derivative calculation that runs orders of magni-
tude faster than previous methods. We do so by adapting the adjoint
method, used in optimal control theory, to compute exact deriva-
tives of the coarse, inexact solvers most often used in graphics.
Without having to run additional derivative simulations for each pa-
rameter, our framework can be given nearly unlimited control over
a simulation, enabling–for the first time–the fine-grained control of
large fluid animations.

Additionally, this paper introduces the first work fully control-
ling a level set surface through the Navier-Stokes equations. By
taking adjoint derivatives through the fast marching step, we have
shown that derivative-based optimizations can be used to control
water simulations, even in the presence of highly discontinuous op-
erations such as the heapsort algorithm.

Nevertheless, discontinuities in the water simulator did make
control more difficult. In addition to the redistancing operation, we
note that, for water, the projection and diffusion operations are also
discontinuous. This is because the linear systems are only solved
on the interior of the fluid. If the surface moves slightly, the set of
interior cells can change, and we must solve a different (albeit sim-
ilar) linear system. These discontinuities rendered the derivatives
less accurate than for smoke, making control harder. With smoke
simulations, the optimizations could be tuned to an almost arbitrary
precision, while water simulations often could only reach a certain
level of detail. Even with this loss of accuracy, we were able to con-
trol complex water simulations through a variety of constraints. We
are interested in further investigating the types of operations that
can or cannot be successfully controlled.

For example, we would like to extend this adjoint control model
to more sophisticated water simulation techniques, such as the
hybrid-particle method. While adding and subtracting particles to



Figure 4: From identical initial conditions, clay falls into various shapes: a cross (top), a torus (middle), and a man (bottom). These were
each optimized on grids of dimension 50× 23× 50 for 10 timesteps. With over 300,000 control parameters, the system used about 200MB
of memory.

Figure 5: (top) The Stanford bunny. (bottom) The Stanford armadillo. Both were simulated on a 50× 50× 50 grid with a single keyframe
(the third image in the sequence). 100,000 controls; about 600MB memory.

(a) (b) (c)

Figure 6: (a) A smoke punch in a 90,000 voxel volume with over 600,000 Gaussian wind force parameters distributed over the 20 timesteps,
and requiring about 550MB of memory. (b) A controlled droplet emerges from a water splash. (c) Three droplets rise from the same splash.
These water optimizations used about 95MB of memory in 10 timesteps over 30×30×30 grid cells.



the system might introduce discontinuities, our experience with the
discontinuities in fast marching suggests that the framework could
cope.

Because the adjoint method can easily handle huge control vec-
tors, the bottleneck in our framework has moved from the evalua-
tion of the objective function to the optimizer itself. When the sys-
tem has trouble matching keyframes, it is often because it is given
excessive control and cannot navigate the complex search space.
This suggests that intelligent model reduction on the controls may
reap considerable benefits.

We would also like to consider other control paradigms. While
keyframing is extremely powerful, there are many times when we
might want to describe some other property of the fluid motion. For
example, we might want a wave to break at a specific time, without
specifying the exact shape of the surface. If these metrics could
be encoded into a differentiable objective function, they could be
added to our system.

Most importantly, we are excited by the many possible ap-
plications of the adjoint method in computer graphics. This
approach can certainly extend directly to controlling other types
of physics-based simulations, but its applicability is not limited
to this domain. We hope that this work inspires others to explore
how this powerful technique might be applied to their own research.
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