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Abstract

The reflection of light from surfaces is a fundamental problem in
computer graphics. Although many reflection models have been
proposed, few take into account the wave nature of light. In this
paper, we derive a new class of reflection models for metallic sur-
faces that handle the effects of diffraction. Diffraction is a purely
wave-like phenomenon and cannot be properly modeled using the
ray theory of light alone. A common example of a surface which ex-
hibits diffraction is the compact disk. A characteristic of such sur-
faces is that they reflect light in a very colorful manner. Our model
is also a generalization of most reflection models encountered in
computer graphics. In particular, we extend the He-Torrance model
to handle anisotropic reflections. This is achieved by rederiving,
in a more general setting, results from surface wave physics which
were taken for granted by other researchers. Specifically, our use
of Fourier analysis has enabled us to tackle the difficult task of an-
alytically computing the Kirchhoff integral of surface scattering.
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1 Introduction

The modeling of the interaction of light with surfaces is one of the
main goals of computer graphics. Over the last thirty years many
reflection models have been proposed that have considerably im-
proved the quality of computer graphics imagery. Almost all of
these reflection models are either empirical or based on the ray the-
ory of light. Surprisingly little attention has been devoted to the
purely wave-like character of light. It is well known from physical
optics that ray theory is only an approximation of the more funda-
mental wave theory. Why then has wave theory been so neglected ?
The main reason is that the ray theory is sufficient to visually cap-
ture the reflected field from many commonly occurring surfaces.
This observation is usually true when the surface detail is much
larger than the wavelength of visible light (roughly 0.5 microns
(107 meters)). Another reason for this neglect is the common
belief that models based on wave theory are computationally too
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expensive to be of any use in computer graphics. In this paper we
challenge this point of view by introducing a new class of analytical
reflection models which simulate the effects of diffraction. Diffrac-
tion is a purely wave-like phenomenon which cannot be modeled
using the standard ray theory of light. Diffraction occurs when the
surface detail is comparable to the wavelength of light. A common
example of a surface that produces visible diffraction patterns is the
compact disk (CD). By rotating a CD under a steady light source,
one can fully appreciate the visual complexity of diffraction. To
capture these subtle changes in color and intensity requires a wave-
like description of light. In this paper we derive analytical reflection
models based on the wave theory that capture the effects of diffrac-
tion. In addition, our model is both easy to implement as a standard
“shader” and computationally efficient. The derivation which leads
to our new model, however, is not simple. This is because the wave
theory is mathematically much more complex than the ray theory
of light.

Scanning through the computer graphics literature, we found
only a few references which explicitly use the wave description
of light. In 1981 Moravec proposed solving the global illumina-
tion problem using the wave theory of light [11]. For his method
to give acceptable results, both a very fine resolution (on the order
of the wavelength of light) and a large ensemble of simulations (to
model incoherent natural light sources) are required. This makes his
approach unsuitable for practical computer graphics applications.
Later in 1985, Kajiya proposed to numerically solve the Kirchhoff
integral® to simulate the light reflected from anisotropic surfaces
[9]. His approach, although less ambitious than Moravec’s, suffers
from the same limitations. In this context it would appear to be
more promising to solve directly for the coherence functions asso-
ciated with the waves, which are second order statistical averages
of the wave fields. Some work in this area has been pursued by Tan-
nenbaum et al. [20]. The coherence functions can also be employed
to define generalized radiances [23].

A more practical use of the wave theory in computer graphics is
to employ it to derive analytical reflection models. This approach,
which has a long history in the applied optics literature, e.g., [2],
was first seriously introduced to computer graphics by Bahar and
Chakrabarti [1]. Using Bahar’s full wave theory, they were able to
fit analytical distributions to their computations for surfaces having
a large isotropic surface roughness. The full wave theory has the
advantage over the Kirchhoff theory in that it takes into account the
global shape of the object. However, in practice analytical expres-
sions are known only for simple objects such as spheres. Also the
global shapes of surfaces in computer graphical models are usu-
ally much larger than the wavelength of light. Later in 1991, He
and collaborators derived a general reflection model based on the
electro-magnetic wave theory to predict the reflection of light from
isotropic surfaces of any surface roughness [8]. At about the same
time, a very similar model was proposed in the computer vision
literature by Nayar [13]. As in Kajiya’s work, these two models
are essentially based on the Kirchhoff approximation of surface re-
flection [2]. We also note that Blinn already used some asymptotic
results from Beckmann’s monograph [3]. However, Blinn’s model
does not account for wave-like effects.

IThis integral will be defined more precisely below.



Figure 1: Close-up “view” of the micro-geometry of the surface of
a compact disk.

Although the analytical models just discussed are based on wave
theory, none of them is able to capture the visual complexity of the
light reflected off of a compact disk, for example. The main reason
is that these models assume the surface detail to be isotropic, i.e.,
the surface “looks the same” in every direction. Interesting diffrac-
tion phenomena, however, occur mostly when the surface detail is
highly anisotropic, viz. non-isotropic. Fig. 1 shows that this is
certainly the case for the CD. Other examples include brushed met-
als and colorful diffraction gratings. In computer graphics, both
empirical and ray optics models have been proposed to model the
reflection from anisotropic surfaces [15, 17, 22]. However, since
these models are not based on wave theory, they failed to capture
the effects of diffraction. To the best of our knowledge, reflection
models that handle colorful diffraction effects have not appeared
in the computer graphics literature or in any commercially avail-
able graphics software before. The phenomenon of diffraction was
used, however, by Nakamae et al. to model the fringes caused when
viewing bright light sources through the pupil and eyelashes [12].

In this paper, we derive various analytical anisotropic reflection
models using the scalar Kirchhoff wave theory and the theory of
random processes. In particular, we show that the reflected intensity
is equal to the spectral density of a simple function p = e**" of the
(random) surface height 2. We show that the spectral density can
be computed for a large class of surfaces not considered in previous
models. We believe that our approach is novel, since the “classic”
monographs on scattering from statistical surfaces do not mention
such an approach [2, 14].

Diffraction should not be confused with the related phenomenon
of interference. Interference produces colorful effects due to the
phase differences caused by a wave traversing thin media of dif-
ferent indices of refraction, e.g., a soap bubble. Interference ef-
fects, unlike diffraction, can be modeled using the ray theory of
light alone [7].

To fully understand the derivations in this paper the reader should
have a background in Fourier analysis, distribution theory and ran-
dom processes. Due to a lack of space we refer the reader not
versed in these areas to the relevant literature, e.g., [16, 24]. The
reader might also want to consult the longer version of this paper
available on the CDROM proceedings which contains appendices
summarizing the main results from these disciplines. The remain-
der of this paper is organized as follows. A reader who is interested
solely in implementing our new shaders can go directly to Section
6 where the model is stated “as is”. Section 2 summarizes the main
results from wave theory which are required in this paper. Section 3
presents our derivation. Subsequently, Sections 4 and 5 present sev-
eral applications of our new reflection model. Section 6 addresses
implementation issues and can be read without any advanced math-
ematical knowledge. Section 7 discusses several results created us-
ing our new shaders. Finally, Section 8 concludes, outlining possi-
ble directions for future research.

Figure 2: Basic geometry of the surface wave reflection problem.

2 Wave Theory and Computer Graphics

In this section we briefly outline some results and concepts from
the wave theory necessary to understanding the derivation of our
reflection model. We employ the so-called “scalar wave theory of
diffraction” [4]. In this approximation the light wave is assumed to
be a complex valued scalar disturbance ). This theory completely
ignores the polarization of light, so its results are therefore restricted
to unpolarized light. Fortunately, most common light sources such
as the sun and light bulbs are totally unpolarized. The waves gen-
erated by these sources also have the property that they fluctuate
very rapidly over time. Typical frequencies for such waves are on
the order of 10** s~1. In practice this means that we cannot take
accurate “snapshots” of a wave. Light waves are thus essentially
random and only statistical averages of the wave function have any
physical significance. The averaging, denoted by (.), can be inter-
preted either as an average over a long time period or equivalently
(via ergodicity) as an ensemble average. An example of a statistical
quantity associated with waves is the irradiance, I = (|¢|?).

We also assume that the waves emanating from the source are
stationary. This means that the wave is a superposition of inde-
pendent monochromatic waves. Consequently, we can restrict our
analysis to a wave having a definite wavelength X associated with
it. For visible light, the wavelengths range from the ultraviolet (0.3
microns) to the infrared (0.8 microns) region. Each of these waves
satisfies a Helmholtz’s wave equation:

V2 + kP = 0,

where & is the wavenumber equal to the reciprocal of the wave-
length, & = 27/ .

The main task in the theory of diffraction is to solve this wave
equation for different geometries. In our case we are interested in
computing the reflected waves from various types of surfaces. More
precisely, we want to compute the wave > equal to the reflection
of an incoming planar monochromatic wave ¢; = e***1™ traveling
in the direction k; from a surface S. Fig. 2 illustrates this situa-
tion. The equation relating the reflected field to the incoming field
is known as the Kirchhoff integral. This equation is a formalization
of Huygen’s well-known principle that states that if one knows the
wavefront at a given moment, the wave at a later time can be de-
duced by considering each point on the first wave as the source of
a new disturbance. This principle implies that once the field on the
surface is known, the field everywhere else away from the surface
can be computed. The field on the surface is usually related to the
incoming field 41 using the tangent plane approximation. For a
planar surface, the wave theory predicts that a fraction F' of the in-
coming light is specularly reflected. The fraction F' is equal to the
Fresnel factor for unpolarized light (see p. 48 of [4]). The tangent
approximation states that the wave field on the surface is equal to
the incoming field plus the field reflected off of the tangent plane
at the surface point. Using this relation and the assumption that the
“observation point” is sufficiently far removed from the surface, the



Kirchhoff integral is ([2], p. 22):
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where R is the distance from the center of the patch to the receiving
point x,, 1 is the normal of the surface at s and the vectors

V:f(1—f{2 and p=l§1+f(2.

The vector k. is equal to the unit vector pointing from the origin
of the surface towards the point x,,. To obtain this result it is also
assumed that the Fresnel coefficient F is replaced by its average
value over the normal distribution of the surface and can thus be
taken out of the integral. Eq. 1 is the starting point for our deriva-
tion. We will show below that it can be evaluated analytically for a
large class of interesting surface profiles. Before we do so, we will
also outline how the reflected wave is related to the usual reflection
nomenclature used in computer graphics.

In computer graphics, the reflected properties are often mod-
eled using the bidirectional reflection distribution function (BRDF)
which is defined as the ratio of the reflected radiance to the incom-
ing irradiance. In this paper we will provide in every case the BRDF
corresponding to our reflection model. The relationship between
the BRDF and the waves can be shown to be [21]:
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where A is the area of the surface and 6, and 6, are the angles that
the vectors k; and k» make with the vertical direction (see Fig. 2).

3 Derivation

In this section we demonstrate that the Kirchhoff integral of Eq. 1
can be computed analytically. In this paper, as in related work, we
restrict ourselves to the reflection of waves from height fields. We
assume that the surface is defined as an elevation over the (z,y)
plane. Each surface point is then parameterized by the equation

s = s(z,y) = (2,9, h(2,9)), ©)

where h(z,y) is a (random) function. The normal to the surface
at each point then admits an analytical expression in terms of the
partial derivatives h, and h, of the height function:

hds — ﬁ(x: y) ds = (_hﬂﬂ(x:y): —hy(z‘,y), 1) dz‘dy

Introducing the notation v = (u, v, w), it then follows directly that
the integral in Eq. 1 acquires the following form:

I(ku, kv) = / / (—hg, —hy, 1) eFhkatv0) qugy  (4)
The integrand can be further simplified by noting that:
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where _
pla,y) = e, (5)

We now use the common assumption (e.g., [2, 8]) that the in-
tegration can be extended over the entire plane. This assumption
is usually justified on the grounds that the surface detail is much
smaller than the distances over which the surface is viewed. In

doing so we observe that the integral of Eq. 4 is now a two-
dimensional Fourier transform:

1k, kv)://ﬁ(—pz,—py,ikwp)e"k(“‘”””d:rdy-

This important observation can be implemented. Let P(ku, kv) be
the Fourier transform of the function p. We observe that differenti-
ation with respect to x (resp. ) in the Fourier domain is equivalent
to a multiplication of the Fourier transform by —iku (resp. —ikv).
This leads to the simple relationship

I(ku, kv) = % P(ku, kv) v.

We have thus related the integral of Eq. 1 directly to the Fourier
transform of the function p. Now, since
(Fv—p)-v=2F (1—k; k),
the scattered wave of Eq. 1 is equal to
1., 1kR i i
F(1—k; -k
o = ike ( 1 z)P
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This result shows that the scattered wave field is proportional to
the Fourier transform of a simple function of the surface height.
Consequently, from Eq. 2, it follows that the BRDF is

(ku, kv). (6)
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This result and the derivation that leads to it are remarkably simple
when compared to derivations that do not employ the Fourier trans-
form, e.g., [2]. More importantly, this treatment is more general,
since we have not made any assumptions regarding the function P
yet.

We now specialize our results for a homogeneous random func-
tion [16]. Homogeneity is a natural assumption since we are in-
terested in the bulk reflection from a large portion of the surface
having a certain profile. For example, the portion of the CD de-
picted in Fig. 1 could have been taken from any part of the CD.
However, and this is important, we do not assume that the surface
is isotropic. This is mainly where we depart from previous wave
physics models in computer graphics. Referring again to Fig. 1 we
observe that the CD is clearly not isotropic.

From the definition of the function p (Eg. 5) it follows imme-
diately that this function is also homogeneous. In particular, its
correlation function depends only on the separation between two
locations:

Co(@',y') = (p*(z,y)p(z + 2",y +y)) — {p)I’,

independently of the location (x,y). The Fourier transform of the
correlation function is known as the spectral density ([16], p. 338):

Sp(U,’l}) — //Cp(ml,y’)ei(uzl+vyl)d.’lfld/yl-

The spectral density is a non-negative function which gives the
relative contribution of each wavenumber (u, v) to the entire en-
ergy. We now show that the average in Eq. 7 is directly related
to the spectral density. Indeed, let ¢ = (z,y), & = (2',%') and
¢ = (ku, kv), then

UPOI) = (P (OPQ)) = / /<p* (©)p(n)e™ e N dedn.



Figure 3: Effect of the correlation function on the appearance of
a random surface. The pictures at the top show plots of different
correlation functions with a realization of the corresponding ran-
dom surface below. The surface types are: (a) isotropic Gaussian,
(b) anisotropic Gaussian, (c) isotropic fractal and (d) anisotropic
fractal.

With the change of variable n = £ + ¢, this integral becomes
/ /(p*(ﬁ)p(ﬁ +¢)e' dgde’
Jie [+ 1P s = s, -+,

where § is the two-dimensional Dirac delta function. Consequently,
the average in Eq. 7 is a function of the spectral density of the
function p:

%(|P(ku, kv)|?) = Sy (ku, kv) + 47°|(p)|*d(ku, kv).

Substituting this result back into Eq. 7 we get:

F2G < k2

w? 472

BRDF =

Sp(ku, kv) + |(p)|25(u7v)> )

where we have used the fact that §(ku, kv) = d(u,v)/k> [24].
Eqg. 9 is the main theoretical result of this paper. It shows that
the reflection from a random surface is proportional to the spectral
density of the random function e?**” . In the next two sections we
apply this result to the derivation of reflection models for various
types of surfaces.

4 Anisotropic Rough Surfaces

4.1 General Case

Every surface depicted in Fig. 3 is a realization of a Gaussian ran-
dom process. These processes are entirely defined by their corre-
sponding correlation function depicted in the upper part of Fig. 3.
From the figure it is clear that the correlation function determines
the general appearance of the random surface. Radially symmetri-
cal correlation functions correspond to isotropic surfaces, c.f., sur-
faces (a) and (c), while the derivative of the correlation function
at the origin also determines smoothness of the surfaces. Conse-
quently, surfaces (a) and (b) are smooth, while surfaces (c) and (d)
have a fractal appearance. In this section we further clarify the
fact that the reflection from these surfaces is intimately related to
the correlation function. Gaussian random processes have the nice
property that their characteristic functions admit analytical expres-
sions [2]. These functions are exactly what we require in order to
compute the spectral density S, and the variance |(p)|* appearing
in Eq. 9. Indeed, for Gaussian random processes these quantities

are related to their surface height counterparts as follows. Firstly,
we have the following identities ([16], p. 255):

() = (e*"y=e"9? and (10)
Cplz,y) e 9 (Y — 1), 11)

where g = (kwoy)?, and oy, is the standard deviation of the height
fluctuations. Secondly, the spectral density S, is the Fourier trans-
form of the correlation function C,, ([16], p. 338). To compute
this Fourier transform analytically we can use the expansion of the
exponential function into an infinite series [2]:

o0 gm
9Ch(zy) _ m
e = E poort Ch(z,y)™.
m=0

Then using the linearity of the Fourier transform, we can compute
the spectral density as

S=FG) = Y Lre)n). @

This requires the computation of the Fourier transform of the sur-
face correlation to a power m. We now give analytical results for
the two correlation functions corresponding to the surfaces depicted
in Fig. 3. These surfaces are defined by the following two correla-
tion functions:

2
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In all cases, the correlation lengths T, and T, control the
anisotropy of the surface. Fig. 3.(a) and (b) both correspond to
the correlation function C;. This function is infinitely smooth at
the origin, which accounts for the smoothness of the corresponding
surfaces. In Fig. 3.(a) T, = T, and the surfaces are isotropic.
Most previous wave-based models considered only the isotropic
case. Fig. 3.(c) and (d) correspond to the correlation function Cs.
The corresponding surfaces have a fractal appearance. They are
thus good models for very rough materials. In the results section
we will see that these surfaces give rise to reflection patterns which
are visually different from the smooth case.

For each correlation function, we can compute its Fourier trans-
forms to a power m analytically. They are equal to

2 2
Ty . U4y and DI = 2nT,Tym

m (m2 + U2 + V2)¥/?’

(13)
respectively, where U = kuT, and V = kvT,. By substituting
these expressions back into the infinite sum of Eq. 12, we get an
analytical expression for the BRDF:

D" =

_ F2G 79 k2 > gm m
BRDF = ——"¢ (4_7# z_:l D"+ (u) |, (14)
where D™ is any one of the functions of Eq. 13.

4.2 Discussion

In this section we demonstrate that most previous models in com-
puter graphics are special cases of our new shading model.
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Figure 4: Plots of the BRDF for k ranging from the infrared
(8.0614~1) to the ultraviolet region (16.53x~1). The reflection is
in the specular direction: 8, = 6, = 45°. The plots show the ef-
fect of the standard deviation o, on the color of the reflection. For
low deviations the reflection is bluish, while for higher roughness
it tends to flatten out. The dashed line is the geometrical optics
approximation.

Born Approximation

When g << 1, the infinite sum appearing in Eq. 12 can be trun-
cated to its first term. This is equivalent to the approximation
e*wh ~ 1 4 ikwh often taken in physical theories. This approxi-
mation should be valid whenever the scales of the surfaces are much
smaller than the wavelength of light.

21,4
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This result is described in the Handbook of Optics [5]. Notice
that the BRDF is dependent on the fourth power of the inverse of
the wavelength. This means that generally “bluish” light is more
strongly scattered than “reddish” light. These surfaces should there-
fore have a bluish appearance. An interesting feature of this ap-
proximation is that one can actually “see” the spectral density of
the random surface in its highlight, i.e., any of the plots in Fig. 3

(top).

Geometrical Optics

In the opposite limit when g >> 1, an approximate expression
for the sum of Eq. 12 can also be derived. This case corresponds
to a situation usually encountered in computer graphics when the
surface detail is much larger than the wavelength of light. For large
g, the Fourier integral only depends on the behavior of the function
e9%n near the origin (see [2, 1] for details):

@90k @) o o9,=9@% /T3 +y2/T])

The Fourier transform of this function can be computed analytically
and is equal to:

T, _v2 _v2

Sp(ku, kv) = p

The BRDF in this case is equal to (e™9 = 0):

2 o R
BRDFyeom = i e twIrZ o 4wing 7 (15)
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where r, = o, /T, and ry = o}, /T,. This distribution is a gener-
alization of the isotropic distributions found in the Blinn and Cook-
Torrance models where there is only one roughness parameter “m”.
In fact, our model closely resembles Ward’s anisotropic reflection
model [22]. As in the Cook-Torrance model, BRDF gcorm is Only
dependent on the wavelength of light through the Fresnel factor F',
as there is no other explicit dependence on wavelength: & does not
explicitly appear in the distribution.

rect(x) rect(y) 909 0(x) rect(x) rect(y)
Figure 5: Each bump is defined as the multiplication of a function
g(z,y) with the product of box-like functions.

Figure 6: Two different bump functions: (1) constant, (2) linear in
one coordinate.

Isotropic Distributions

The He-Torrance [8] and the Nayar [13] reflection models are ob-
tained when our model is restricted to the class of isotropic sur-
faces corresponding to Fig. 3.(a). Using our result for the corre-
lation function C:1 with T, = T, we essentially recover both of
these models. It is worth noting that one of the versions of the
He-Torrance model handles polarization effects while our model
doesn’t. This is because they used the vector valued version of
the Kirchhoff integral. However, in practice it seems He-Torrance
have only used their unpolarized version to create the pictures ac-
companying their paper. The dependence on wavelength (as in
our model) is a function of the Fresnel factor F' and the function
k2 Sp(ku, kv). In Fig. 4 we illustrate the dependence of this func-
tion on wavenumber k for different surface deviations o,. The re-
flection goes from a k2 dependence to a flat spectrum. Notice that
in the midrange we actually get a small yellowish hue. The figure
also demonstrates that for o, > 0.5 the geometrical optics model,
shown as a dashed line, is a very good approximation. In practice
we have found that whenever g > 10 the pictures generated with
the geometrical optics approximation are visually indistinguishable
from pictures generated using the exact model.

5 Diffraction from Periodic-like Surfaces

We now turn to an application that most clearly demonstrates the
power of our new reflection model.

Many surfaces have a micro-structure that is made out of simi-
lar “bumps”. A good example is a compact disk which has small
bumps that encode the information distributed over each “track”.
Fig. 1 is a magnified view of the actual surface of a compact disk.
Notice in particular that the distribution of bumps is random along
each track but that the tracks are evenly spaced. In this section we
derive general formulae for certain shapes of bumps, and then spe-
cialize the results for a CD-shader.

symbol | description size

ho height of a bump 0.15 pum

a width of a bump 0.5 um

b length of a bump 1um

Azx separation between the tracks 25 um

vy density of bumps on each track | 0.5 (um)~’

Table 1: Typical dimensions of a compact disk.



We assume that the surface is given by a superposition of bumps:

h(zy)= Y Y b@—owy—ym),  (16)

n=—oo m=—0oC

where the locations (zn,y.) are assumed to be either regularly
spaced or randomly (Poisson) distributed. To handle the two cases
simultaneously, we assume that z,, is evenly spaced and that y,, is
Poisson distributed. Extensions to the case where both locations
are evenly spaced or where both are Poisson distributed should be
obvious from our results. Let Ax be the constant spacing between
the z-locations: z, = nAx. The random Poisson distribution of
the locations y.,, is entirely specified by a density v, of bumps per
unit length. The function b(x, y) appearing in Eq. 16 is a “bump
function”: a function with (small) finite support. We will assume
that the bump function has the following simple form:

b(z,y) = ho g(z/a)rect(z/a)rect(y/b), @17

where a, b and ho define the width, length and height of each bump
respectively (a < Az). Typical values of these parameters fora CD
are provided in Table 1. The function rect equals one on the interval
[—1/2,1/2] and zero elsewhere. Fig. 5 illustrates our definition of
a bump. Our derivation is valid for arbitrary g, however, we provide
an analytical expression only for the following two functions:

¢°(@)=1 and g'(z)=1/2 +z. (18)

The bumps corresponding to these functions are depicted in Fig. 6.

The function ¢° is a good approximation of the bumps found on a

CD and the function ¢! can be used to model diffraction gratings.
The function p(x, y) defined by Eq. 5 in our case is equal to:

pz.y)= Y, Y. é((z—za)/a,(y—ym)/b), (19)

T=—00 Mm=—0Q

where ¢(z,y) = 9@ rect(z)rect(y) and o = kwho. We
dropped a constant term “1” that accounts for the space between
the bumps and only adds a delta spike in the specular direction.

A simple computation shows that the Fourier transform of the
function p(zx, y) is equal to

P(u,v) = oz (u)oy(v) ab ®(au,bv),

where ®(u, v) is the Fourier transform of ¢(z, y) and

[e%e} o3}

oz(u) = Z e and oy (v) = Z Vv (20)

n=—oo m=—0oC

To compute the spectral density of Eq. 9 we note that:
Sp(u,v) = (ab)*|®(au, bv)| oz (u)]* S, (v).

The spectral density and the average of the sum of random Poisson
distributed locations are both equal to the density v, (see [16] p.
561):

Sy (v) =v, and (oy) = vy.

The sum of evenly spaced location x,, is a bit harder to deal with.
First we need the following two results from the theory of distribu-
tions (see pp. 54-55 of reference [24]):

[e%e}

Zeiu" = 27T25(u—27m) and d(sz+t) = %5(z+t/3)7

n=—oo n=—oc

where s > 0 and ¢ are real numbers. The first of these two equalities
is known as “Poisson’s summation formula”. Using these results we
can express the square of the sum o, in terms of delta distributions
only:

[e%e}

Z 0(u —2nn/Az).

n=—oc

o = &7

We can now compute the spectral density .S, by putting all these
computations together:

Sp(ku, kv) = b*w A Y |Ba(kv)[*6(u — nA/Az),  (21)

n=—oc

where R
B, (kv)|* = %|<I>(27rna/Am,kv)|2. (22)
x

The function |®|? can be computed analytically for the two bumps
depicted in Fig. 6:

|89 (au, bv)]” = 2(1 — cos(a))sinc® (au/2)sinc’ (bv/2),(23)
| (au, bv)|* = (sinc2 (c0/2) — 2sinc(ao/2) x
sinc(au/2) cos(a/2) + sincz(au/2)) sinc®(bv/2), (24)

where ag = a + aw. Putting all these pieces together we get the
following expression for the BRDF:

FG -
BRDF:FbQVy > 1@ (k) F5(u—n)/Az) (k+v,6 ().

n=—oo

6 Implementation

We have implemented our reflection models as various shaders in
our MAYA animation system. Any model created in that package
can be rendered using our new shaders. The fact that our shaders
have been included in a commercial product should be a sufficient
proof of their practicality.

As in [9], we model the anisotropy of the surface by assigning
an orthonormal frame at each point of the surface. In the case of
a parametric surface, the most natural choice for this frame is to
take the normal and the two vectors tangent to the iso-parameter
lines. We have also added an additional rotation angle to the frame
around the normal. When this angle is texture mapped, it allows us
to create effects such as brushed metal (Fig. 8.(a)).

The general form of our shader is

BRDF = |F(6))|” G(k1, ko) S(ki,ks) (D(v,)) + rEnv),

where F'is the Fresnel factor [6], S is a shadowing function [8],
G is a geometrical factor defined by Eq. 8 in Section 3 and D
is a distribution function that is related to the micro-geometry of
the surface. The function “Env” returns the color in the mirror di-
rection of k, from an environment map and the factor » accounts
for how much the surface reflects direct illumination. The vector
v = (u, v, w) is the angle midway between —k; and k». The Fres-
nel factor is evaluated at the angle 8 that the direction k; makes
with the vector v. The Fresnel factor varies with the index of refrac-
tion of the metallic surface and is wavelength dependent [6]. We do
not use the He-Torrance shadowing function since it is restricted
to isotropic surfaces. Instead, we employ a model introduced by
Sancer [18]. For convenience, we have included this model in Ap-
pendix A. The distribution D is the most important component of
our model and is now described in more detail.



In the previous sections we have derived distribution functions
for both the random surfaces depicted in Fig. 3 and for periodic-like
profiles such as the one shown in Fig. 1. When the surface is ran-
dom, the distribution is defined by the three parameters o}, T, and
T,,. The variance o7 models the average height fluctuations of the
surface and the parameters T, and T, model the amount of corre-
lation of the micro-surface in the directions of the local frame. See
Section 3 for further details on these quantities. When T, = T, the
surface is isotropic. In the most general case, the distribution D is
computed by the infinite sum appearing in Eq. 14. In Appendix B,
we provide a stable implementation of this sum. As pointed out in
Section 4.2, the sum is very well approximated by the geometrical
optics approximation of Eq. 15, when g = (kwoy,)? is large (see
also Fig. 4). The factor “r” is equal to exp(—g). The smoother the
surface, the more indirect illumination is directly reflected off of it.

The implementation of periodic-like profiles giving rise to col-
orful diffraction patterns is different. When evaluating the distri-
bution D, the values « and v (and w) are determined by the in-
coming and outgoing angles. The incoming light is usually as-
sumed to be an incoherent sum of many monochromatic waves
whose number is proportional to the distribution L(\) of the light
source. To determine the intensity and the color of the light re-
flected in the outgoing direction, we first compute the wavelengths
A for which L(X) is non zero and for which the delta spikes in
Eq. 21 are non-zero. This only occurs when A\, = Azu/n and
n # 0. When n = 0, all wavelengths contribute intensities in
the specular direction v = 0. In general, visible light is com-
prised only of waves with wavelengths between A, = 0.4um
and Amqz = 0.7um. This means that the indices n are constrained
to lie in the range Azu[l/Amaz; 1/Amin] if u > 0 and in the range
Azu[l/Amin, 1/Amaz] When u < 0. Once these wavelengths are
determined, the red, green and blue components of the distribution
D are computed as follows

Ninaa )

. 1 2mv
Doy =, > 3 SP€C 5 (An)L(An) |0 (V)

n=N,in
where Spec,.,, is a function that for each wavelength returns the
corresponding color. This function can either be constructed from
psychophysical experiments or simply set by an animator as a
“ramp”. In our implementation we constructed a ramp function
from standard RGB response curves. See Eq. 22 for a definition of
the function &,,.

3

7 Results

Once the shaders were implemented in MAYA, it was an easy task
to generate results demonstrating the power of our new shading
model. In Fig. 7 we show the effect of some of the parameters
of our model on the appearance of the surfaces. In each render-
ing we chose to have a spectrally flat Fresnel factor to demonstrate
the dependence of the distribution on wavelength. For the Gaus-
sian correlations the reflection is more bluish for small roughness
and becomes whiter for larger roughness, in accordance with the
analysis of Section 4.2. The reflection from fractal surfaces is quite
interesting: bluish for small roughness, then yellowish for interme-
diate roughness and finally white for large roughness. The third
row of spheres exhibits the effect of the separation and twist angle
parameters of our diffraction shader. We used a different texture
map for the twist angle of each one of the three “diffraction cones”
at the bottom of Fig. 7.

Fig. 8 shows several renderings created in this manner. In each
case we have texture mapped the directions of anisotropy to add
more interesting visual detail. Fig. 8.(a) demonstrates that this can
be employed to create a “brushed metal” look. In Fig. 8.(b) we

textured both the roughness and the degree of anisotropy of the sur-
face. Fig. 8.(c) is a picture of a CD illuminated by a directional
light source. Notice that all the highlights appear automatically in
the correct places when the data from Table 1 is used. Fig. 8.(d) is
an example of the use of our diffraction grating model. Notice all
the subtle coloring effects that result (especially when viewing the
corresponding animation). These colorful effects would be hard to
model by trial and error without properly modeling the wave prop-
erties of light.

The effects of the anisotropy and of diffraction are most pro-
nounced in an animation when moving either the object or the light
sources. For this reason we have included some animations on the
CDROM proceedings.

8 Conclusions

In this paper we have proposed a new class of reflection models
that take into account the wave-like properties of light. For the first
time in computer graphics, we have derived reflection models that
properly simulate the effects of diffraction. We have shown that
our models can be easily implemented as standard shaders in our
MAYA animation software. Our derivations, while mathematically
involved, are simpler and more general than previously published
results in this area. In particular, our use of the Fourier transform
has proven to be a very powerful tool in deriving new reflection
models.

In future work, we hope to extend our model to an even wider
class of surfaces by relaxing some of the assumptions in our model.
Presently, our model only accounts for the reflection from metallic
surfaces and ignores multiple-scattering. It would be interesting
to derive more general models that take into account subsurface
scattering by waves. It seems unlikely that the effects of multiple
scattering might be captured by an analytical model. An alternative
would be to fit analytical models to either the results from a Monte-
Carlo wave simulation or to experimentally measured data.

As well, we wish to extend our work to the computation of the
fluctuations of the intensity field [10]. In this manner we can com-
pute exact texture maps for given surface profiles. We could achieve
this by deriving analytical expressions for the higher order statistics
of the reflected intensity field. More specifically, we hope to ex-
tend our previous work on stochastic rendering of density fields to
surfaces [19].
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A A Shadowing Function

The shadowing function used in He’s model applies only to
isotropic surfaces. For this reason we have used a different model
derived by Sancer [18]. The shadowing function is valid for a Gaus-
sian random surface having a correlation function C, and standard
deviation o,:

(Cy+1)"* if u=v=0 and 6; <6
S = (Co+1)7" if u=v=0 and 0, <6; ,
(Ci +Co+1)7" else



where
2|8i] < cot? 0i> cot 6;
C; = ———tanb;exp [ — — erfc
m 2|Bi] V/218i
B = o (C’h,m cos” ¢; + Ch,ay 5in 2¢; + Ch yy sin” qﬁi) ,

where i = 1,2 and C}, ., is the second derivative with respect to z
of the correlation function at the origin. Since the derivatives of the
correlation function depend on the correlation lengths T, and T},
this clearly shows that this shadowing function takes into account
the anisotropy of the surface.

B Computing Infinite Sums

The following piece of code will compute the distribution of re-
flected light from the surface:

conmput e D (I ambda, u, v, w, s_h, Tx, Ty)

k = 2*Pl /| anbda;

g = k*s_.h*w, g *= g;

if ( g>10)
return Dgeom(u, v,w, s_h/Tx, s_h/Ty);

tnp=1; sun¥l 0g_g=0;

f or (mel; abs(t np) >EPS| | nx3*g; m+-+) {
logg += log(g/m,; tnp = exp(logg-9);
sum += tnmp*D( m k*u, k*v, Tx, Ty);

return | anbda*| anbda*sum

The function D() is any one of the functions of Equation 13. This
routine is a stable implementation of the infinite sum appearing in
Equation 14. A naive implementation of the sum results in numer-
ical overflows. The condition “m<3* g” is there to make sure that
we do not exit the loop too early. This is an heuristic which has
worked well in practice.
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Figure 7: Effect of some of the parameters.
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Figure 8: More pictures.



