
Exact Evaluation Of Catmull-Clark Subdivision
Surfaces

At Arbitrary Parameter Values

Jos Stam

Alias wavefront, Inc.
1218 Third Ave, 8th Floor,
Seattle, WA 98101, U.S.A.
jstam@aw.sgi.com

Abstract

In this paper we disprove the belief widespread within the computer graphics community that
Catmull-Clark subdivision surfaces cannot be evaluated directly without explicitly subdividing.
We show that the surface and all its derivatives can be evaluated in terms of a set of eigenbasis
functions which depend only on the subdivision scheme and we derive analytical expressions for
these basis functions. In particular, on the regular part of the control mesh where Catmull-Clark
surfaces are bi-cubic B-splines, the eigenbasis is equal to the power basis. Also, our technique is
both efficient and easy to implement. We have used our implementation to compute high quality
curvature plots of subdivision surfaces. The cost of our evaluation scheme is comparable to that
of a bi-cubic spline. Therefore, our method allows many algorithms developed for parametric
surfaces to be applied to Catmull-Clark subdivision surfaces. This makes subdivision surfaces an
even more attractive tool for free-form surface modeling.

1 Introduction

Subdivision surfaces have emerged recently as a powerful and useful technique in modeling free-
form surfaces. However, although in theory subdivision surfaces admit local parametrizations,
there is a strong belief within the computer graphics community that these parametrizations can-
not be evaluated exactly for arbitrary parameter values. In this paper we disprove this belief and
provide a non-iterative technique that efficiently evaluates Catmull-Clark subdivision surfaces and
their derivatives up to any order. The cost of our technique is comparable to the evaluation of a
bi-cubic surface spline. The rapid and precise evaluation of surface parametrizations is crucial for
many standard operations on surfaces such as picking, rendering and texture mapping. Our evalu-
ation technique allows a large body of useful techniques from parametric surfaces to be transferred
to subdivision surfaces, making them even more attractive as a free-form surface modeling tool.

1

Our evaluation is based on techniques first developed to prove smoothness theorems for subdi-
vision schemes [3, 5, 1, 4, 8, 6]. These proofs are constructed by transforming the subdivision into
its eigenspace

�
. In its eigenspace, the subdivision is equivalent to a simple scaling of each of its

eigenvectors by their eigenvalue. These techniques allow us to compute limit points and limit nor-
mals at the vertices of the mesh, for example. Most of the proofs, however, consider only a subset
of the entire eigenspace and do not address the problem of evaluating the surface everywhere. We,
on the other hand, use the entire eigenspace to derive an efficiently evaluated analytical form of the
subdivision surface everywhere, even in the neighborhood of extraordinary vertices. In this way,
we have extended a theoretical tool into a very practical one.

In this paper we present an evaluation scheme for Catmull-Clark subdivision surfaces [2]. How-
ever, our methodology is not limited to these surfaces. Whenever subdivision on the regular part
of the mesh coincides with a known parametric representation [8], our approach should be appli-
cable. We have decided to present the technique for the special case of Catmull-Clark subdivision
surfaces in order to show a particular example fully worked out. In fact, we have implemented
a similar technique for Loop’s triangular subdivision scheme [5]. The details of that scheme are
given in another paper in these course notes. We believe that Catmull-Clark surfaces have many
properties which make them attractive as a free-form surface design tool. For example, after one
subdivision step each face of the initial mesh is a quadrilateral, and on the regular part of the mesh
the surface is equivalent to a piecewise uniform B-spline. Also, algorithms have been written to
fair these surfaces [4] and to dynamically animate them [7].

In order to define a parametrization, we introduce a new set of eigenbasis functions. These
functions were first introduced by Warren in a theoretical setting for curves [10] and used in a
more general setting by Zorin [11]. In this paper, we show that the eigenbasis of the Catmull-
Clark subdivision scheme can be computed analytically. Also, we show that in the regular case
the eigenbasis is equal to the power basis and that the eigenvectors then correspond to the “change
of basis matrix” from the power basis to the bi-cubic B-spline basis. The eigenbasis introduced in
this paper can thus be thought of as a generalization of the power basis at extraordinary vertices.
Since our eigenbasis functions are analytical, the evaluation of Catmull-Clark subdivision surfaces
can be expressed analytically. As shown in the results section of this paper, we have implemented
our evaluation scheme and used it in many practical applications. In particular, we show for the
first time high resolution curvature plots of Catmull-Clark surfaces precisely computed around the
irregular parts of the mesh.

The paper is organized as follows. Section 2 is a brief review of the Catmull-Clark subdivision
scheme. In Section 3 we cast this subdivision scheme into a mathematical setting suitable for anal-
ysis. In Section 4 we compute the eigenstructure to derive our evaluation. Section 5 is a discussion
of implementation issues. In Section 6 we exhibit results created using our technique, comparing it
to straightforward subdivision. Finally in Section 7 we conclude, mentioning promising directions
for future research.

This paper is almost equivalent to our SIGGRAPH’98 paper [9]. We have corrected two errors
in the Appendices and added a small section devoted to stability issues in Section 5. Also we have
included on the CDROM course notes a data file which contains the eigenstructures up to valence
���

.�
To be defined precisely below.

2

��

u

v

(0,0)

(1,1)

(0,0)

(1,1)

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

��

Figure 1: A bi-cubic B-spline is defined by 16 control vertices. The numbers on the right show the
ordering of the corresponding B-spline basis functions in the vector �����
	��� .

��

���

Figure 2: Initial mesh and two levels of subdivision. The shaded faces correspond to regular
bi-cubic B-spline patches. The dots are extraordinary vertices.

1.1 Notations

In order to make the derivations below as clear and compact as possible we adopt the following
notational conventions. All vectors are assumed to be columns and are denoted by boldface lower
case roman characters, e.g., � . The components of the vector are denoted by the corresponding
italicized character: the � -th component of a vector � is thus denoted ��� . The component of a vector
should not be confused with an indexed vector such as ��� . Matrices are denoted by uppercase
boldface characters, e.g., � . The transpose of a vector � (resp. matrix �) is denoted by ��� (resp.
� �). The transpose of a vector is simply the same vector written row-wise. Therefore the dot
product between two vectors � and � is written “ ����� ”. The vector or matrix having only zero
elements is denoted by � . The size of this vector (matrix) should be obvious from the context.

2 Catmull-Clark Subdivision Surfaces

The Catmull-Clark subdivision scheme was designed to generalize uniform B-spline knot insertion
to meshes of arbitrary topology [2]. An arbitrary mesh such as the one shown on the upper left
hand side of Figure 2 is used to define a smooth surface. The surface is defined as the limit of a
sequence of subdivision steps. At each step the vertices of the mesh are updated and new vertices
are introduced. Figure 2 illustrates this process. On each vertex of the initial mesh, the valence is

3

��
1

8

2

39

4

5

6
7

2N+3
2N+4

2N+5
2N+6

2N+2

2N+7

2N+8

2N+1

Figure 3: Surface patch near an extraordinary vertex with its control vertices. The ordering of the
control vertices is shown on the bottom. Vertex 1 is an extraordinary vertex of valence ��� �

.

the number of edges that meet at the vertex. A vertex having a valence not equal to four is called
an extraordinary vertex. The mesh on the upper left hand side of Figure 2 has two extraordinary
vertices of valence three and one of valence five. Away from extraordinary vertices, the Catmull-
Clark subdivision is equivalent to midpoint uniform B-spline knot insertion. Therefore, the ���
vertices surrounding a face that contains no extraordinary vertices are the control vertices of a
uniform bi-cubic B-spline patch (shown schematically in Figure 1). The faces which correspond to
a regular patch are shaded in Figure 2. This figure shows how the portion of the surface comprised
of regular patches grows with each subdivision step. In principle, the surface can thus be evaluated
whenever the holes surrounding the extraordinary vertices are sufficiently small. Unfortunately,
this iterative approach is too expensive near extraordinary vertices and does not provide exact
higher derivatives.

Because the control vertex structure near an extraordinary vertex is not a simple rectangular
grid, all faces that contain extraordinary vertices cannot be evaluated as uniform B-splines. We
assume that the initial mesh has been subdivided at least twice, isolating the extraordinary vertices
so that each face is a quadrilateral and contains at most one extraordinary vertex. In the rest of
the paper, we need to demonstrate only how to evaluate a patch corresponding to a face with just
one extraordinary vertex, such as the region near vertex 1 in Figure 3. Let us denote the valence
of that extraordinary vertex by � . Our task is then to find a surface patch 	 ���
	��� defined over the
unit square
��� � 	�������� � 	���� that can be evaluated directly in terms of the ����������� vertices
that influence the shape of the patch corresponding to the face. We assume in the following that
the surface point corresponding to the extraordinary vertex is 	 � � 	 � and that the orientation of

is chosen such that 	�����	! points outside of the surface.

A simple argument shows that the influence on the limit surface of the seven “outer control
vertices” numbered �����"� through �����#� in Figure 3 can be accounted for directly. Indeed,
consider the situation depicted in Figure 4 where we show a mesh containing a vertex of valence

�

and a regular mesh side by side. Let us assume that all the control vertices are set to zero except for
the seven control vertices highlighted in Figure 4. If we repeat the Catmull-Clark subdivision rules
for both meshes we actually obtain the same limit surface, since the exceptional control vertex

4

0 0 0

000

00

00

0

0 0 0

000

0 0 0

0 0 0

0 0 0

0 0 0

000

0 0 0

00
0

0
0

Figure 4: The effect of the seven outer control vertices does not depend on the valence of the
extraordinary vertex. When the ��� � � control vertices in the center are set to zero the same limit
surface is obtained.

at the center of the patch remains equal to zero after each subdivision step. Therefore, the effect
of the seven outer control vertices is simply each control vertex multiplied by its corresponding
bi-cubic B-spline tensor product basis function. In the derivation of our evaluation technique we
do not need to make use of this fact. However, it explains the simplifications which occur at the
end of the derivation.

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

1

8

2

39

4

5
6

7

2N+9

2N+3
2N+42N+5

2N+6

2N+2

2N+7

2N+8

2N+1

2N+10

2N+11

2N+12

2N+15

2N+16

2N+17

2N+13 2N+14

Figure 5: Addition of new vertices by applying the Catmull-Clark subdivision rule to the vertices
in Figure 3.

5

3 Mathematical Setting

In this section we cast the informal description of the previous section into a rigorous mathematical
setting. We denote by � � � � ��� ��� � 	������ 		� ���
 	
the initial control vertices defining the surface patch shown in Figure 3. The ordering of these
vertices is defined on the bottom of Figure 3. This peculiar ordering is chosen so that later com-
putations become more tractable. Note that the vertices do not result in the ��� control vertices of a
uniform bi-cubic B-spline patch, except when ����� .

Through subdivision we can generate a new set of ������� vertices shown as circles super-
imposed on the initial vertices in Figure 5. Subsets of these new vertices are the control vertices
of three uniform B-spline patches. Therefore, three-quarters of our surface patch is parametrized,
and could be evaluated as simple bi-cubic B-splines (see top left of Figure 6). We denote this new
set of vertices by � � � � ��� � � � 	������ 		� � �
 ��������� � � � � � � � 		� � �
�� � 	������ 		� � � �����
With these matrices, the subdivision step is a multiplication by an � � � (extended) subdivision
matrix � : � � � � � ��� (1)

Due to the peculiar ordering that we have chosen for the vertices, the extended subdivision matrix
has the following block structure: � �"!$# �# � � # ��%'& 	 (2)

where # is the ��� � ��� ��� � � subdivision matrix usually found in the literature [4]. The remaining
two matrices correspond to the regular midpoint knot insertion rules for B-splines. Their exact
definition can be found in Appendix A. The additional points needed to evaluate the three B-spline
patches are defined using a bigger matrix �� of size ��� :�� � �(�� � � 	
where ����*)+, # �# � � # ��%# % � # %-%'.0/1 � (3)

The matrices # % � and # %-% are defined in Appendix A. The subdivision step of Equation 1 can be
repeated to create an infinite sequence of control vertices:��2 � � ��243 � �5� 2 � � ��������2 � �� ��243 � �(��6� 243 � � � 	*798 � �
As noted above, for each level 7:8 � , a subset of the vertices of ���2 becomes the control vertices
of three B-spline patches. These control vertices can be defined by selecting ��� control vertices
from ���2 and storing them in ��� ��; matrices:<

� � 2 � = �>���2 	
6

P3

P2P1

1
2

3

2N+15 2N+92N+16 2N+14

1 6 2N+4 2N+12

4 5 2N+3 2N+11

2N+6 2N+22N+7 2N+10

1

4 5

6

7

2N+3

2N+4

2N+5

2N+6 2N+22N+7 2N+10

2N+11

2N+12

2N+138

2

3

2N+8

2N+17

1 6 2N+4

4 5 2N+3

2N+6 2N+22N+7

2N+152N+16 2N+14

u

v

Figure 6: Indices of the control vertices of the three bi-cubic B-spline patches obtained from ���2 .
where = � is a ��� � “picking” matrix and

� �� 	 � 		; . Let �����
	��� be the vector containing the
��� cubic B-spline basis functions (see Appendix B). If the control vertices are ordered as shown
on the left of Figure 1, then the surface patch corresponding to each matrix of control vertices is
defined as

	 � � 2 ���
	��� � < � � � 2 �����
	��� � �� � 2 = � � �����
	����	 (4)

where ���
	�����
 , 7 8� and
� ��� 	 � 		; . Using the ordering convention for the B-spline control

vertices of Figure 1, the definition of the picking matrices is shown in Figure 6. Each row of = �
is filled with zeros except for a one in the column corresponding to the index shown in Figure 6
(see Appendix B for more details). The infinite sequence of uniform B-spline patches defined by
Equation 4 form our surface 	 ���
	��� , when “stitched together”. More formally, let us partition the
unit square
 into an infinite set of tiles �
 2 ��� , 7 8 � 	 � � � 	 � 		; , as shown in Figure 7. Each tile
with index 7 is four times smaller than the tiles with index 7�� � . More precisely:

2
� � 	 �� 2 	 �

�
243 ��
 ��	 � 	 �� 2
 	

2 % � 	 �� 2 	 �

�
243 ��
 ��	 �� 2 	 �

�
243 �
 	 (5)

2 �
� 	 � 	 �� 2
 � 	 �� 2 	 �

�
243 ��
 �

A parametrization for 	 ���
	��� is constructed by defining its restriction to each tile

2
� to be equal to

the B-spline patch defined by the control vertices

<
� � 2 :

	 ���
	��� ���� ��	 � � 2 ��� � � 2 ���
	��� � (6)

The transformation � � � 2 maps the tile

2
� onto the unit square
 :� � � 2 ���
	��� � � �

2
��� � 	 � 2 ���	 (7)� % � 2 ���
	��� � � �
2
��� � 	 � 2 ��� � ����� (8)� � � 2 ���
	��� � � �
2
�
	 �
2
��� � � (9)

7

Ω1
1

Ω2
1Ω3

1

Ω1
2

Ω2
2Ω3

2

Ω1
3

Ω2
3Ω3

3

u

v

Figure 7: Partition of the unit square into an infinite family of tiles.

Equation 6 gives an actual parametrization for the surface. However, it is very costly to evaluate,
since it involves 7 ��� multiplications of the � � � matrix � . The evaluation can be simplified
considerably by computing the eigenstructure of � . This is the key idea behind our new evaluation
technique and is the topic of the next section.

4 Eigenstructure, Eigenbases and Evaluation

The eigenstructure of the subdivision matrix � is defined as the set of its eigenvalues and eigen-
vectors. In our case the matrix � is non-defective for any valence. Consequently, there always ex-
ists � linearly independent eigenvectors [4]. Therefore we denote this eigenstructure by � � 	�� ,
where

�
is the diagonal matrix containing the eigenvalues of � , and � is an invertible matrix

whose columns are the corresponding eigenvectors. The computation of the eigenstructure is then
equivalent to the solution of the following matrix equation:��� ��� � 	 (10)

where the � -th diagonal element of
�

is an eigenvalue with a corresponding eigenvector equal to
the � -th column of the matrix � (� � � 	������ 	 �). There are many numerical algorithms which can
compute solutions for such equations. Unfortunately for our purposes, these numerical routines do
not always return the correct eigenstructure. For example, in some cases the solver returns complex
eigenvalues. For this reason, we must explicitly compute the eigenstructure. Since the subdivision
matrix has a definite block structure, our computation can be done in several steps. In Appendix
A we analytically compute the eigenstructure ��� 		� � (resp. ��
 	�� �) of the diagonal block #
(resp. # ��%) of the subdivision matrix defined in Equation 2. The eigenvalues of the subdivision
matrix are the union of the eigenvalues of its diagonal blocks:

� � ! � �
�
 & �
8

Using the eigenvectors of # and # ��% , it can be proven that the eigenvectors for the subdivision
matrix must have the following form:

��� ! � � �
� � � � & �

The matrix � � is unknown and is determined from Equation 10. If we replace the matrices
�

, �
and � by their block representations, we obtain the following matrix equation:# � � � � � # ��% � � � � � � � (11)

Since � � is known, � � is computed by solving the ��� � � linear systems of Equation 11. In
principle, this equation could be solved symbolically. In practice, however, because of the small
sizes of the linear systems (

� � �
) we can compute the solution up to machine accuracy (see the

next section for details). The inverse of our eigenvector matrix is equal to

�
3 � � ! �

3 �� ���� 3 �� � � �
3 �� �

3 �
� & 	 (12)

where both � � and � � can be inverted exactly (see Appendix A). This fact allows us to rewrite
Equation 10: ����� � �

3 � �
This decomposition is the crucial result that we use in constructing a fast evaluation scheme of the
surface patch. Indeed, the subdivided control vertices at level 7 are now equal to���2 � �� � 243 � � � � �� � � 243 � � 3 � � � � �� � � 243 ���� � 	
where

�� � � �
3 � � � is the projection of the � control vertices into the eigenspace of the subdi-

vision matrix. Using this new expression for the control vertices at the 7 -th level of subdivision,
Equation 4 can be rewritten in the following form:

	 � � 2 ���
	��� � �� � � � 243 � � = � �� � � � �����
	��� �
We observe that the right most terms in this equation are independent of the control vertices and
the power 7 . Therefore, we can precompute this expression and define the following three vectors:

� ���
	���	 � � � = � �� � � � �����
	��� � � � 	 � 		; � (13)

The components of these three vectors correspond to a set of � bi-cubic splines. In Appendix
B we show how to compute these splines. Notice that the splines � � ���
	���	 � depend only on the
valence of the extraordinary vertex. Consequently, we can rewrite the equation for each patch more
compactly as:

	 � � 2 ���
	��� � �� � � � 243 � � ���
	���	 � � ��� 	 � 		; � (14)

To make the expression for the evaluation of the surface patch more concrete, let � � � denote the
rows of

�� � . Then the surface patch can be evaluated as:

	 ���
	��� ���� �
��	� � ��
 �� 243 � � � ��� � � 2 ���
	����	 � ��
� � (15)

9

Therefore, in order to evaluate the surface patch, we must first compute the new vertices � � (only
once for a given mesh). Next, for each evaluation we determine 7 and then scale the contribution
from each of the splines by the relevant eigenvalue to the power 7 � � . Since all but the first of the
eigenvalues are smaller than one, their contribution decreases as 7 increases. Thus, for large 7 , i.e.,
for surface-points near the extraordinary vertex, only a few terms make a significant contribution.
In fact for ���
	��� � � � 	 � the surface point is � � , which agrees with the definition of a limit point
in [4].

Alternatively, the bi-cubic spline functions � ���
	���	 � can be used to define a set of eigenbasis
functions for the subdivision. For a given eigenvalue
 � we define the function ��� by its restrictions
on the domains

2
� as follows:

�
� ���
	��� ���� � ��
 ��
243 �

� � ��� � � 2 ���
	����	 � �	
with � ��� 	�������	 � . By the above definition these functions satisfy the following scaling relation:

�
� ����� � 	���� � �
 ���
� ���
	��� �
The importance of these functions was first noted by Warren in the context of subdivision curves
[10]. More recently, Zorin has defined and used eigenbasis functions to prove smoothness condi-
tions for very general classes of subdivision schemes [11]. However, explicit analytical expressions
for particular eigenbases have never appeared before. On the other hand, we can compute these
bases analytically. Figures 8 and 9 show the complete sets of eigenbasis functions for valences 3
and 5. In the figures we have normalized each function such that its range is bounded within � �
and � . In particular, the first eigenbasis corresponding to an eigenvalue of one is always a constant
function for any valence. A closer look at Figures 8 and 9 reveals that they share seven identical
functions. In fact as shown in Appendix B, the last seven eigenbasis functions for any valence are
always equal to �

�; � � � � � 	 �� � � 	 �� � � ��	 �� � � � % 	 �� � � 	 �� ��� � 	 �� � % � ��� �
Furthermore, by transforming these functions back from the eigenspace using �

3 �
� we obtain the

seven tensor B-spline basis functions�
	
���
	����	

���
���
	����	

�
��% ���
	����	�������	 � �� ���
	����	

i.e., the basis functions corresponding to the “outer layer” of control vertices of Figure 3. This
should not come as a surprise since as we noted above, the influence of the outer layer does not
depend on the valence of the extraordinary vertex (see Figure 4).

In the regular bi-cubic B-spline case (� � �), the remaining eigenbasis can be chosen to be
equal to the power basis � � 	��
	���	�� % 	�����	�� % 	�� % ��	���� % 	�� % � % � �
The scaling property of the power basis is obvious. For example, the basis function � % � corre-
sponds to the eigenvalue ����� :

����� � % ����� � � � ��� � % � ��� � � % � � �� � % � �
This relationship between the Catmull-Clark subdivision and the power basis in the regular case
does not seem to have been noted before. Note also that the eigenvectors in this case correspond

10

to the “change of basis matrix” from the bi-cubic B-spline basis to the power basis. The eigen-
basis functions at extraordinary vertices can thus be interpreted as a generalization of the power
basis. However, the eigenbases are in general not polynomials. In the case of the Catmull-Clark
subdivision they are piece-wise bi-cubic polynomials. The evaluation of the surface patch given
by Equation 15 can now be rewritten exactly as:

	 ���
	��� �

�
�	� � �
� ���
	�����
� � (16)

This is the key result of our paper, since this equation gives a parametrization for the surface
corresponding to any face of the control mesh, no matter what the valence is. There is no need to
subdivide. Equation 16 also allows us to compute derivatives of the surface up to any order. Only
the corresponding derivatives of the basis functions appearing in Equation 16 are required. For
example, the partial derivative of the � -th eigenbasis with respect to � is:

�
� � �
� ���
	��� � � � �#� 2 ��
 �� 243 � �

� � � � ��� � � 2 ���
	����	 � �	
where the factor �

2
is equal to the derivative of the affine transformation � � � 2 . Generally a factor

���
2

will be present when the order of differentiation is � .

5 Implementation

Although the derivation of our evaluation technique is mathematically involved, its implementation
is straightforward. The tedious task of computing the eigenstructure of the subdivision matrix only
has to be performed once and is provided in Appendix A. In practice, we have precomputed these
eigenstructures up to some maximum valence, say NMAX=50, and have stored them in a file. The
file and some C code that reads in the data can be found on the course CDROM. Any program using
our evaluation technique can read in these precomputed eigenstructures. In our implementation the
eigenstructure for each valence N is stored internally as

typedef
struct �
double L[K]; /* eigenvalues */
double iV[K][K]; /* inv of the eigenvectors */
double x[K][3][16]; /* coeffs of the splines */� EIGENSTRUCT;

EIGENSTRUCT eigen[NMAX];,

where K=2*N+8. At the end of this section we describe how we computed these eigenstructures.
We emphasize that this step has to be performed only once and that its computational cost is
irrelevant to the efficiency of our evaluation scheme.

Given that the eigenstructures have been precomputed and read in from a file, we evaluate a
surface patch around an extraordinary vertex in two steps. First, we project the control vertices
surrounding the patch into the eigenspace of the subdivision matrix. Let the control vertices be
ordered as shown in Figure 3 and stored in an array C[K]. The projected vertices Cp[K] are then
easily computed by using the precomputed inverse of the eigenvectors:

11

ProjectPoints(point *Cp,point *C,int N) �
for (i=0 ; i<2*N+8 ; i++) �
Cp[i] = (0,0,0);
for (j=0 ; j<2*N+8 ; j++) �
Cp[i] += eigen[N].iV[i][j] * C[j];���

This routine is called only whenever one of the patches is evaluated for the first time or after an
update of the mesh. This step is, therefore, called at most once per surface patch. The second
step of our evaluation, on the other hand, is called whenever the surface has to be evaluated at a
particular parameter value (u,v). The second step is a straightforward implementation of the
sum appearing in Equation 15. The following routine computes the surface patch at any parameter
value.

EvalSurf (point P, double u, double v,
point *Cp, int N) �

/* determine in which domain

2
� the parameter lies */

n = floor(min(-log2(u),-log2(v)))+1;
pow2 = pow(2,n-1);
u *= pow2; v *= pow2;
if (v < 0.5) �
k=0; u=2*u-1; v=2*v;�

else if (u < 0.5) �
k=2; u=2*u; v=2*v-1;�

else �
k=1; u=2*u-1; v=2*v-1;�

/* Now evaluate the surface */
P = (0,0,0);
for (i=0 ; i<2*N+8 ; i++) �
P += pow(eigen[N].L[i],n-1) *

EvalSpline(eigen[N].x[i][k],u,v)*Cp[i];��
The function EvalSpline computes the bi-cubic B-spline polynomial whose coefficients are
given by its first argument at the parameter value (u,v). When either one of the parameter values
u or v is zero, we set it to a sufficiently small value near the precision of the machine, to avoid
an overflow that would be caused by the log2 function. Because EvalSpline evaluates a bi-
cubic polynomial, the cost of EvalSurf is comparable to that of a bi-cubic surface spline. The
extra cost due to the logarithm and the elevation to an integer power is minimal, because these
operations are efficiently implemented on most current hardware. Since the projection step is only
called when the mesh is updated, the cost of our evaluation depends predominantly on EvalSurf.

12

The computation of the p-th derivative is entirely analogous. Instead of using the routine
EvalSpline we employ a routine that returns the p-th derivative of the bi-cubic B-spline. In
addition, the final result is scaled by a factor pow(2,n*p). The evaluation of derivatives is
essential in applications that require precise surface normals and curvature. For example, Newton
iteration schemes used in ray surface computations require higher derivatives of the surface at
arbitrary parameter values.

We now describe how we compute the eigenstructure of the subdivision matrix. This step
only has to be performed once for a given set of valences. The efficiency of this step is not
crucial. Accuracy is what matters here. As shown in the appendix, the eigenstructure of the
two matrices # and # ��% can be computed analytically. The corresponding eigenstructure of the
extended subdivision matrix � requires the solution of the ��� ��� linear systems of Equation 11.
We did not solve these analytically because these systems are only of size

� � �
. Consequently,

these systems can be solved up to machine accuracy using standard linear solvers. We used the
dgesv routine from LINPACK to perform the task. The inverse of the eigenvectors is computed
by carrying out the matrix products appearing in Equation 12. Using the eigenvectors, we also
precompute the coefficients of the bi-cubic splines � ���
	���	 � as explained in Appendix B. For each
valence � we stored the results in the data structure eigen[NMAX] and saved them in a file to be
read in at the start of any application which uses the routines ProjectPoints and EvalSurf
described above. This data is provided in the file ccdata50.dat on the CDROM for valences
upto NMAX=50. The C program cctest.c demonstrates how to read in that data.

5.1 Some Remarks on Stability

As noted previously there is a problem when evaluating the surface at the extraordinary point
using EvalSurf since the log is ill-defined at � � 	 � . One option as mentioned above is to clamp
the ���
	��� values below a certain threshold. A better option is to return the limit point Cp[0]
directly. When computing derivatives other instabilities can occur, although in practice we have
not encountered them in our implementation using the clamping of the � � � values. However,
instabilities could be a nuisance in other applications of the evaluation method. The problem is
that we have to multiply the derivative by a factor pow(2,n*p) which diverges for large n. One
possible solution is to include this factor when taking powers of the eigenvalues, i.e., line

P += pow(eigen[N].L[i],n-1) *

should be replaced by

P += p2*pow(p2*eigen[N].L[i],n-1) * ,

where p2=pow(2,p). Although this simple modification reduces instabilities it is not completely
satisfactory. The problem is that the inverse of the eigenvalues
 are not always powers of two so
that the products � � �

2
either converge to zero or diverge.

The cleanest solution is to reparametrize the surface using the characteristic map introduced in
[8]. The characteristic map is simply the mapping defined by the eigenbasis functions � % ���
	��� and� � ���
	��� . Let

� ���
	��� � � �����
	����	�� ���
	��� � � � % ���
	����	 � � ���
	��� �	
13

be the characteristic map. A more stable implementation would be to evaluate:

	���� �
	�� ��	
�
�
3 � ���
	��� � �

This reparametrization requires the inversion of the two eigenbasis functions � % and � � . Note
also that the evaluation of the derivatives requires the computation of the derivatives of the inverse
of the characteristic map as well. Also we point out that the evaluation of the curvature near
the extraordinary point is inherently unstable since the the curvature at these points is known not
to exist (diverge) for Catmull-Clark surfaces. In particular, this implies that Catmull-Clark are in
general not

� %
surfaces. As a corollary, for example, a perfect sphere cannot be represented exactly

by a Catmull-Clark surface.

6 Results

In Figure 10 we depict several Catmull-Clark subdivision surfaces. The extraordinary vertex whose
valence � is given in the figure is located in the center of each surface. The position information
within the blue patches surrounding the extraordinary vertex is computed using our new evaluation
technique. The remaining patches are evaluated as bi-cubic B-splines. Next to each surface we also
depict the curvature of the surface. We map the value of the Gaussian curvature onto a hue angle.
Red corresponds to a flat surface, while green indicates high curvature. We have purposely made
the curvature plot discontinuous in order to emphasize the iso-contour lines. Both the shaded
surface and the curvature plot illustrate the accuracy of our method. Notice especially how the
curvature varies smoothly across the boundary between the patches evaluated using our technique
and the regular bi-cubic B-spline patches. The curvature plots also indicate that for ���� � the
Gaussian curvature takes on arbitrarily large values near the extraordinary vertex. The curvature at
the extraordinary vertex is in fact infinite, which explains the diverging energy functionals in [4].

Figure 11 depicts more complex surfaces. The blue patches are evaluated using our technique.

7 Conclusion and Future Work

In this paper we have presented a technique to evaluate Catmull-Clark subdivision surfaces. This is
an important contribution since the lack of such an evaluation schemes has been sited as the chief
argument against the use of subdivision scheme in free-form surface modelers. Our evaluation
scheme permits many algorithms and analysis techniques developed for parametric surfaces to be
extended to Catmull-Clark surfaces. The cost of our algorithm is comparable to the evaluation
of a bi-cubic spline. The implementation of our evaluation is straightforward and we have used
it to plot the curvature near extraordinary vertices. We believe that the same methodology can
be applied to many other subdivision schemes sharing the features of Catmull-Clark subdivision:
regular parametrization away from extraordinary vertices. We have worked out the details for
Loop’s triangular scheme, and the derivation can be found in the accompanying paper in these
course notes. Catmull-Clark surfaces and Loop surfaces (when the valence ��5;) share the property
that their extended subdivision matrices are non-defective. In general, this is not the case. For
example, the extended subdivision matrix of Doo-Sabin surfaces cannot generally be diagonalized.
In that case, however, we can use the Jordan normal form of the extended subdivision matrix and
employ Zorin’s general scaling relations [11].

14

Acknowledgments

I wish to thank the following individuals for their help: Eugene Lee for assisting me in fine tuning
the math, Michael Lounsbery and Gary Herron for many helpful discussions, Darrek Rosen for
creating the models, Pamela Jackson for proofreading the paper, Gregg Silagyi for his help during
the submission, and Milan Novacek for his support during all stages of this work. Thanks also to
Markus Meister from Brown University who kindly pointed out a mistake in Appendix A of our
SIGGRAPH paper.

A Subdivision Matrices and Their Eigenstructures

The matrix # corresponds to the extraordinary rules around the extraordinary vertex. With our
choice of ordering of the control vertices the matrix is:

�
)++++++++++++++,

���
�
�����

�
�����

�
� ����� �

�����
�
�����

� � � � � � ����� � � � �
� � � � � � ����� � � � �
� � � � � � ����� � � � �
� � � � � � ����� � � � �

...
...

. . .
...� � � � � � ����� � � � �

� � � � � � ����� � � � �

.0//////////////1
where

��� ��� � �� � 	
�
� � ;

��� % 	 ��� � �� � % 	 � � ;� 	 � � �
��� 	

� � �� �
Since the lower right ��� � ��� block of # has a cyclical structure, we can use the discrete Fourier
transform to compute the eigenstructure of # . This was first used in the context of subdivision
surfaces by Doo and Sabin [3]. The discrete Fourier transform can be written compactly by intro-
ducing the following ��� � ��� “Fourier matrix”;

	 �

)++++++++++++,
� � � � ����� � �
� � � � ����� � �
� �
 3 � � �����
 3�� � 3 �� �
� � �
 3 � ����� �
 3�� � 3 ��

...
. . .

...
� ��
 3�� � 3 �� � �����
 3�� � 3 ���� �

� � �
 3�� � 3 �� ����� �
 3�� � 3 ����
.0////////////1
	

where

 ����������� ��� ��� . Using these notations we can write down the “Fourier transform” of the

matrix # compactly as:

�# �)+++++,
�# � � � �
� �# � � �
... � . . . �
� � � �# � 3 �

. /////1 ��� # � 3 � 	
15

where

� � ! � �
� �� 	 & 	 � 3 � �"! � �

� 	 � & 	
�# � �)+, ��� �

�
� � ���� � � � �� � � � .0/1 �����

�# � �), � �
 3 � �
 � � � � � � � �
 3 � �� � � �
 � � � .1 	

� � � 	������ 	 � � � . The eigenstructure of the Fourier transform
�# is computed from the eigenstruc-

tures of its diagonal blocks. The first block
�# � has eigenvalues

� � � � 	 � % 	 � � � �
� �
� � � � ; ��� � � � �:; � � � � � % �

and eigenvectors

�� � �)+, � ��� � %% � � � � % � � ��� � %� � � � � � � �
� � � % � � � �

� � �
� � � % � � � � � � � .0/1 �

Similarly, the two eigenvalues of each block
�# � (� � � 	������ 	 � � �) are equal to:

	� � �
���), � �������! ��� �� & ������ ! � �� & ���� ��� ���������! ��� �� & .1 	

where we have used some trigonometric relations to simplify the resulting expressions. The corre-
sponding eigenvectors of each block are

�� � � ! �
 3� � � �
 �� � �� �
 � � �
 � & �
We have to single out the special case when � is even and

� �#� � � . In this case the corresponding
block is

�� ��� % �"! � �
� � & �

The eigenvalues of the matrix
�# are the union of the eigenvalues of its blocks and the eigenvectors

are

�� �)+++++,
�� � � � �
� �� � � �
... � . . . �
� � � �� � 3 � .0/////1 �

Since the subdivision matrix # and its Fourier transform
�# are similar, they have the same eigen-

values. The eigenvectors are computed by inverse Fourier transforming these eigenvectors:

� � �
3 � �� �

16

Consequently, we have computed the eigenvalues and eigenvectors of # . However, in this form
the eigenvectors are complex valued and most of the eigenvalues are actually of multiplicity two,
since

3
� �

�� 3 � and

�� �

3
� 3 � . We relabel these eigenvalues as follows:

�
	
�

3
� 	 ��� �

�
� 	 � �

3% 	 ��� �

�% 	������

Since we have rearranged the eigenvalues, we have to rearrange the eigenvectors. At the same time
we make these eigenvectors real. Let

� � 	�������	 � % � � � be the columns of
�

, then we can construct
the columns of a matrix � � as follows:

� � � � � 	 � % � � % 	 �
�
� � � 	

� % � � % � �
� �

� � � � � � % � 3 � � % �����
� % � � � � �

� � �
� � � � � � % � 3 � � % �

More precisely � � , � % , � � , � % � � % and � % � � � are equal to

)+++++++++,
�
�
�
...
�
�

.0/////////1
	
)+++++++++,
��� � %% � � � � % � �

� � % � �� � % � �
...

� � % � �� � % � �
.0/////////1
	
)+++++++++,
��� � %� � � � � � � �

� �
� � �� � � � �
...

� �
� � �� � � � �

.0/////////1
	

)++++++++++++++,

�� � � � � � �
� � ��� � �

� � � � � � � � � � � � ��� � � � � % � � �
...

� � � � � � � � � � � 3 �� � � � � � � 3 �� � � � � �
.0//////////////1
�����

)++++++++++++++,

�
�

��� � �
� � � � � � � � � � � � ��� � � � � % � � �

...
� � � � � � � � � � � 3 �� � � � � � � 3 �� � � �

.0//////////////1
	

respectively, where
� ��� 	������ 	 � % , � % �#� � � when � is odd and � % �#� � � when � is even,	 � � � � � � � � � when

�
is odd and 	 � � � � � � when

�
is even, and

� � � ���� ! ��� �� & ����� � � � ��
 � ! ��� �� & �
When � is even the last two eigenvectors are

� � % � � � � 	�� 	 � 	�� � 	 � 	�� 	 � 	�������	�� � 	 � �����
� � % � � � � � � 	 � 	�� 	 � 	�� � 	 � 	�� 	�������	 � 	�� � �

Finally, the diagonal matrix of eigenvalues is

��� ��
 �� � � 	 � % 	 � � 	 � 	 	 � 	 	�������	 � � � % 	 � � � % �
17

The inverse of the eigenvectors � � can be computed likewise by first computing the inverses of
each block

�� � in the Fourier domain and then setting
� 3 � � �� 3 � � �

With the same reshuffling as above we can then compute �
3 �� . The resulting expressions are,

however, rather ugly and are not reproduced in this paper.
The remaining blocks of the subdivision matrix � directly follow from the usual B-spline

knot-insertion rules.

��% �
)+++++++++++,
�

�
� �

�
� �

� � � � � � �
� �

�
� � � �

� � � � � � �
� � � � � � �
� � � � �

�
�

� � � � � � �

.0///////////1
	 # � � �

)+++++++++++,
� � �

�
�

�
� � �� � � � � � � � �

�
� � �

�
�

�
� �� � � � � � � � �� � � � � � � � �

�
�

�
�

�
� � � �� � � � � � � � �

.0///////////1
	

where
� � ���� 	 �

� ;; � ����� � � �
��� �

For the case ��� ; , there is no control vertex � � (� � � � %) and the second column of the matrix# � � is equal to � � 	 � 	 � 	 � 	 � 	 � 	 � � .
The eigenstructure of the matrix # ��% can be computed manually, since this matrix has a simple

form. Its eigenvalues are:

 ����
 �� � ���� 	 �� 	 ���� 	 �; � 	 �� 	 ���� 	 �; ��� 	
with corresponding eigenvectors:

� � �

)+++++++++++,
� � � � � � � � �
� � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � �
� � � � � � � �
� � � � � � � �

.0///////////1
�

The inverse �
3 �
� of this matrix is easily computed manually.

The other two matrices appearing in �� are:

% � �
)+++++++++++++++,

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

.0///////////////1
	 # %-% �

)+++++++++++++++,

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

.0///////////////1
�

18

B Eigenbasis Functions

In this appendix we compute the bi-cubic spline pieces � ���
	���	 � of the eigenbasis defined in
Equation 13. The vector �����
	��� contains the ��� tensor B-spline basis functions (� ��� 	�������	����):�

� ���
	��� ��� � � 3 ���� 	 ��� � � � 3 �� � 	 �����	
where “

�
” and “ � ” stand for the remainder and the division respectively. The functions � � ��� are

the uniform B-spline basis functions:

� � � ��� � � �:;���� ;�� % ���
�
	

� � � ��� � � � ��� % � ;�� � 	
� � % ��� � � � ;�� � ;�� % �:;�� � �����
� �
�
��� � �

� �
The projection matrices = � , = % and = � are defined by introducing the following three permutation
vectors (see Figure 6):

� � � � ��	 � 	 ��� � � 	 ��� � ��;�	�� 	 ��	 ��� �:� 	 ��� � � � 	� 	 � 	 ��� � ;�	 ��� � � � 	 ��� � � 	 ��� ����	 ��� ��� 	
��� � � � �	

� % � � � 	 ��	 ��� �:� 	 ��� � � � 	 � 	 � 	 ��� � ;�	 ��� � � � 	
��� � � 	 ��� ����	 ��� ��� 	 ��� � � � 	 ��� � ����	
��� � � � 	 ��� � ��� 	 ��� � � �	

�
�
� � � 	�� 	 ��	 ��� �:� 		;�	 � 	 � 	 ��� � ;�	 ��� ����	 ��� � � 	
��� ����	 ��� ��� 	 ��� � � � 	 ��� � ����	 ��� � � � 	
��� � ���� �

Since for the case ���5; the vertices � % and � � are the same vertex, � �� �#� instead of � for ��� ; .
Using these permutation vectors we can compute each bi-cubic spline as follows:

� � ���
	���	 � � ���
	 � � �
�� � � �

�
	 ���
	����	

where � ��� 	�������	 � and �� � �� � .

References

[1] A. A. Ball and J. T. Storry. Conditions For Tangent Plane Continuity Over Recursively
Defined B-spline Surfaces. ACM Transactions on Graphics, 7(2):83–102, April 1988.

[2] E. Catmull and J. Clark. Recursively Generated B-Spline Surfaces On Arbitrary Topological
Meshes. Computer Aided Design, 10(6):350–355, 1978.

[3] D. Doo and M. A. Sabin. Behaviour Of Recursive Subdivision Surfaces Near Extraordinary
Points. Computer Aided Design, 10(6):356–360, 1978.

19

Figure 8: The complete set of ��� eigenbasis functions for extraordinary vertices of valence ��� ; .
[4] M. Halstead, M. Kass, and T. DeRose. Efficient, Fair Interpolation Using Catmull-Clark Sur-

faces. In Proceedings of SIGGRAPH ’93, pages 35–44. Addison-Wesley Publishing Com-
pany, August 1993.

[5] C. T. Loop. Smooth Subdivision Surfaces Based on Triangles. M.S. Thesis, Department of
Mathematics, University of Utah, August 1987.

[6] J. Peters and U. Reif. Analysis Of Generalized B-Splines Subdivision Algorithms. To appear
in SIAM Journal of Numerical Analysis.

[7] H. Qin, C. Mandal, and C. Vemuri. Dynamic Catmull-Clark Subdivision Surfaces. IEEE
Transactions on Visualization and Computer Graphics, 4(3):215–229, July-September 1998.

[8] U. Reif. A Unified Approach To Subdivision Algorithms Near Extraordinary Vertices. Com-
puter Aided Geometric Design, 12:153–174, 1995.

[9] J. Stam. Exact Evaluation of Catmull-Clark Subdivision Surfaces at Arbitrary Parameter
Values. In Computer Graphics Proceedings, Annual Conference Series, 1998, pages 395–
404, July 1998.

[10] J. Warren. Subdivision Methods For Geometric Design. Unpublished Manuscript. Preprint
available on the web at
http://www.cs.rice.edu/˜jwarren/papers/book.ps.gz, 1994.

[11] D. N. Zorin. Subdivision and Multiresolution Surface Representations. PhD thesis, Caltech,
Pasadena, California, 1997.

20

Figure 9: The complete set of ��� eigenbasis functions for extraordinary vertices of valence ��� �
.

N=3 N=5

N=8 N=30

Figure 10: Surfaces having an extraordinary vertex in the center. For each surface we depict
the patches evaluated using our technique in blue. Next to them is a curvature plot. Derivative
information for curvature is also computed near the center vertex using our technique.

21

Figure 11: More complex surfaces rendered using our evaluation technique (in blue).

22

