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We investigate and model two-dimensional pointing where the target distance and size vary as
does the angle of movement. We first study the spread of hits in a rapid approximate pointing
task at varied distances and movement angles. Consistent with the literature, our results show
that the spread of hits along the movement direction deviate more than the spread of hits in
the direction perpendicular to movement, and both spreads increase with distance. Based on the
distribution of this spread of hits, we propose and validate a new probabilistic model that describes
two-dimensional pointing. Unlike previous models, our model accounts for more variables of two-
dimensional pointing and can be generalized to any target shape, size, orientation, location, and
dimension. In contrast to previous work, which suggests that target height has minimal impact on
performance when it is larger than the width, our results show that, even when height is greater
than width, it can significantly impact movement time.

Categories and Subject Descriptors: H.1.2 [Models and Principles]: User/Machine Systems—
Human factors; human information processing; H.5.2 [Information Interfaces and Presenta-
tion]: User Interfaces—Theory and methods

General Terms: Experimentation, Human Factors, Measurement

Additional Key Words and Phrases: Two-dimensional pointing, Fitts’ law, human performance
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1. INTRODUCTION

One of the most basic interaction requirements in user interfaces is pointing
to targets, such as menus, buttons, and text. Fitts’ law [Fitts 1954; MacKenzie
1992] is a model commonly used in HCI for modeling such pointing behavior. It
predicts the time MT taken to select a target based on its width Wand distance
(or amplitude) A from the cursor according to the equation

MT = a + b log2

(
A
W

+ 1
)

, (1)

where a and bare empirically determined constants. The logarithmic term is the
index of difficulty (ID) of the task. Over the years, numerous studies have been
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Fig. 1. (a) One-dimensional pointing where the width W is colinear to the movement direction.
(b) Two-dimensional pointing where the apparent width W ′ may vary due to the direction of
movement θ .

conducted that validate this model for one-dimensional pointing tasks (see the
review by MacKenzie [1992]). This model can also be used to direct the design
of new interfaces to optimize their layouts for users (e.g., Zhai et al. [2000]).
Fitts’ model, in its original form, is inherently one-dimensional with the target
width W the only movement constraint, colinear with the direction of movement
(Figure 1(a)). Most targets in current interfaces, however, are typically two or
even three-dimensional, where the assumptions of the one-dimensional model
may not hold. Some recent research [MacKenzie and Buxton 1992; Accot and
Zhai 2003] has attempted to extend Fitts’ law to two dimensions. However,
none of the work to date has adequately considered relevant factors in two-
dimensional pointing beyond the width and height of rectangular targets such
as the effect of target orientation relative to the original cursor position.

In this article, we study and model pointing in two dimensions at targets
whose size varies both in width and height and where the user’s movement
angle and angle of approach relative to the target are also varied. We begin by
reviewing previous work on pointing and Fitts’ law models in one and two di-
mensions. We then identify various factors—target dimensions, movement am-
plitude, movement angle, angle of approach, and interactions between them—
that could affect pointing performance in two dimensions. Based on these fac-
tors, we propose a new approach to modeling pointing behavior which makes
use of the spread of hits when pointing at targets. We then present the results of
two controlled experiments: the first investigates the spread of hits in pointing
actions, and the second studies the effects of the factors identified and evaluates
the proposed model. We conclude by discussing the implications for interface
design.

Our main contribution to the pointing literature is the probabilistic model
which we develop (Section 3.2) and validate (Section 6). Unlike previous models,
ours can adequately compensate for both varying movement angles and varying
target orientations. We also discuss how our model could be used to predict
movement times when pointing at nonrectangular targets (Section 5) which
cannot be done accurately with any of the previous models.

To determine parameter values for our proposed model, we conduct an ex-
periment which studies the spread of hits when pointing at targets in two
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dimensions (Section 4). This is our other major contribution to the pointing
literature as we analyze how the physical movement angle and distance trav-
eled affect the spread of hits in the directions parallel and perpendicular to
the line of movement. This builds on previous research which has studied how
movement time affects the spread of hits.

2. BACKGROUND

When pointing at targets in two-dimensional space, various factors must be
considered beyond the target width and amplitude constraints of the one-
dimensional Fitts’ model. First, a two-dimensional pointing task is bivariate,
constrained by both the target’s width and height. Second, the location of the
target relative to the cursor position is a two-dimensional vector.

MacKenzie and Buxton [1992] performed the first study on bivariate pointing
in the HCI literature, examining several formulas for the index of difficulty
for a rectangular target. They found two which highly correlated with their
experimental data. Their first formulation, IDW ′ (Equation (2)), considers W to
be the apparent width (W ′) of the target based on the movement angle (θ )
(Figure 1(b)). Their second formulation, IDmin (Equation (3)) only considers the
minimum dimension. These formulas are expressed as follows:

IDW ′ = log2

(
A

W ′ + 1
)

, (2)

IDmin = log2

(
A

min(W, H)
+ 1

)
, (3)

where W and H are the width and height of the target. The IDmin had the high-
est correlation with their experimental data. Since their work, the IDmin has
been used in follow-up work [Ware and Balakrishnan 1994; Ware and Lowther
1997; Murata 1999], and was also independently proposed by Hoffman and
Sheikh [1994].

Accot and Zhai [2003] identify various problems with the IDW ′ and IDmin
formulations. They present the following desirable properties for a bivariate
pointing model:

—Scale independence. MT should remain unchanged if A, W , and H are all
multiplied by a constant.

—Limit tasks. When either W or H tends to infinity, the model should regress
toward the one-dimensional Fitts’ law.

—Dominance effect. The ID value should be dominated by the smaller of W or
H with less impact from the other.

—H and W duality. The model should contain and be similarly affected by both
H and W.

—Continuity. The effects of H and W on MT should be continuous not stepwise
or segmented.

Based on their results, an additional property can be established:
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Fig. 2. Limitations of IDw′ and IDmin models: all target pairs in this figure are considered identical
by the respective ID formulations. (a) No difference in IDw′ for targets of different heights. (b) Width
has no effect on IDmin if greater than height, c > 1. (c) Movement angle has no effect on IDmin.
(d) Interchanging width and height has no effect on IDmin.

—W-asymmetric. If W>H, then interchanging their values should increase the
movement time.

The fundamental problem with the IDW ′ model (Equation (2)) is that it com-
pletely ignores the constraints imposed by the dimension of the target perpen-
dicular to the line of movement also referred to as the directional constraint
[Accot and Zhai 2003]. As a result, it does not possess the limit tasks property
as increasing the width regardless of the height will reduce the ID to zero. Nor
does it exhibit H and W duality since decreasing the height to a infinitesimal
size will not increase the ID (Figure 2(a)).

In the case of the IDmin model (Equation (3)), the H and W duality and limit
tasks properties are satisfied, however continuity is not. In strict mathematical
terms, even though the IDmin model is a continuous function in terms of W and
H, the derivative is not continuous. The IDmin model predicts that H does not
affect the time as soon as it becomes greater than W . Similarly, the model is not
affected by W as soon as it is larger than H. Thus, this model does not account for
data reported by Sheikh and Hoffman [1994] that showed that it is harder to ac-
quire a square than a rectangle with equal height but larger width (Figure 2(b)).

Another problem with the IDmin model is that it ignores the angle of ap-
proach (Figure 2(c)). Last, the IDmin model is not W-asymmetric since it al-
lows the width and height factors to be interchanged without changing the ID
(Figure 2(d)).

This unsatisfactory state of affairs led Accot and Zhai [2003] to develop and
experimentally validate a weighted Euclidean model which satisfies all of the
given properties. We refer to this model as IDWtEuc

IDWtEuc = log2




√(
A
W

)2

+ η

(
A
H

)2

+ 1


 , (4)

where η is empirically determined. This model considers (A/W , A/H) to be the
“constraint vector”, and by taking a weighted norm of this vector, they incorpo-
rate both variables into an “appropriate distance in a two-dimensional space”
[Accot and Zhai 2003]. The addition of the parameter η allows the model to
weight the effect of the height differently from the effect of the width. This
IDWtEuc model is a significant improvement over the IDmin model since it allows
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the larger dimension to still have an effect on the movement time. However,
this model does not completely account for all pertinent factors of a general
two-dimensional pointing task. First, it does not take into account the angle
of movement towards the target. A two-dimensional pointing model should
definitely consider this factor, particularly since previous work [Boritz et al.
1991; Hancock and Booth 2004] provides evidence that the movement time will
depend on the direction of movement. Second, it only considers rectangular tar-
gets. It would be highly desirable for a model to be valid for any two-dimensional
shape since interface targets can, and often have, varied shapes.

Our attempt at modeling two-dimensional pointing will be based on the
spread of hits when pointing at targets. The spread of hits has been previ-
ously observed and described [Welford 1968; Schmidt et al. 1979] and has been
used to compensate for error rates in pointing tasks [Welford 1968; MacKenzie
1992]. Welford [1968] observed that the spread of hits in a one-dimensional
task resembled a normal distribution. The two-dimensional spread of hits for
pointing has also been studied by Schmidt et al. [1979]. In a task where users
moved to a target within a specified time, errors were measured in the dimen-
sions parallel and perpendicular to the movement direction. It was found that
both types of errors related linearly to the movement speed, and that errors
perpendicular to the movement direction were about half the size of errors col-
inear with the movement direction. This produced an elliptical distribution of
hits with the long axis in line with the direction of movement. In contrast to
this approach, we study the effect of both the movement distance and move-
ment angle on the spread of hits in a rapid two-dimensional pointing task. The
findings of this study are then used to develop and evaluate a predictive model
for two-dimensional target acquisition based on the proportion of this spread
which the target of interest covers.

3. GOALS AND DIRECTIONS OF THE CURRENT STUDY

The goal of our work is to resolve some of the outstanding issues surrounding
the present theoretical models which describe pointing tasks in two dimensions.
We wish to establish a predictive model that accounts for more of the pertinent
factors in two-dimensional pointing and which can be used to direct the design of
user interfaces. We build on previous work in two key directions: manipulation
of experimental parameters and theoretical modeling.

3.1 Manipulation of Experimental Parameters

Target Dimensions and Amplitude. Previous work by Accot and Zhai [2003]
showed that increasing W beyond H will reduce movement time, while in-
creasing H beyond W has no effect. Their analysis was performed by averaging
over all values of A. We wish to verify this result when the conditions are bro-
ken up by A. We hypothesize that the vertical scatter of hits will deviate by a
constant angle from the start point when moving towards a target. Thus, for
distant targets, increasing the height past the width could still significantly
reduce movement time as long as it is within this scatter of hits. If this is the
case, the effect of increasing the height of a target would not only depend on
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Fig. 3. Movement and approach angles.

the width, but also how much effect the vertical constraint has at that target’s
distance. As in Accot and Zhai [2003], we will treat the ratio between H and
W as a controlled independent variable, allowing us to study the interaction
between these two dimensions. Our analysis of the effect of this ratio will be
broken up by amplitude, allowing us to also study the interaction between the
ratio and amplitude.

Movement and Approach Angles. As mentioned earlier, Accot and Zhai [2003]
limited their study to cursor movements along the X-axis. We wish to extend
their work by studying the effects of varying the movement angle since two-
dimensional targets can be positioned anywhere in a two-dimensional environ-
ment. For the present study, we explore movement angles of 0◦ (i.e., X-axis),
22.5◦, 45◦, 67.5◦, and 90◦ (i.e., Y-axis). While the movement angle defines the
human user’s axis of movement, the approach angle defines the angle between
the movement vector (defined by θ ) and the axis parallel to the width of the
target. We will always have the width of the target colinear with the X-axis
and the height of the target colinear with the Y-axis. Thus, the approach angle
will always equal the movement angle (Figure 3). This is similar to the setup
used in MacKenzie and Buxton [1992], however, they only tested angles of 0◦,
45◦, and 90◦. Although we do not completely cross the two variables, the de-
sign will allow us to infer whether or not our model will have the ability to
accommodate the effects of both varying the movement angle and varying the
approach angle. Evidence that varying the movement angle will affect MT has
been seen in Boritz et al. [1991]; Hancock and Booth [2004] and is partially due
to differences in the muscle groups required to affect movements in different
directions. Varying the approach angle should also affect MT since it is, in
essence, varying the shape of the target.

3.2 New Model Candidate

We now describe the new model which we propose and evaluate in this article.
The key idea is to use a function to map the probability of hitting a target to
an index of difficulty value. We will first introduce and define the probability
of hitting a target in a one-dimensional task. We then generate the function
using the defined probabilities and well-accepted index of difficulty values for
one-dimensional pointing. Finally, we define the probability of hitting a target
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in a two-dimensional task, and map these probabilities to index of difficulties
using the generated function.

Hoffman and Sheikh [1994] suggest that “only when the target height is less
than the natural vertical scatter of hits on the target is there likely to be any
effect of vertical constraint”. We attempt to identify the nature of this “natural
scatter” of hits both in the vertical and horizontal directions. As an analogy,
consider throwing darts towards the bull’s-eye of a dartboard. Some darts will
be close, and some will be further, and, at the end, there will be a spread of
hits where the darts fell. Similarly, if a user repeatedly attempts to quickly
move towards a target and stop directly over it without using any corrective
movements, there will be a spread of hits where the cursor stopped.

Based on this spread of hits, we propose a new approach to modeling pointing
behavior. Previous work has attempted to make the index of difficulty a func-
tion of any variable which can affect the movement time. For one-dimensional
pointing, the ID is a function of width and amplitude (Equation (1)). For two
dimensions, Accot and Zhai [2003] made it a function of width, height, and am-
plitude (Equation (4)). To incorporate varying movement angles, it would need
to be a function of this variable as well. It becomes cumbersome to incorpo-
rate all these variables into the index of difficulty as their number increases.
It would be preferable to find a formula for the index of difficulty which can be
generalized to any target shape, size, orientation, location, and dimension.

Our solution to this problem is to first calculate PR,S(hit), the probability of
pointing inside the region R defined by the target, based on the spread of hits
S. Using the dart board analogy, if you have a spread of hits on the dart board
where the darts landed when being aimed at the bull’s-eye, you could use that
information to estimate the probability of a dart hitting a target of any shape
or size. The probability will thus be a function of R as a smaller target will be
harder to hit, and S since a larger spread will mean fewer points fall within
the target region. The actual spread of hits S will be affected by a number of
variables including A which we will discuss shortly.

We propose using a universal function F which maps the probability of hit-
ting a target, its single parameter, to an index of difficulty:

IDPr = F (PR,S(hit)). (5)

The general idea is that a target’s index of difficulty can be completely deter-
mined by calculating the probability that the target will be hit by an open-loop
movement. The higher the probability, the easier the target will be to acquire.
It should be noted that by open-loop movement, we mean the initial ballis-
tic impulse towards the target without any feedback-guided final adjustments
[MacKenzie 1992].

Let’s first consider the one-dimensional case. If we assume that the spread
of hits is normally distributed which is supported by observations in Welford
[1968], with a mean value of zero corresponding to the center of the target, the
index of difficulty becomes:

IDPr = F
(

P
(

−W
2

≤ X N(0,σ) ≤ W
2

))
. (6)
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Fig. 4. Target in relation to normal distribution.

where X N (0,σ ) is a random variable in the normal distribution with mean 0 and
standard deviation σ (Figure 4).

As stated earlier, the spread should be affected by A. This variable is incor-
porated by setting σ to be a function of A, σ (A), since the spread of hits should
diverge the further the distance is to the target. Reverting to the dart board
analogy, the points that the darts hit will become more spread out if they are
thrown from further away. This is a different approach than Schmidt et al.
[1979] who investigated the relation between the spread and movement speed.
We will exploit the property of scale independence to determine the exact nature
of the function σ (A). We want the index of difficulty, and thus the probability
value, to remain the same if the width and amplitude are both multiplied by a
constant k:

P
(

−W
2

≤ X N(0,σ (A)) ≤ W
2

)
= P

(
−kW

2
≤ X N(0,σ (k A)) ≤ kW

2

)
. (7)

By converting X to the standard normal distribution Z N (0,1), we get:

P
(

− W
2σ (A)

≤ Z N(0,1) ≤ W
2σ (A)

)
= P

(
− kW

2σ (k A)
≤ Z N(0,1) ≤ kW

2σ (k A)

)
. (8)

Solving this equation gives:

σ (k A) = kσ (A), (9)

so we can conclude that:

σ (A) = cA, (10)

for some constant c which is determined empirically. Because the formula for the
index of difficulty is widely accepted for one-dimensional tasks (Equation (1)),
once c is determined, we can create a table of values for the function F based
on the equivalence:

log2

(
A
W

+ 1
)

= F
(

P
(

−W
2

≤ X N(0,cA) ≤ W
2

))
. (11)
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Fig. 5. (a) Example of the universal function F for c = 0.07. (b) Example of the spread of hits in
two-dimensional pointing. X ′ is the error parallel to, and Y ′ is the error perpendicular to, the line
of movement.

Stated in terms of the standard normal distribution gives:

log2

(
A
W

+ 1
)

= F
(

P
(

− W
2cA

≤ Z N(0,1) ≤ W
2cA

))
. (12)

Letting B = A/W gives:

log2(B + 1) = F
(

P
(

− 1
2cB

≤ Z N(0,1) ≤ 1
2cB

))
. (13)

Finally, using φ for the cumulative distribution function of the standard normal
distribution, we get:

log2(B + 1) = F
(

φ

(
1

2cB

)
− φ

(
− 1

2cB

))
. (14)

Figure 5(a) shows the function F with c set to 0.07, a value which we have
found to be in the possible range through experimentation. Because there is no
closed formula for the cumulative normal distribution function as it contains
an unsolvable integral, we compute F numerically. We generate the function
in Figure 5(a) by substituting different values of B into the left-and right-hand
sides of Equation (14).

The idea now is to take any pointing task condition, obtain the probability
of pointing inside the region defined by the target, and map it to its index
of difficulty using the universal function F . For two-dimensional pointing, we
examine the spread of hits P = (X ′, Y ′), where X ′ is the error parallel to the
line of movement, and Y ′ is the error perpendicular to the line of movement
(Figure 5(b)). We assume the spread of hits is a bivariate normal distribution,
N(µX ′ ,µY ′ ,σX ′ ,σY ′ ,ρX ′Y ′ ). The means (µX ′ ,µY ′ ), again, are zero, corresponding to
the center of the target. The standard deviation σX ′ = cA, for some constant c,
measures from the center of the target colinear with the direction of movement.
The standard deviation σY ′ = dA, for some constant d , measures from the center
of the target, perpendicular to the direction of movement. For simplicity, we will
assume X ′ and Y ′ to be independent, so ρX ′Y ′ = 0. The bivariate normal density
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function thus becomes:

bndf (X ′, Y ′) = 1

cA
√

2π
e
−

(
X ′2

2(cA2)

)
1

dA
√

2π
e
−

(
Y ′2

2(d A2)

)
. (15)

So, the probabilistic index of difficulty for two-dimensional pointing is:

IDPr = F
(∫

R

∫
bndf (X ′, Y ′)dY ′dX ′

)
, (16)

where R is the region defined by the target. The term inside the brackets is just
the integral with respect to X ′and Y ′over the 2D region R. The model which
we therefore propose and validate in this article is:

MT = a + bIDPr. (17)

As usual, a and b are empirically determined constants. This equation will
provide index of difficulties for targets of any shape or orientation by simply
integrating over a different region. In our study, the region is a rectangle rotated
by the approach angle θ .

It is important to notice that this model possesses all of the properties desir-
able in defining general two-dimensional pointing. First, it has scale indepen-
dence because of how the standard deviations are calculated. The limit tasks
property also holds by the properties of the bivariate normal distribution be-
cause it regresses to the univariate normal-distribution if one of the dimensions
is integrated over infinity. The dominance effect holds because increasing or de-
creasing one dimension will sweep out a greater area of the spread of hits, the
larger the other dimension is. H and W duality clearly holds since the region
is defined by both H and W . Continuity holds by the nature of the bivariate
normal distribution since increasing a dimension size will gradually stop in-
creasing the probability. Finally, the function will be W-asymmetric as long as
the spread of hits parallel to the line of movement is greater than the spread of
hits perpendicular to the line of movement (σx > σ y ). This is an expected effect
based on empirical data [Schmidt et al. 1979].

It should also be noted that by diverging from the standard formulations of
the index of difficulty, we also diverge from the explanatory reasoning of these
models. The standard models, where the index of difficulty is based on the log-
arithm of the amplitude and dimension ratios, are analogous to the calculation
of the information capacity of a communications channel based on the signal
strength and noise power. Our model also serves as an explanatory model, al-
beit in a different manner. The justification of our model is that the less likely a
target is to be selected using open-loop movements, the more closed-loop correc-
tive movements will be required. This, in turn, increases the index of difficulty.
Consistent with previous models, our index of difficulty can still be interpreted
as “a measure of the average number of movements (or movement corrections)
required to acquire the target or, in other words, the number of times the main
human-machine processing loop is executed” [Ware and Balakrishnan 1994].

In the following sections, we will present two experiments. Although we
explicitly label the sections as Experiment 1 and Experiment 2, they were
conducted in parallel and make up the two major parts of our study. The first
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part of the study will explore the exact nature of the spread of hits in an open-
loop pointing action and how it is affected by target distance and movement
angle. This will provide the data needed to build our proposed model for two-
dimensional pointing. The second part of the study records behavioral data for
a number of conditions so that we can test the model which we built using the
collected data.

4. EXPERIMENT 1

The goal of this experiment is to investigate the spread of hits resulting
from ballistic or open-loop two-dimensional pointing actions. The results will
serve to determine constants c and d (Equation (15)) for our proposed model
(Equation (17)).

4.1 Apparatus

The experiment was conducted on a 2.4Ghz Pentium 4 PC using a WACOM
tablet and puck for input. The display was a 19′′ CRT monitor with 1280×1024
resolution. The computer ran Windows XP and OpenGL for graphics. The puck
acceleration was set to 0 with a control-display gain of two. It is important
to note that the puck operates on the tablet in absolute mode, removing a
potential confound that exists in experiments which use a relative mouse whose
origin can be reset during a trial by clutching the device. All dimensions will
be measured in units (1 unit ≈ 0.2 cm).

4.2 Participants

Three female and seven male volunteers participated in the experiment. Par-
ticipants ranged in ages from 20 to 25, all were right-handed and controlled the
input device and, consequently, the cursor with their right hand.

4.3 Procedure

The task was reciprocal two-dimensional rapid approximate pointing which
required participants to point towards two fixed-sized targets back and forth
in succession. Subjects were told to move quickly towards the target and click
wherever this movement led them, not using any corrective motions. In other
words, the cursor did not actually have to end up inside the target, it was
required only that participants point towards it. Although it is plausible that
subjects would use the visual feedback of the target to continuously guide their
movements, the task description made such effects minimal. The targets were
rendered as solid squares, equidistant from the centre of the display in opposite
directions along the given axis of movement. The squares were aligned with the
principle screen axes. The target to be selected was green and the other brown.
When participants clicked the puck button, the targets would swap colors as an
indication that the participant had to now move to and point at the other target.

4.4 Design

A repeated measures within-participant design was used. The independent
variables were amplitude A(32, 64, 96 units), and movement angle θ (0◦, 22.5◦,
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45◦, 67.5◦, 90◦). A fully-crossed design resulted in 15 combinations of A and θ .
The target size was kept constant at 1 × 1.

The experiment was performed in one session lasting approximately 25 min-
utes. The session was broken up into movement angles, and two blocks of trials
were completed for each movement angle. In each block, participants would
complete trial sets for each of the 3 values of A presented in random order. A
trial set consisted of 21 clicks (i.e., twenty reciprocal movements between the
two targets).

Before each session, participants were given practice trials to familiarize
themselves with the task. The practice lasted until participants were comfort-
able with the task, usually about 2 minutes. Participants were randomly di-
vided into 5 groups of 2 each. Assignment of movement angle order to groups
was counterbalanced using a balanced Latin square.

4.5 Performance Measures

The dependent variables were X ′—defined as the distance between the point
clicked and the center of the target measured along the line of movement and
Y ′—defined as the distance between the point clicked and the center of the tar-
get measured along the axis perpendicular to the line of movement (Figure 5(b)).

4.6 Results

Outliers were removed based on MT and accuracy. Any data point further than
2 standard deviations away from its condition’s mean (by MT, or by accuracy,
defined as distance between the click and the target center) was removed. A
total of 5% of the data were outliers and removed.

Figure 6 shows the spread of hits for each of the 15 conditions in screen
unit coordinates. We analyze σX ′and σY ′ , the standard deviations of X ′ and Y ′,
respectively. Multiple-means comparison of variances within each approach
angle showed that σX ′ significantly increases when the amplitude is increased
from 32 to 64 and from 64 to 96 (p < .0001). Similarly, σY ′ increased (all p < .01),
except for when the amplitude was increased from 32 to 64 for θ = 90◦ (p =
.208) and for θ = 67.5◦, where σY ′ actually decreased.

To use our proposed model, we wish to find constants c and d such that
σX ′= cA and σY ′ = dA. Linear regression with no intercept was performed on
each approach angle. Table I shows the results. We wanted to find the value
of c and d for each approach angle since previous evidence [Boritz et al. 1991;
Hancock and Booth 2004] indicates that performance is affected by movement
direction. If our c and d values were uniform throughout approach angles, then
our model would not capture this property. As expected, c > d for all angles.
Averaging over all angles, c = 2.06d which resembles the results in Schmidt
et al. [1979].

5. SAMPLE CALCULATIONS

We can now use the empirically determined c and d values to calculate IDPr
values for various two-dimensional pointing trial conditions. For example, con-
sider a target with the values A= 64, W = 4, H = 4, and θ = 0◦. We begin with
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Fig. 6. Spread of hits for all 15 A, θ combinations in Experiment 1.

Table I. Linear Regression Results for Each θ

c d
Estim. Std. Er. R2 Estim. Std. Er. R2

0◦ 0.0717 0.0018 0.998 0.0284 0.0046 0.9243
22.5◦ 0.0686 0.0027 0.995 0.0304 0.0043 0.9413
45◦ 0.0634 0.0047 0.984 0.0344 0.0061 0.9117
67.5◦ 0.0582 0.0071 0.957 0.0331 0.0035 0.9668
90◦ 0.0665 0.0028 0.995 0.0345 0.0078 0.8610

Equation (16), noting that for a rectangular target the region R is defined by
its width and height:

IDPr = F

(∫ W/2

−W/2

∫ H/2

−H/2
bndf (X ′, Y ′)dY ′dX ′

)
. (18)

Expanding the bivariate normal density function (Equation (15)) gives:

IDPr = F

(∫ W/2

−W/2

∫ H/2

−H/2

1

cA
√

2π
e−

(
X ′2

2(cA)2

)
1

d A
√

2π
e−

(
Y ′2

2(d A)2

)
dY ′dX ′

)
. (19)
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Table II. IDPr Calculated Using Equation
(14) for Various Values of B

B = A/W P(Hit) IDPr= F(P(Hit))
· · ·
· · ·
22.2 0.24657 4.536
22.3 0.24550 4.542
· · ·
· · ·

Fig. 7. Calculating F (0.246). Based on values of Pand IDPr calculated in Table II, linear interpo-
lation can be used over the points corresponding to B = 22.2 and B = 22.3 to find F (0.246).

We now substitute in A, W, and H, and the c and d values which we obtained
for θ = 0◦:

IDPr = F

( ∫ 2

−2

∫ 2

−2

1

0.0717 · 64
√

2π
e−

(
X ′2

2(0.0717·64)2

)
1

0.0284 · 64
√

2π
e−

(
Y ′2

2(0.0284·64)2

)
dY ′dX ′

)
.

(20)

The integral can be easily evaluated using computational methods, giving:

IDPr = F (0.246). (21)

We will use the universal F function created with c = 0.0717 which was the
value found in Experiment 1 when θ = 0◦. We construct a table of values
using Equation (14) based on various values of B (Table II) and then use linear
interpolation to get our desired value.

To find F (0.246), we linearly interpolate between the points F (0.24657),
corresponding to B = 22.2, and F (0.24550), corresponding to B = 22.3, giving
the result (Figure 7):

I DPr = 4.539 (22)

If we next consider the same condition, except the width is cut by half
(A= 64, W = 2, H = 4, and θ = 0◦), we only need to change the region of
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integration. Specifically, we cut in half the interval which X ′ ranges over:

IDPr = F

( ∫ 1

−1

∫ 2

−2

1

0.0717 · 64
√

2π
e−

(
X ′2

2(0.0717·64)2

)
1

0.0284 · 64
√

2π
e−

(
Y ′2

2(0.0284·64)2

)
dY ′dX ′

)
.

(23)

This results in a lower probability since less area is covered:

IDPr = F
(
0.126

)
. (24)

In turn, this increases the index of difficulty since the universal F function is
decreasing:

IDPr = 5.493. (25)

If, instead of decreasing the width, we cut the height in half (A= 64, W = 4,
H = 2, and θ = 0◦), the index of difficulty becomes:

IDPr = F

( ∫ 2

−2

∫ 1

−1

1

0.0717 · 64
√

2π
e−

(
X ′2

2(0.0717·64)2

)
1

0.0284 · 64
√

2π
e−

(
Y ′2

2(0.0284·64)2

)
dY ′dX ′

)
,

(26)

IDPr = F (0.141), (27)
IDPr = 5.331. (28)

Again, the probability is lowered, therefore increasing the index of difficulty.
It should be noted that the index of difficulty is increased to a greater extent
when the width was reduced since the model is W-asymmetric.

The calculation of the index of difficulty for conditions at other approach
angles is very similar, only requiring minor changes to the method. Consider
the case where the variables are A= 64, W = 2, H = 4, and θ = 67.5◦. The first
change is that the region of integration is now rotated. We still model the spread
of hits as a bivariate normal distribution but rotated by 67.5◦ (Figure 8(a)). If we
rotate the scene, we can integrate the nonrotated bivariate normal distribution
over the region R defined by a rectangle with width 2, height 4, rotated by
−67.5◦ (Figure 8(b)). The second change is that we use the c and d values found
in Experiment 1 when θ = 67.5◦.

Thus, the index of difficulty can now be calculated as follows:

IDPr = F
∫

R

∫ (
1

0.0582 · 64
√

2π
e−

(
X ′2

2(0.0582·64)2

)
1

0.0331 · 64
√

2π
e−

(
Y ′2

2(0.0331·64)2

)
dY ′dX ′

)
.

(29)

Again, we evaluate the integral and then use the F function to find the index
of difficulty:

IDPr = F (0.147), (30)
IDPr = 5.271. (31)
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Fig. 8. (a) Integrating the bivariate normal distribution rotated by 67.5◦ over the region defined
by a rectangle. (b) Integrating the nonrotated bivariate normal distribution over the region defined
by a rectangle rotated by −67.5◦.

Fig. 9. Acquisition of a right triangle shaped target.

As stated earlier, we can also calculate the index of difficulties for targets of
arbitrary shapes. The calculation follows the same procedure except that the
region of integration is defined by the shape of the target. For example, consider
the acquisition of a right triangle with a base and height of 2, and θ = 0◦. We
will also let A= 64, defined as the distance to the triangle’s incenter, the point
where the angle bisectors of the triangle meet (Figure 9).

The calculation is procedurally identical to the case of a rectangle except that
the region R is now a triangle:

IDPr = F
(∫

R

∫
1

0.0717 · 64
√

2π
e−

(
X ′2

2(0.0717·64)2

)
1

0.0284 · 64
√

2π
e−

(
Y ′2

2(0.0284·64)2

)
dY ′dX ′

)
.

(32)
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This can be computed by taking the double integral with the following bounds:

IDPr = F

( ∫ 0.585

−1.415

∫ X ′+0.83

−0.585

1

0.0717 · 64
√

2π
e−

(
X ′2

2(0.0717·64)2

)
1

0.0284 · 64
√

2π

× e−
(

Y ′2
2(0.0284·64)2

)
dY ′dX ′

)
, (33)

IDPr = F (0.036), (34)
IDPr = 7.246. (35)

6. EXPERIMENT 2

The results of Experiment 1 allowed us to compute c and d for our proposed
model. We next conduct a second experiment where we vary more parameters to
obtain a comprehensive dataset on two-dimensional pointing in order to verify
the effectiveness of our new model. This experiment will involve rectangles of
varying widths and heights with varied movement angles. We leave conditions
of arbitrary target shapes to future work.

6.1 Apparatus and Participants

Experiment 2 was conducted on the same apparatus by the same 10 participants
as Experiment 1.

6.2 Procedure

The task was reciprocal two-dimensional target acquisition requiring partici-
pants to point to two targets back and forth in succession. Subjects were told
to select the targets as quickly as possible while maintaining an overall error
rate of no more than 4%. The targets were rendered as solid rectangles, and,
as in Experiment 1, were equidistant from the centre of the display in opposite
directions along the given axis of movement. The width of the target was al-
ways colinear with the X-axis of the screen, and the height was along the Y-axis
of the screen. Again, the target to be selected was green and the other brown.
Unlike Experiment 1 where positive selection of the target was not enforced,
in this experiment participants had to successfully select the target before the
colors would swap even if it required multiple clicks. This effectively removes
the possibility that participants may try to race through the experiment by
clicking anywhere. For timing and error calculations, however, we consider the
first click as the end point.

6.3 Design

A repeated measures within-participant design was used. The first 3 indepen-
dent variables were the minimum target size (1, 2, 4), the target width and
height ratio (1, 1.5, 2, 4), and smaller-of dimension (W , H). Table III shows
all 3 × 4 × 2 – 3 = 21 tested W -H combinations (the 3 conditions where
W = H need not be repeated). These were fully crossed with the remaining two
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Table III. W -H Combinations Tested in Experiment 2

W = H W = H = 1 W = H = 2 W = H = 4
W < H W = 1 H = {1.5, 2, 4}

W = 2 H = {3, 4, 8}
W = 4 H = {6, 8, 16}

W > H H = 1 W = {1.5, 2, 4}
H = 2 W = {3, 4, 8}
H = 4 W = {6, 8, 16}

independent variable values, amplitude A(32, 64, 128 units), and movement
angle θ (0◦, 22.5◦, 45◦, 67.5◦, 90◦), for a total of 21 × 3 × 5 = 315 conditions.

The experiment was performed in two sessions. The first session, lasting ap-
proximately 40 minutes, was conducted immediately following the completion
of Experiment 1. The second session, lasting approximately 60 minutes, was
conducted on a separate day. In the first session, participants completed all tri-
als for 2 approach angles. In the second session, subjects completed the trials
for the remaining 3 approach angles. All trials for one angle were completed
before moving on to the next. Within each angle, there were two blocks consist-
ing of all W -H-A combinations presented in random order. For each condition,
participants performed 8 reciprocal trials, resulting in a total of 315 × 2 × 8 =
5040 total trials per subject. At the end of a trial set, a message was displayed
informing the participant of the error rate for the previous trial set and the
overall error rate, allowing them to adjust their movement speeds if they were
exceeding 4% errors. Prior to the sessions, the subjects were given practice tri-
als to familiarize themselves with the new task. The participant groups from
Experiment 1 were the same, and the same Latin square design was employed
to counter-balance the movement angles.

6.4 Performance Measures

We used two dependent variables. Movement time MT is defined as the time
between the first click which begins the trial and the next click which may
not necessarily end the trial if it was an error. The error rate was the other
dependent variable and is defined as the average number of errors per trial.
Errors occurred when participants clicked first when the cursor was outside the
target. A maximum of one error was counted per trial even if multiple clicks
were made before the target was finally selected.

6.5 Results

Outliers were removed based on MT. Again, any data point further than 2
standard deviations away from its condition’s mean was removed, resulting in
6.9% of the data being removed as outliers.

6.5.1 Movement Time Analysis: Main Effects. Analysis of variance showed
that the independent variables A(F2,198 = 16625, p < .0001), minimum target
size (F2,198 = 20174, p < .0001), W and H ratio (F2,198 = 239.74, p < .0001),
smaller-of dimension (F1,99 = 88.51, p < .0001), and θ (F4,36 = 150.08, p < .0001)
all had a significant main effect on MT. The effect of θ is of special interest.
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Fig. 10. Effect of Wand H ratio on MT.

Recall that θ affects both the movement and approach angles. Multiple
means comparisons showed no significant difference in MT between θ = 0◦ and
θ = 22.5◦ (p = .11), but significantly higher MT for θ = 45◦, and even higher for
θ = 67.5◦ (both p < .0001). There was no significant difference in MT for θ = 67.5◦

and θ = 90◦ (p = 1.0). It should be noted that for θ = 90◦, if W and H are swapped
then the approach angle is equal to that of θ = 0◦ so it must be the movement
angle causing the significant difference. This matches the results of previous
studies [Langolf et al. 1976; Boritz et al. 1991; Card et al. 1991; Balakrishnan
and MacKenzie 1997; Hancock and Booth 2004] which found that the use of
smaller muscle groups (hand, wrist) required for horizontal movement will re-
sult in better performance in a pointing task than the larger muscle groups
(upper arm, shoulder) required for vertical movement.

6.5.2 Movement Time Analysis: W and H Ratio. Previous work [Accot and
Zhai 2003] showed that when movement was horizontal, the target width is
more critical than the target height. It is reasonable to assume that the reason
for this is because the width is colinear with the line of movement, while the
height is perpendicular to the line of movement. However, in our experiment,
this is not always the case since we varied the approach angle. This leads us
to examine the effect of the ratio broken down by approach angle. Figure 10
shows how the W and H ratio affect MT broken down by θ and the three
amplitudes tested. It can be seen that the weight gradually transfers from
W to H as the approach angle goes from 0◦ to 90◦. The ratio had significant
interactions with both amplitude A (F14,2277 = 986.45, p < .0001) and approach
angle θ (F28,351 =30.51, p < .0001).

Post hoc multiple means comparison using Tukey-Kramer adjustment was
performed on the data illustrated in Figure 10, and we now summarize some
of the interesting effects, broken down by θ .

θ = 0◦. For W ≥ H increasing the ratio from 1 to 1.5 was significant at all
values of A (p < .001 for all significant effects reported in this subsection).
Increasing from 1.5 to 2 was only significant for A= 64 and increasing from 2
to 4 was only significant for A= 32. For W ≤ H, increasing the ratio from 1 to
2 was significant for all values of A. Thus, we see that increasing H, even when
W is the constraining factor, can still significantly reduce MT. Further increase
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Table IV. Fit of IDWtEuc and IDPr Models to Experiment 2 Data

a b η

Model Estim. Std. Err. Estim. Std. Err. Estim. Std. Err. R2

IDWtEuc θ = 0◦ −66.32 23.89 225.63 4.66 0.38 0.04 0.974
IDPr θ = 0◦ 313.52 19.37 131.54 3.22 0.964
IDPr 356.00 9.696 127.08 1.61 0.952

to 4 was not significant. Of special interest is that for A= 128, when the ratio
was 2, there was no difference between when W > H and when W < H. This
was the only case where the ratio was symmetric. In other words, doubling the
height and width had similar effects at the furthest distance.

θ = 45◦. In this case, there is complete symmetry through all ratios and A
values. This is consistent with our expectations since increasing the height or
width will sweep out the exact same area of the bivariate distribution since the
target is simply reflected through the Y-axis.

θ = 90◦. For W ≥ H, increasing the ratio from 1 to 4 was significant for
A= 128, and from 1 to 2 was significant for A= 64 and 32. Again, we see the
dimension perpendicular to the line of motion having an impact on MT, even
when greater than the dimension parallel to the line motion. For W ≤ H,
increasing the ratio from 1.5 to 2 was significant for A= 128. For A= 64 and
32, the increase was significant from both 1 to 1.5 and 1.5 to 4.

6.5.3 Movement Time Analysis: Fit of the Model. We fit the MT data to our
candidate model IDPr and compared it to results of the weighted Euclidianmodel
IDWtEuc (Equation (4)) proposed in Accot and Zhai [2003]. Since Accot’s model
does not account for varying approach angles or movement angles, we limit the
comparison to the condition θ = 0◦, but we do a full fit of data for all θ for our
model.

To calculate the probabilities for IDPr (Equation (16)), we used the c and d
values calculated in Experiment 1 (Table I). Once a probability was calculated,
we used linear interpolation on the universal F function to approximate the
corresponding ID value. The c value used for the F function was 0.0717 which
was the value found in Experiment 1 when θ = 0◦. It should be understood that
the c and d values which were calculated from Experiment 1 describe the spread
of hits from open-loop target acquisition movements. This spread of hits is
bound to be different in a target acquisition task where closed-loop movements
are used. In addition, varying the target dimension will undoubtedly affect
the spread of hits. However, we still use the c and d values from Experiment 1
because we want to determine how much deviation from an open-loop movement
will be required to actually select a target. In other words, we will establish how
much of the open-loop spread of hits is encompassed in the region defined by
the target.

Table IV shows the results using a least-squares fit method. The table shows
parameter estimates where applicable and the corresponding standard errors.
The last column provides the R2 values for the regression. We see that the
Euclidean and probabilistic models give very similar results when θ =0◦. The
Euclidean model has a slightly higher fit but also exhibits slightly higher
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Fig. 11. Scatterplot and regression for all values of θ , using IDPr.

standard errors on parameter estimates. Furthermore, the Euclidian model
requires an extra parameter which has been computationally calculated to
optimize the R2 value. The main benefit of the probabilistic model is that it
can provide the index of difficulties for various approach angles. In contrast to
the Euclidean model which only works for θ = 0◦, the probabilistic model ac-
counts for the entire data set for all values of θ , with a high correlation of 0.952
(Figure 11).

6.5.4 Error Analysis. For all participants, there were a total of 1322 errors
and 45,571 correct trials. This is a 2.9% error rate, only slightly lower than
the standard criterion for Fitts’ law experiments. Error rate was significantly
affected by A(F2,198 = 5.85, p = .0029), minimum target size (F2,198 = 74.73, p <

.0001), W and H ratio (F2,198 = 67.5, p < .0001), smaller-of dimension (F1,99 =
28.19, p < .0001) and θ (F4,36 = 4.51, p < .0012).
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7. IMPLICATIONS FOR USER INTERFACE DESIGN

The results of our study can be used to guide the development of user interfaces
from both design and theoretical perspectives. As in Accot and Zhai [2003], we
found an asymmetrical impact of the target dimensions parallel and perpen-
dicular to the line of movement. Accot and Zhai [2003] give a good account of
the implications of this result for design. Our results show that this asymmetry
also holds for varying movement angles. In contrast to Accot and Zhai [2003],
we also found that increasing the height of a target can make it easier to select
even when it is greater than the width. This new finding tells designers that it
would not be in vain to design buttons with greater height than width. Another
finding which could be utilized is that the height and width of rectangular tar-
gets have equal impact on movement time when moving at a 45◦ angle. Thus,
icons placed at the corners of a display can be elongated in either direction with
equally beneficial results since the acquisition of such targets will on average
be at a 45◦ angle. In essence, the probabilistic model allows designers to un-
derstand exactly how modifying a target’s shape or size will affect acquisition
times as an alternative to simply following more general, but possibly inaccu-
rate, rules of thumb. For example, it may be incorrectly assumed that increasing
the width of a target will not reduce acquisition times once the width is twice
as large as the height. Using the probabilistic model, however, analysis may
show that increasing the width from two times to three times the target height
will result in a possible 5% decrease in acquisition time or something along
these lines. This will have special value when working with unconventional
input and display devices. For example, when directly interacting with the sur-
face of a wide-format (16:9) display, the spread of hits will likely be drastically
elongated along the X-axis. As a result, designers may find it beneficial to have
targets that are five times as wide as they are high. In contrast, when using a
stylus on a PDA, the spread of hits will be condensed in both directions, and
so it may be found that increasing the width to even two times the height will
have negligible benefit. From a theoretical standpoint, designers can use our
model to make accurate predictions about their interfaces when the user will be
moving at different angles to point at targets, and pointing at nonrectangular
buttons. For example, the stylus-based virtual keyboard optimization in Zhai
et al. [2000] could be extended to optimize the shape of the keys and account
for angles between them in performance predictions.

8. DISCUSSION AND FUTURE WORK

Some issues surrounding the probabilistic model which we have proposed and
validated should be clarified. The critical step in applying our model is defin-
ing what the probability of a hit is. We do this by calculating how much of the
bivariate normal distribution is covered by the target when centered within
the distribution. While the results of our experiment show that this method is
good enough to accurately predict movement times, it is possible that the pre-
diction accuracy could be further increased by refining the underlying assump-
tions. First, the use of the bivariate normal distribution to model the open-loop
spread of hits, while a reasonable first approximation, could be somewhat of a
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simplification. We did not validate that the spread did indeed take on this dis-
tribution, and it is possible that the spread could be skewed in various manners
such that other types of distributions would be more appropriate for modeling
its nature. A possible line of future work would be to perform a more in-depth
analysis of the open-loop spread of hits and finding a best fit distribution which
models it. Another assumption we made was that the center of the target was
in the center of the distribution when calculating probabilities. In other words,
we assumed that the user is aiming for the center of the target in an acquisition
task. While this may be true for small targets, it is plausible that, as the target
size grows, users will begin to aim closer to the side of the target first crossed by
the pointer. If this were the case, the center of the distribution should be placed
closer to this side. Furthermore, it is unclear where the center of the distribu-
tion should be placed in irregular-shaped targets. We discussed the example of
a triangle and used the incenter which is a reasonable first approximation. It
is less obvious how to determine the center of an irregular-shaped target which
could be completely asymmetric and might even contain holes or gaps. It would
be useful to explore methods of defining this center for any target shape. A
related line of future work would be to validate the model for targets of various
shapes. It would also be valuable to understand how the c and d coefficients
in IDPr behave under varying conditions. We use empirical data to establish
their values for discrete movement angles. It would be interesting to develop a
method to determine their values for a general movement angle. It would also
be valuable to understand how these values change and how well the model ap-
plies when task conditions such as the input device and control gain ratio are
altered. For control purposes, our experiments were conducted using a puck and
tablet in absolute mode. Understanding how the model behaves when using a
mouse, a relative input device, would be of interest. It would also be interesting
to explore less conventional display-input configurations such as pens on tablet
displays and touch on table top displays. It is likely that the c and d coefficient
values would compensate for such variations.

9. CONCLUSION

We have presented experimental work that investigated how target dimensions,
movement angles, approach angles, and their interactions affect the selection
of two-dimensional targets. In an initial study, we investigated the distribution
of hits when using ballistic movements to point at a two-dimensional target. We
found that at all movement angles, the distribution has a spread approximately
twice as great in the direction of movement as in the direction perpendicular
to movement. We also found that this spread increases in both directions by
a constant factor with the distance to the target and empirically determined
these constant factors c and d . In a second study, we observed that the dimen-
sion of a target, colinear with the line of movement, is the most critical; that
with an approach angle of 45◦, width and height have equal effect on movement
time. And in contrast to previous findings, we found that the dimension per-
pendicular to the line of movement can still affect movement time even when
greater than the dimension parallel to movement. This result was in contrast
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to our own hypothesis as well as the effect was seen over all amplitudes not
just the longest. We introduced and validated a probabilistic model for point-
ing to targets that satisfies all of the desirable properties of such a model. The
model calculates probabilities by integrating the bivariate normal distribution
with standard deviations calculated from the c and d values determined in the
first experiment, over the region defined by the target. The probability is then
mapped to an index of difficulty using a function which was constructed based
on well accepted one-dimensional index of difficulties. We have shown that this
model can predict performance time as accurately as the best previous model
when the movement angle is zero. Unlike the previous model, ours can account
for varying movement angles and approach angles and be generalized to differ-
ent target shapes and dimensions. We discussed the simplifying assumptions
which we made and the future improvements to the probabilistic model which
these assumptions leave room for. Finally, we have discussed the implications
of our results to user interface design.

ONLINE APPENDIX

The data set from our experiments, including a complete table of IDPr for that
data, is available at http://www.dgp.toronto.edu/∼tovi/idpr/.
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