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Abstract

This paper addresses the problem of realistically simulating the motion of tree-branches subjected to turbulence.
Since the resulting motion is random in nature, we model it as a stochastic process. We synthesize this process
directly by filtering a white noise in the Fourier domain. The filter is constructed by performing a modal analysis
of the tree. We use a sophisticated numerical technique which is able to compute the first few significant modes of
large trees. The main advantage of our technique over previous methods is that we are able to compute complicated
motions without the necessity of integrating dynamical equations over time. Consequently, a user can view and
manipulate tree-motions in real-time Our technique can be further extended to other flexible structures such as

two-dimensional plates.

1. Introduction

Many motions encountered in Nature are caused by atmo-
spheric turbulence. Everyday examples of such motions in-
clude the swirling behaviour of rising smoke and the sway-
ing of tree-branches in the wind. This paper will address
the problem of modelling the latter effect. Since this phe-
nomenon is difficult to key frame directly, researchers usu-
ally resort to physics-based methods®. In these methods, the
motion of the branches is computed by integrating the rel-
evant dynamical equations over time. Since the forces driv-
ing these equations result from turbulent wind fields, we ob-
serve that the corresponding motions of the trees are random
in nature. This observation forms the basis of our method,
that of modelling the movement of the tree as a stochastic
process. This process is synthesized directly by filtering an
uncorrelated noise in the frequency domain. A filter is con-
structed by computing a small number of deformations char-
acterizing the tree. This is done using a technique known

T This research was conducted while the author was an ERCIM
postdoctoral fellow at INRIA and VTT. Author’s current address:
Alias—Wavefront, 1218 3rd Avenue, Ste 800, Seattle, WA 98101,
US.A.

(© The Eurographics Association 1997. Published by Blackwell Publishers, 108 Cowley
Road, Oxford OX4 1JF, UK and 350 Main Street, Malden, MA 02148, USA.

in engineering as modal analysis and was used by Pentland
and Williams to animate and control simple flexible objects3.
Our method however differs from their work since we con-
sider arbitrary large objects which are driven by a random
process.

The closest model to ours is that of Shinya and Fournier?.
But a fundamental difference is that they must integrate
dynamical equations over time. Where they synthesize the
wind field to drive the motion, we synthesize the motion di-
rectly, bypassing the need to integrate. Simply put, where
Shinya and Fournier model the cause, we model the effect
stochastically. By using a spectral synthesis algorithm, we
can precompute periodic motions for a given class of trees.
These motions therefore are defined for any instant of time
and can be simulated by a straightforward table lookup. This
has several advantages. Firstly, the motion of the tree can be
manipulated in real-time by an animator. Secondly, specific
frames of an animation can be computed directly without
the necessity of resimulating everything from the beginning.
Thirdly, a single motion can be multiplied to similar trees to
create a “wind in the forest” effect without having to solve
for each individual tree. In short, our method enables an an-
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imator to almost effortlessly add realistic motion to many
trees.

However, we would like to emphasize the value of Shinya
and Fournier’s approach? in that they addressed a wider
range of problems pertaining to the realistic simulation of
trees, particularly the rendering and animation of foliage.
This method has been improved recently by Weber and
Penn10. As well, we do not address the problem of syn-
thesizing the geometry of various trees, since this has been
fully explored by de Reffye et al and Prusinkiewicz, among
others®. 5.

In order to shorten the presentation of the material, we use
a compact vector notation throughout the paper. Boldface
lowercase letters refer to vectors while boldface uppercase
refer to matrices. The components of a vector are identified
by their corresponding letter: the i-th component of a vector
u is denoted by uj, which should not be confused with an
indexed vector: uj. The nx n identity matrix is denoted by I .
Transposition is denoted by appending a “ T symbol, while
the “*” symbol is reserved for transposition and conjugation.

2. Dynamicsof Trees

We discretize our trees into a set of N branches. Each branch
at rest is defined by both a line segment and by its radii at
each endpoint. To generate such descriptions, we employ
simple L-systemsS. Fig. 3 to 6 depict trees synthesized in
this manner. By considering elastic deformations only, we
can model the motion of each branch over time. The corre-
sponding deviation from the branch segment is described by
a cubic curve, whose shape depends on the six displacements
at each of the end points of the branch. These displacements
result from translational and rotational forces. We denote the
displacements at a node i of the tree by a six-dimensional
vector u;. The displacement associated with each component

Figurel1: The six displacements at the end-point of a branch.

of u; is depicted in Fig. 1. The actual shape of a branch, la-
belled k, is then given by the following cubic curve:
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where x denotes the branch segment at rest. The 12 x 3 ma-

trix Ay(s) is provided in Appendix A. The integers iy and ji
are used to index the displacements corresponding to the end

points and are values between 0 and N. The displacement ug
represents the root of the tree and is therefore zero.

By grouping all of the displacements into a 6N-
dimensional vector u, the evolution of the displacements can
be condensed into the following dynamical equations:

Mii(t) + Cu(t) + Ku(t) = f(t), @)

where M, C and K are the mass, damping and stiffness ma-
trices respectively. The force f accounts for the external load-
ing due to wind. The dampness matrix is often assumed to
be proportional to the mass matrix via a damping coefficient
a, i.e., C=aMs. In Appendix A, stiffness and mass ma-
trices are given for a single branch. The global matrices are

<
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Figure 2: Constructing the structural matrices.

built from those of each individual branch by adding the four
6 x 6 subblocks to the corresponding ones in the global ma-
trix. Fig. 2 illustrates how this is achieved for a simple tree.
More precisely, let Ty be a 12 x 6N matrix which is zero ex-
cept for two 6 x 6 subblocks that are determined by iy and
jk and are equal to the identity matrix. If Ky denotes the
stiffness matrix for the k-h branch, then the global stiffness
matrix is equal to®

N
K= ZTkKkTI.
k=

We proceed similarly for the mass matrix.

The force vector is constructed in the same manner from
the loads fy on each individual branch caused by a wind field
V(X,t). Indeed, the pressure py(t,s) acting on a single branch
k is proportional to the square of the magnitude of the ve-
locity. For small displacements, it is often assumed that this
relationship is linears:

pk(t,s) = pCor(s)Pv(x)(s),1), (3)

where Py is an operator which projects the velocity onto the
plane normal to the direction of the branch, and where ri(s)
is the thickness along the branch. The density of the air, p, is
approximately equal to 1.2kg/m3 and Cp denotes the lateral
drag coefficient. The force acting on a branch is obtained by
inverting Eq. 1 and integrating along the branch:

1
W) = [ A Pi(t.s) IS~ Bypx(,0.5)  (4)

where By is a 12 x 3 matrix equal to the transpose of A in-
tegrated over the length of the branch (see Appendix A).
The global force is calculated by adding up the contributions
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from each individual branch:

N
f(t)=pCp 3 r(0.5)TiBkPivi(t), (5)
k=1
where vy (t) = v(x,(0.5),t). Now that we have shown how
all the terms appearing in Eq. 2 are related to the geometry
of the tree, we investigate its solution.

3. Modal Analysis

Instead of integrating Eq. 2 over time, we transform this
Equation into the frequency domain (note that all quantities
become complex valued in the Fourier domain.):

L()(w) = f(w), (6)

where “ denotes the corresponding Fourier transform and
the linear operator

L(w) = (— & +iaw)M +K

(i = +/—1). From this equation it is evident that Eq. 2 can be
solved directly if the matrix L is invertible for any . Usually
this inverse is difficult to obtain for trees since the size of L
can become very large (six times the number of branches).

A convenient way of solving such equations for flexible
structures is to compute the modal frequencies and shapes
associated with the tree. A flexible structure, in general, dis-
plays certain characteristic shapes when subjected to a force
vibrating at one of its modal frequencies. The shape resulting
from an arbitrary force can be regarded as a superposition of
the modal shapes. In practice, only a small number of the
modal shapes corresponding to the smallest modal frequen-
cies contribute to the motion of the tree. Mathematically, the
modal frequencies and shapes are calculated by solving the
following eigenproblems:

MQD =KQ,

where D is a diagonal matrix whose non-zero elements w?
are the modal frequencies of the tree, while the columns of
the matrix Q correspond to the modal shapes. Since the char-
acteristics of the modal shapes are left invariant under ro-
tations and scalings, it is possible to require that they are
mass-orthogonal: Q"M Q = I gy. Consequently, the operator
L becomes diagonal in the modal basis:

QLQ" = (—? +iaw)lgy +D.

Let us denote the displacement and the force in this new ba-
sisby G and f, respectively. The i-th displacement of this new
basis can then be computed directly by inverting the diago-
nal system:

1 N

(w=-———-——"F(w), i=1,-
00 = o rae 1@ 1=
Specifically, the contribution of each mode is inversely pro-

portional to the value of each modal frequency. Thus only a
small number m < N of modal frequencies is sufficient to

o

6N, (7)
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characterize the resulting deformations. Assuming that the
diagonal elements of D are sorted in increasing order, then
in practice we only have to compute the first m columns Qm
of Q. Once the displacements @ in the modal basis have been
calculated, we perform m inverse Fourier transforms in or-
der to obtain the displacements u in the temporal domain.
Finally, we retransform this vector back to get the final dis-
placements which will be used in the simulation: u = Qmu.

4. Solving the Eigenproblem

We observe that for this method to work, we require an effi-
cientalgorithm that solves the eigenproblem. We have exper-
imented with two different algorithms. The first one is from
the Numerical Recipes library: routinest r ed2 and t gl i 4.
As explained on p. 462 of the reference, the eigenproblem
is first transformed into a standard eigenproblem by using
a Choleski decomposition of the mass matrix. The standard
problem is then solved by tridiagonalizing the matrix of the
system. Then a routine dedicated to the solution of such sys-
tems is called. Because this method calculates all the modal
frequencies and shapes, it is expensive: O(N®). This is an
overkill. In practice, we find that using only ten or twenty
modal frequencies is sufficient.

Fortunately, there exist many other methods which iter-
atively calculate the modal frequencies in ascending order,
taking advantage of the sparsity of the mass and stiffness
matrices. We chose the Lanczos method because of recom-
mendations from many sources® 2. The Lanczos method iter-
atively computes only the m x m upper left block of the tridi-
agonal system and in fact, this upper block contains all the
corresponding lowest modal frequencies. The eigenvalues of
the truncated tridiagonal matrix are computed with a routine
similar to t gl i . Many implementations of the Lanczos al-
gorithm are available in the public domain. We implemented
the “lanz” package written by Jones and Patrick available
fromnet | i b (http://www.netlib.org/lanz/index.html). This
package is written in FORTRAN but was easy to link with
the rest of our code which is written in C. The routine has
many parameters which must be set appropriately in order
to obtain good results. A very helpful option is to consider
only a sparse (approximate) Choleski decomposition of the
mass matrix. This option greatly decreased computing time.
The package also prints out the corresponding error bounds
on each eigenvalue. By asking for about double the amount
of modal frequencies than is required, we can get a precision
up to machine accuracy. These findings are consistent with
numerical experiments2.

Knowing that we can invert Eq. 6 efficiently, it remains to
compute the Fourier transform of the force on the right hand
side of Eq. 6. This is the topic of the subsequent section.
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5. Stochastic Dynamics

If the Fourier transform of the force is known exactly, we
could solve Eq. 6 directly. In reality, however, only the ag-
gregate behaviour of atmospheric turbulence is known. We
therefore must consider all the functions in the previous sec-
tion to be stochastic processes. For stationary processes, i.e.,
processes whose statistics are time shift invariant, spectral
representations exist. Therefore, all the results of the previ-
ous section apply. In practice, we approximate the Fourier
transform of the generalized force by a (truncated) Fourier
series of M terms. The (vector) coefficients of this series are
computed from the velocity at each branch via Eq. 5. This
requires us in turn to have a realization of a random wind
field. One solution would be to generate a random vector
independently at each branch. Real wind fields, which are
albeit random, exhibit spatial structure. So, we expect that
nearby branches in the tree should receive similar loads. We
achieve spatial correlations by filtering a set of uncorrelated
complex random vectors, wq, - - -, Wy, by a set of filters H:

N
\7k((x))=|;Hk|(0.))W|(0.)), k:l,---,N. (8)

Since a wind field has finite energy and is usually coherent
over time, we expect these filters to decay as the frequency
increases. To account for spatial correlations, we make the
magnitude of the filter inversely proportional to the distance,
dy, between branches k and I. A simple formula which in-
cludes both behaviours is given by:

Hi (w) = exp <*tcwdﬁ> I3,
dc

where t¢ and d¢ represent typical temporal and spatial cor-
relations of the wind field. The multiplication by the iden-
tity matrix reflects that the components of the wind field
are uncorrelated amongst themselves. For small correlation
lengths, typically comparable to the size of a branch, most
filters are zero. Consequently, the sum in Eq. 8 usually has a
number of non-zero terms which are independent of the size
of the tree. The cost of computing the turbulent wind field at
the branches is therefore essentially linear in N.

The force is now determined in the frequency domain,
since the force is related to the velocity just computed via
Eq. 5. Finally, the displacements are computed in the modal
basis via Eq. 7.

6. Putting it all Together

We now give the complete algorithm which generates the
stochastic displacements from the previous considerations.
On input, the user provides the length T of the periodic time
interval, the number M of discrete frequencies included in
the Fourier series, the correlation parameters tc and dc of the
filters, the damping factor a and the geometry of the tree.

Compute Matrices:

K=M=0
fork e {1,---,N} do
Compute Ky and My (see Appendix A)
K=K+TIKTxand M =M +TEMT
end do
Solve Eigenproblem:
Calll anz K,M — Qmand %, -+, w,
Compute Force:
for p € {0,---,M/2} do
w=F
f=0
generate N random vectors wj (w)
forke {1,---,N} do
compute Uy (w) from Eq. 8
f=f+ pCpry(0.5) TkBPKIx(w)
end
f=Qnf
Compute 0y, using Eq. 7
if p#£ 0then QM_p :g’,g
end do
Im{lo} = Im{0y 2} =0
{QO, e 7HM—1} = inVFFT{Qo; e agM—l}
Uszmea p=0,---,M-1
The bottleneck of the algorithm is the solution to the
eigenproblem having a theoretical complexity of O(N3).
However, in our simulations the time required to solve the
eigenproblem was much smaller than the time required
to compute the force. The computation of the latter is
O(mMNM) = O(MN), since m < N, M and as noted above,
the sum in Eq. 8 has a constant number of non-zero terms.

7. Results

We have written a simulator which, when given a precom-
puted displacement table and a geometric description of a
tree, displays the evolution of the tree in real-time. Displace-
ments for times falling in between the time samples com-
puted by the fast Fourier transform are linearly interpolated
from neighbouring samples. We can either display the trees
by drawing the curves defined by Eq. 1 or generate cones
which can then be hardware-shaded on an Iris Indigo. For
our simulations, we used a time resolution of M = 256 and a
time interval of T = 256 seconds. We employed the Numer-
ical Recipes routines on small matrices to determine how
many model frequencies are sufficient. For small trees (less
than 50 branches), retaining only m = 10 modes results in
simulations which are visually indistinguishable from simu-
lations of the same tree including all modes.

When using the Lanczos method, we usually requested 40
modes and employed only 20, which were all accurate up to
machine precision. Table 1 shows the computation times on
an Iris Indigo with a 150 MHz R4400 processor for the trees
depicted in Fig. 3. As is evident, the computation of the force
is of an order of magnitude higher than the eigenproblem so-
lution. To remedy this problem, we attempted to generate the

(© The Eurographics Association 1997
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Nb. of Branches 2257 692 212 62 17
I anz (sec.) 48.8 10.1 55 05 0.2
Gen. noise (sec.) 4514 1453 375

34 03

Table 1. Computation times for trees with different numbers
of branches.

m modal forces f directly, since in the case of low damping,
Eq. 7 essentially selects frequencies close to the modal ones
only. In practice, this has turned out to be effective only for
small trees. For larger trees, unnatural displacements along
the tree’s length occurred. Therefore, in this case, it is gen-
erally necessary to go through the entire force computation.

In Fig. 3 through 6 we show frames of animations which
were generated using our method. Fig. 4 is an animation of a
ray-traced tree with 55 branches. In Fig. 5, we used the same
displacement computation to animate several similar trees.
By using a different time-shift we can “desynch” the motion
of each tree. This permits us to animate large amounts of
trees using virtually no extra computation time. Fig. 6 de-
picts an underwater scene with algae-like structures. We in-
creased the damping in order to simulate the characteristic
motion of underwater plants. Please view the animations on
the CDROM accompanying this paper for a better apprecia-
tion of the results.

8. Conclusions

The results demonstrate that despite the assumption of small
displacements required to maintain a linear description, we
are able to synthesize convincing motions of tree-branches
swaying in the wind. The same methodology can in fact
be applied to other flexible elements. Refer to Fig. 7, four
frames of an animation of a flag waving in the wind, which
was generated using the same methodology. The correspond-
ing structural elements and displacements can be found in®.
However, once we encounter larger deflections, a method
based solely on elastic deformations breaks down, and geo-
metrical deformations take over. Larger deformations there-
fore require more expensive techniques.
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Figure 3: The five trees used for the timings given in Table
1.

Figure4: One frame from an animation of a small tree sway-
ing in the wind.

Figure 5: Forest: the motion computed for a single tree is
applied to many trees.
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Figure 6: By increasing the aerodynamical damping we can
model the movements of underwater plants.

Figure 7: The methodology described in this paper can also
be applied to other flexible structures. A ““flag-like” struc-
ture, for example.

Appendix A: Structural Elements

In this appendix we present the exact form of the matrices
pertaining to a single branch k modelled as a flexible beam.
These matrices are usually given in a local coordinate system
where the x-axis coincides with the direction of the branch.
The matrices must therefore be transferred back into global
coordinates. Let ry be the 3 x 3 matrix which performs the
transformation of local to global coordinates. From this ma-
trix we construct the 12 x 12 transformation, whose diagonal
blocks are equal to ry:

A« 0 0 O
| o r 0 o0
Re=1| 0 o « O
0 0 0 rg

Using this transformation, the structural matrices in global
coordinates are

Kk=RKR{ My=R(MR/]
Ay(s) = I’kAT(S)R;(r Bk = ng’l.

The matrices K, M and A can be found in references. The
stiffness and inertia matrices depend on the following physi-
cal parameters: Young’s modulus E = 108N /m?, shear mod-
ulus G = 10°N/m? and the mass density p = 10%kg/m3,
while the following quantities are a function of the beam’s
average width r of the branch: area A = Tr2, moment of in-
ertia | = rr* and moment of gyration J = 31wr*. Since the
matrix B is not given explicitly in8, it is provided next

B=(B1B; By —By)T,
where (I = length of the branch)

0 0 0 0 0 0
Bi=| 0 1/2 0 Bo=| 0 0 12/12

0 0 1/2 0 -12/12 0
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