
EUROGRAPHICS 2008 / G. Drettakis and R. Scopigno
(Guest Editors)

Volume 27 (2008), Number 3

Sketching and Composing Widgets for 3D Manipulation

Ryan Schmidt† and Karan Singh† and Ravin Balakrishnan†

Dynamic Graphics Project
University of Toronto, Canada

Abstract
We present an interface for 3D object manipulation in which standard transformation tools are replaced with tran-
sient 3D widgets invoked by sketching context-dependent strokes. The widgets are automatically aligned to axes
and planes determined by the user’s stroke. Sketched pivot-points further expand the interaction vocabulary. Us-
ing gestural commands, these basic elements can be assembled into dynamic, user-constructed 3D transformation
systems. We supplement precise widget interaction with techniques for coarse object positioning and snapping.
Our approach, which is implemented within a broader sketch-based modeling system, also integrates an under-
lying "widget history" to enable the fluid transfer of widgets between objects. An evaluation indicates that users
familiar with 3D manipulation concepts can be taught how to efficiently use our system in under an hour.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Interaction Techniques
H.5.2 [Information Interfaces and Presentation]: User Interfaces

1. Introduction

Free-form 3D modeling has made a significant impact on
the engineering, design, and entertainment industries. How-
ever, free-form modeling tools are not typically regarded as
being easy to learn or use. Sketch-based interfaces [Ske07]
can potentially improve this situation, as artists and design-
ers respond very positively to the notion of simply drawing
the desired 3D shape, rather than constructing it indirectly
via control meshes and abstract parameters. However, some
practical usability issues have been largely ignored in the
transition from standard to sketch-based interfaces. One of
these omissions is the lack of sketch-centric techniques for
precisely positioning and orienting 3D objects.

Most sketch-based systems have included limited forms
of direct 3D manipulation [ZHH96, JSC03, SWSJ05,
NISA07]. However, as has been observed [IH01], even
novice users will request precise 3D manipulation con-
trol. While the traditional 3D manipulation “widgets” found
in commercial modeling packages (Figure 1) can be inte-
grated into sketch-based interfacecs, as has been done in
the ShapeShop system [SWSJ05], the design of these wid-
gets is based on an explicit “tool” metaphor which conflicts

† {rms | karan | ravin}@dgp.toronto.edu

with the more seamless tool-free philosophy of the sketch-
modeling paradigm [Iga03]. More “philosophically correct”
approaches, such as transformation strokes [SSS06], are cur-
rently too time-consuming for practical use, and are limited
to coarse transformations.

A parallel thread in the evolution of computer interfaces
is the growing availability of pen and touch-based input sys-
tems [vD97, DL01, Hal07]. Direct input technologies may
appeal to the 3D modeler, but existing tools are mostly un-
usable on these devices. To cope with the massive com-
plexity of modern 3D modeling software, designers rely on
large sets of keyboard “hotkeys” and mode-switching but-
tons which are largely absent on pen-based computers. This
is particularly apparent in 3D manipulation, which, due to
it’s frequency of use (Section 3), is usually allocated the
most common buttons and keys. In addition, the effective
“fingertip-blob” input resolution of touch devices makes the
smaller widgets in standard interfaces difficult to operate.

We present a novel approach to 3D manipulation which is
compatible with free-form sketch-based interfaces and sup-
ports buttonless, imprecise touch-based input without sacri-
ficing usability. Using a carefully-designed mixture of 3D
widgets, context-sensitive suggestions, and gestural com-
mands, we support most features found in commercial in-
terfaces. In addition to standard translation/rotation/scaling

c© The Eurographics Association and Blackwell Publishing 2007. Published by Blackwell
Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden,
MA 02148, USA.

Ryan Schmidt & Karan Singh & Ravin Balakrishnan / Sketching and Composing Widgets for 3D Manipulation

Figure 1: 3D transformation widgets used in other systems. Translation widgets from 3DS Max [Aut07a] (a) and
Blender [Ble07] (b), Rotation widget from XSI [Avi07] (c), and combo-widgets from Houdini [Sid07] (d), Modo [Lux07] (e),
and Maya [Aut07b] (f,g). While the visual design varies, functionality is largely identical.

(Section 4), our system includes manipulation relative to ar-
bitrary reference frames, quick free-form snapping, and a
simplified approach to transformation strokes (Section 5). A
novel “widget history” further simplifies many 3D manipu-
lation tasks (Section 6). A pilot user evaluation (Section 7)
provides preliminary evidence that the average 3D user will
find our system intuitive and easy to learn, and also efficient
enough to be competitive with the “standard” interface.

2. Related Work

Since the dawn of interactive computer graphics, researchers
have been exploring the problem of manipulating 3D ob-
jects. Early systems used simple valuators [ETW81] to con-
trol transformation parameters. As computational power in-
creased it became feasible to interactively manipulate 3D ob-
jects in real-time, leading to the development of basic 3D
widgets such as Bier’s Skitters and Jacks system [Bie86].

3D widgets are visual 3D elements which a designer uses
to manipulate objects existing in the virtual environment. A
variety of general frameworks for 3D widget design have
been developed [CSH∗92, SZH94], and several specific ap-
plications explored [GP95, CSB∗05], but by far the most
common application is basic 3D manipulation tasks. Al-
though implementation details vary, virtually every commer-
cial freeform modeling tool relies on similar three-axis wid-
gets for translation, rotation, and scaling (Figure 1), with
bounding-box handles [Hou92] being added in some cases.

While 3D manipulation widgets have been highly suc-
cessful, the use of such manipulation “tools” conflicts
with the sketch-based interaction philosophy [Iga03], as
can be observed in sketch-based systems which have
adopted this tool-based approach [SWSJ05]. The SKETCH
system [ZHH96] integrated several alternate approaches
to the manipulation task, including interactive shad-
ows [HZR∗92] and heuristic-based automatic grouping and
snapping [Bie90, Gle92, JSC03, OS05]. These techniques
make assumptions about scene geometry and viewpoint
which are largely incompatible with freeform modeling.
However, SKETCH also used gestures to specify transfor-
mation axes, an approach which we expand on in Section 4.

Perhaps the most “philosophically correct” solution to the
manipulation problem in sketch-based systems is to simply
re-draw the object, or it’s silhouette, as has been recently
proposed [SSS06]. However, because of the necessary ap-
proximations in fitting algorithms and the designer’s input,
such techniques are limited to coarse manipulation. While
this may seem compatible with the loose nature of sketch-
based interfaces [vD97, Iga03], the reality is that designers
will inevitably be unsatisfied with having only imprecise
controls. This problem has been observed in user studies of
sketch-based tools, where the common request across partic-
ipants was for direct manipulation control [IH01].

Although we limit our scope to manipulation techniques
compatible with pen-based interaction, we note that there
has been extensive work on performing 3D manipulation us-
ing multiple inputs [ZFS97, BK99] and input devices with
additional degrees of freedom [Han97]. Exploring our ap-
proach in the context of such devices is left for future work.

3. Design Overview

We have two complementary goals. Primarily, we aim to in-
tegrate direct 3D manipulation control into a sketch-based
free-form modeling system, using interaction styles compat-
ible with the sketch-based interface philsophy. However, we
also desire that our techniques be “competitive” with the 3D
manipulation widgets found in existing tools. This not only
sets the bar at an appropriate level for our work, but may also
assist in making such systems (sketch-based or not) usable
with pen and touch-based input systems. We also emphasize
that we have focused on techniques applicable to free-form
modeling. By limiting the user to geometry which is largely
planar, tools like SKETCH [ZHH96] and SketchUp [Goo07]
can make assumptions which simplify 3D manipulation. Un-
constrained free-form modeling requires similarly uncon-
strained interaction techniques, and hence we design and
evaluate accordingly.

When re-designing an interface, it is critical to analyze
it’s current use. In addition to discussing the problem with
working 3D artists, we turned to the voluminous training
video material available for 3D modeling software. In par-

c© The Eurographics Association and Blackwell Publishing 2007.

Ryan Schmidt & Karan Singh & Ravin Balakrishnan / Sketching and Composing Widgets for 3D Manipulation

ticular, many demonstration videos are posted by work-
ing 3D artists participating in community-driven “help” fo-
rums [Lux07, Ble07]. Often these videos are simply screen-
captures of 3D modeling sessions, and even a cursory ex-
amination shows that three tasks - selection, 3D manipula-
tion, and camera control - consume the majority of interac-
tion time. In our experience, the same is true when building
complex free-form models in sketch-based systems. This is
not surprising, as free-form modeling largely consists of po-
sitioning objects via trial-and-error, iterating until the artist
decides that the results “look good”. One thing is clear - the
design of any 3D modeling system is constrained by the high
frequency with which these manipulation tools are used.

3.1. Design Guidelines

The design of our 3D manipulation techniques has been
driven by the set of guidelines listed below.

Button-Free interaction should be designed with button-
free input devices in mind. The “barrel-buttons” typically
found on tablet pens are difficult to reliably use; hence it
is worth focusing on designs that do not require a button.

Sketch-Compatible techniques must be compatible with
free-form drawing interaction, minimizing the use of ges-
tures which may conflict with what the user wants to draw.

Tool-Free the designer should be able to intermingle cre-
ation and manipulation strokes without switching “tools”.

Non-Destructive single strokes should produce transient
effects. Changes to the model should require a “two-step
commit”, to avoid confusing or surprising the designer.

Minimal Clutter manipulation widgets should only be vis-
ible when the user wants to use them, to minimize visual
clutter. They should also be clearly visually distinct.

Speed Matters because 3D manipulation is so frequent a
task, our interface must be competitive with existing ap-
proaches if designers are to adopt it.

We now give a brief overview of our system. To support
fast, fine-grained manipulation, we utilize 3D widgets. The
designer indicates an object to transform by explicitly se-
lecting it with a tap of the pen. Instead of creating a de-
fault widget, which the user may have no need for, we treat
3D widgets as transient, context-sensitive responses to user
strokes. This also minimizes clutter, as the widgets must be
large enough to be easily selectable with a fingertip, and can
be very distracting if the user has selected an object for an-
other purpose (particularly if the object is small). We avoid
creating large, complicated widgets for the same reason.

Based on the current selection, the system determines a
set of candidate transformation axes. Then the user draws
a stroke, and the system responds by automatically creat-
ing translation and rotation widgets based on the candidate
axis nearest to the stroke. These initial widgets can be mod-
ifed using context-sensitive gestures, or the user can simply
draw another axis. Unless the user gesturally indicates that

the widgets should persist, they are automatically dismissed
when the object is deselected.

These techniques are sufficient to specify any 3D manip-
ulation. However, relative manipulation (“rotate this around
that”) can often accomplish the same task much more
quickly. We support this in three ways. First, the designer can
gesturally create pivot elements. Pivots are first class objects
which can be independently manipulated. Objects bound to
a pivot (using a crossing stroke) can be transformed rela-
tive to the pivot using sketched axis widgets, or precisely
re-positioned using snapping. Branching out from snapping,
we support fast relative screen-space rotation+translation us-
ing transformation strokes. By simplifying the notion of a
transformation stroke down to it’s most basic elements (an
origin and direction), our technique is fast and quite accu-
rate. Finally, we augment the entire system with an interac-
tive transformation history, which allows widgets (and axes)
to be efficiently transferred between objects.

3.2. Gestural Command Language

One challenge common to sketch-based interfaces is sup-
porting a wide range of commands without increasing visual
interface complexity. One approach is to generate context-
dependent suggestions and allow the designer to choose
from an iconic suggestion list [IMKT97, JSC03, SWSJ05].
However, such interfaces can lead to visual clutter, and pick-
ing suggestions is not particularly efficient.

Stroke-based command gestures provide an alternative
to suggestions, and have been applied in a wide range
of 2D and 3D interfaces. Designers of the SKETCH sys-
tem [ZHH96] noted that it is very easy to over-load the
user with too many gestures to learn and remember. Hence,
we limited our system to 4 simple, orientation-independent
gestures (Figure 2). These gestures are “overloaded” in the
sense that they are context dependent, but their effect in each
context is logically consistent, which may help avoid the
“discoverability” problem [ZHH96].

Cross Gesture corresponds to an Apply or Select action,
such as selecting a pivot point for relative transformation.
Since our GUI is crossing-based [AG04], users of our sys-
tem are already familiar with this gesture.

DoubleCross Gesture indicates that the crossed target
should become persistent, until dismissed with another
DoubleCross. Persistent widgets remain in the scene even
when their target objects are de-selected.

Perp Gesture requests a “perpendicular” action, such as
toggling between an axis constraint and the orthogonal
planar constraint. The shape is meant to be analogous to
the perpendicularity indicator used in 2D diagrams.

Pigtail Gesture used to disambiguate strokes which specify
reference points and/or directions, such as a pivot point on
a surface. The “pigtail” is the small self-intersecting loop
drawn at the end of the stroke [HBRG05].

c© The Eurographics Association and Blackwell Publishing 2007.

Ryan Schmidt & Karan Singh & Ravin Balakrishnan / Sketching and Composing Widgets for 3D Manipulation

Figure 2: After tapping an object to select it (a), a rotate/translate/scale widget (b) or screen-space widget (c) can be summoned
with a stroke anywhere on the screen. A Pigtail stroke over the selection creates a transformation stroke (d) or pivot (e). Crossing
the uniform scaling widget toggles between axis translation and scaling (f), a DoubleCross pins any widget (g), and a Perp
creates orthogonal translation (h) and rotation (i) widgets. A pivot can be created at any surface point (j), and then directly
selected (k), or Crossed to bind it to a selection (l). Bound objects are transformed relative to the pivot (m), and a line from the
pivot to another point on the surface generates a snap suggestion (n). The gesture vocabulary is shown in the top right.

4. Sketching 3D Widgets

Virtually every major commercial 3D modeling tool uses a
3D widget interface to support fine-grained 3D manipula-
tion. Generally, such widgets act as visual handles for 1D
(axis) and 2D (planar) constraints. Our general approach
is to allow the user to draw axis constraints using line
strokes, and use context-sensitive gestures to create planar
constraints. Specific widgets are described in the following
sections, but first we discuss some commonalities.

Since a 2D stroke does not define a unique 3D axis, we
maintain a set of candidate axes generated from the current
selection. The world and object xyz axes are always candi-
dates, and if the stroke starts on the surface, so are the sur-
face normal and principal curvature directions. Although our
system has no knowledge of geometric features such as hard
edges, they could easily be integrated into the candidate set.
User-drawn 2D strokes are compared with the projected di-
rections of the candidate axes, and the “nearest” axis used to
instantiate 3D widgets (Figure 3).

As per our design guidelines, we render widgets using a
distinct, “out-of-band” visual style to ensure legibility (Fig-
ure 4). Each widget function is represented by a single geo-
metric entity, such as an arrow or cube, with a thick black
border and interior color that indicates the axis direction
(white for world-space, green for object-space, and so on).
The user manipulates widgets using standard click-and-drag
interaction. When possible, the clicked point remains under
the cursor to enhance kinesthetic feedback.

4.1. Axis Translation

Translation along an axis is one of the simplest types of 3D
manipulation, and perhaps the most critical. Hence, we as-
sign a high priority to axis translation. When an object is
selected, line strokes are interpreted as requests for axis-
translation widgets unless they trigger some other context-
dependent action, such as crossing (Figure 4). By default, the
center of the selected object is taken as the widget orign. We
experimented with using the stroke starting-point to set the
widget origin explicitly, as is done in SKETCH, but found
that it is difficult to judge where the stroke should begin on
smoothly varying surfaces, and the planning required is of-
ten time-consuming. Most 3D modeling tools place widgets
at object origins, so users are familiar with our approach.

Figure 3: The system tracks candidate axes for the selected
object (a). Candidates are chosen based only on the angle
between the 2D stroke and the 2D projections of the axes -
stroke and axis position are ignored (b,c).

c© The Eurographics Association and Blackwell Publishing 2007.

Ryan Schmidt & Karan Singh & Ravin Balakrishnan / Sketching and Composing Widgets for 3D Manipulation

Our translation widget is an arrow, positioned such that
the tail begins just past the selection origin (this avoids hid-
ing small selections such as individual vertices). Although
the arrow is planar, it is dynamically oriented so that it al-
ways presents the largest clickable area. From viewpoints
where the axis is nearly parallel to the view vector, this area
becomes small, but translating along the axis also becomes
unstable because each pixel corresponds to a large distance.
We de-activate the widget in this case, and render it as semi-
transparent to indicate that it is un-clickable.

As the number of candidate axes increases, it becomes
difficult to draw a stroke which picks the desired axis, par-
ticularly if it is nearly coincident with other axes from the
current viewpoint. To avoid frustrating trial-and-error, we
only consider world and object axes when interpreting line
strokes. Less frequently used axes are accessed via a small
axis-dragging widget at the end of the translation arrow.
Clicking on this disc shows the available candidates, and
dragging it snaps the visible widgets to the nearest candidate
(Figure 5). Still, from some viewpoints, multiple axes will
overlap, forcing the user to rotate the view to choose them.
An alternative visualization could improve this interface.

We have found this approach to be highly efficient. Draw-
ing a quick stroke in the desired translation direction is much
faster than a round-trip to a button palette, and simultane-
ously supports multiple coordinate systems. The frequent
use of axis-constrained translation justifies our dedicating
the straight-line gesture to this task (although only when an
object is selected, and context-sensitivity can always be used
to overload the stroke). One problem is that in some cases
the designer may simply want to draw a line. We experi-
mented with a two-stage process, where the stroke generates
a set of axis “suggestion” widgets, which the user crosses
to create translation widgets (or ignores if the stroke is a
line). Unfortunately this was too slow for frequent use. A
hardware “gesture-mode” button efficiently solves the prob-
lem, but does not support touch-based input. We currently
use a two-second dwell to indicate that a stroke is not a
gesture [HBRG05], which is slightly annoying but does pre-
serve functionality.

Figure 4: When a straight-line stroke is drawn (a), the
system generates translation and rotation widgets using the
closest candidate axis (b). The widgets dynamically re-orient
themselves as the view changes to ensure that a large click-
able area is presented (c), and disappear if stable operation
is impossible from the current viewpoint (d).

Figure 5: Only world and object axes are considered for au-
tomatic widget generation. Pressing down on the disc at the
end of the translation widget (a) shows all candidate axes,
and dragging the disc to another axis re-orients the transla-
tion and rotation widgets.

4.2. Planar Translation

While any 3D translation can be accomplished by axis trans-
lations, translation constrained to a 3D plane can be pre-
cisely controlled by a 2D input, and is often more efficient.
The SKETCH system allowed users to create planar con-
straints by literally drawing the basis vectors of the plane,
but this was found to be difficult to do in practice [ZHH96].
In our system, the user toggles between orthogonal axis and
planar constraints by crossing them with the Perp gesture
(Figure 2h). Another common interaction is translating ob-
jects in a view-parallel plane - conceptually this is “transla-
tion in the screen”. A Perp gesture drawn anywhere on the
screen will summon this frequently-used widget (Figure 2c).

4.3. Axis Rotation

Orienting 3D objects using a 2D input device is a challenge,
as evidenced by the number of studies which have investi-
gated the problem [CMS88, JO95, HTP∗97, Par99, BRP05].
The various virtual trackballs [CMS88,Sho92,HSH04] seem
to perform equally well, however in our experience they are
also equally difficult to use. There is quantitive evidence that
users are significantly faster and more accurate when per-
forming “simple” single-axis rotation [CMS88]. Commer-
cial virtual trackballs uniformly include constrained rotation
widgets (Figure 1), and during our pilot studies (Section 7)
we observed that even expert users avoided the virtual track-
ball, favoring constrained rotation. One commented that the
trackball was a “last resort”, and another stated that it was
only useful for giving objects a “random rotation”.

Based on this experience, we have taken the potentially
radical step of only supporting axis-constrained rotation in
our system. Since any 3D orientation can be specified by
rotation around an axis, our approach is to try to make it
possible for the designer to specify the “right” rotation axis.
Unfortunately, the right axis is not necessarily one of our
candidate axes. In this case, the user can draw a Perp gesture
across any rotation widget to create another rotation widget
which is orthogonal to the plane of the first and aligned with

c© The Eurographics Association and Blackwell Publishing 2007.

Ryan Schmidt & Karan Singh & Ravin Balakrishnan / Sketching and Composing Widgets for 3D Manipulation

the stroke. This supports the turntable-like interaction of first
rotating in one plane, and then “up” along an arbitrary arc,
which is difficult to perform accurately with a virtual track-
ball. An example is shown in Figure 6.

Figure 6: Often a desired rotation cannot be directly spec-
ified using any of the candidate axes (a). By drawing a Perp
stroke across a rotation widget (b), a specific orthogonal
plane-of-rotation can be specified (c), allowing the goal to
be reached with a single rotation (d).

To avoid the tool switching found in most systems, when
an axis-translation widget is generated, so is the correspond-
ing axis-rotation widget (Figure 4b). Similarly, a viewplane-
parallel rotation widget is generated along with the planar
constraint (Figure 2c). Our axis-rotation widget is repre-
sented by a wide planar circle oriented perpendicular to the
rotation axis. However, when looking edge-on, the circle is
difficult or impossible to hit. To avoid this, we smoothly tran-
sition to a circular widget that is extended perpendicular to
the plane (Figure 4c) as the viewpoint changes, ensuring that
a large clickable area is always presented to the user (various
states of the transition can be seen in Figures 2 and 8).

4.4. Scaling

Like most 3D modeling systems, we support two different
types of scaling widget. The first, uniform scaling, scales si-
multaneously in all three dimensions. To convey that uni-
form scaling is a three-dimensional manipulation, we use a
small cube-shaped widget. The cube widget also provides a
convenient handle for creating constrained scaling widgets,
which would otherwise conflict with our translation widgets.
The user simply creates translation widgets in the desired
axes or planes, then crosses the cube to toggle between scal-
ing and translation (Figure 2f).

4.5. Persistent Widgets

To avoid the overhead of widget management, we treat
automatically-generated widgets as transient, and dismiss
them whenever a new axis-stroke is drawn or the selection
is changed. However, in some cases the user may wish to
compose multiple widgets, for example to construct a stan-
dard 3-axis triad widget (Figure 7c). This requires the notion
of widget persistence.

The DoubleCross stroke (Figure 2) can be used to make
a widget persistent, or pin it to the selected object. Pinned
widgets remain visible and active as new axis-strokes are

drawn. In addition to enabling the construction of the stan-
dard 3-orthogonal-axis widgets seen in other systems (Fig-
ure 1), arbitrary widget components lying in various coordi-
nate systems can be combined.

Most 3D modeling systems treat 3D widgets as a sort of
modifier interface for the current selection. However, many
3D manipulation tasks involve positioning multiple objects
with respect to each other. If these objects are to be manip-
ulated using different widgets (for example, object A must
be translated, and object B rotated relative to object C), sig-
nificant widget-switching overhead is incurred, especially if
different coordinate systems are to be used. Widget pinning
can improve this situation, simply by keeping pinned wid-
gets active when the selected object changes. This allows
the designer to quickly construct sets of widgets which can
be used simultaneously, as shown in Figure 7d.

Given a system of pinned widgets, an obvious extension
would be to set up constraints between them. For example,
the heights of the ears in Figure 7d could be constrained to
the head. While we do not yet support such interaction, we
plan on exploring it in the future.

Figure 7: Widgets can be “pinned” to the selected object
using a DoubleCross stroke (a). Pinned widgets have a red
border (b), and remain in the scene as other widgets are
added (c). Pinned widgets persist across selection changes,
allowing arbitrary systems of widgets to be assembled (d).

5. Relative Manipulation

Three-dimensional manipulations such as translation and ro-
tation are applied relative to some orthogonal coordinate
frame centered at a specific point in space - the origin of the
frame. Each object in our system has an implicit frame (the
object coordinate system) and origin (the center of the ob-
ject bounding box). We have described methods for aligning
widgets with different frames, but so far the widget origin
has been fixed to some object origin.

This is not inherently limiting - any 3D manipulation can
be constructed by translations and rotations around the ob-
ject origin. However, it can be quite cumbersome. For ex-
ample, a simple task such as rotating an arm at the shoulder
must be decomposed into multiple translations and rotations.
To simplify these tasks, we add interaction techniques which
support manipulation relative to arbitrary reference frames.

c© The Eurographics Association and Blackwell Publishing 2007.

Ryan Schmidt & Karan Singh & Ravin Balakrishnan / Sketching and Composing Widgets for 3D Manipulation

5.1. Pivots

Bier [Bie86] introduced the notion of reference frames as
first-class scene objects. His Jacks could be directly manip-
ulated, in addition to being used for relative 3D interaction.
We adapt this approach - our pivot widgets are persistent
scene objects which can be directly selected and manipu-
lated to construct arbitrary reference frames. Drawing a Pig-
tail stroke which starts on, and crosses over top of, the sur-
face creates a pivot underneath the first stroke vertex. We
experimented with trying to automatically “center” the pivot
inside objects, but found that simply placing it on the nearest
surface gave the most predictable behaviour.

Selected objects can be bound to a pivot by drawing a
Cross stroke across the pivot. Once bound, 3D manipula-
tions are applied relative to the pivot (Figure 8). By de-
fault, pivots are not associated with specific objects, and
can even be bound to other pivots. Binding is transient, and
objects are automatically un-bound on deselection. We ex-
perimented with automatically binding a pivot when an axis
stroke crosses it, however we found that it was easy to cross a
pivot by accident, resulting in a contextual mis-interpretation
that is very confusing for the user. Instead, a DoubleCross
stroke creates a persistent binding which is maintained even
when the object is de-selected.

Figure 8: Drawing a Pigtail gesture over top of an object in
the scene (a) drops a Pivot point onto the surface at the start
of the stroke (b). Pivots are first-class scene objects which
can be directly manipulated (c). A selected object can be
bound to a pivot using the Cross gesture (d). Once bound,
the object is transformed relative to the pivot (e,f).

5.2. Snapping

Snapping is one of the most effective ways of specifying
highly accurate 3D modeling transformations. Interactive
snap-dragging techniques [Bie90] can be used to avoid te-
dious menu and dialog navigation. Engineering-style CAD
modeling tools rely heavily on such techniques to precisely
position 3D objects. However, snapping interfaces assume
the existence of salient features - corners, edges, and faces

- which can be used to specify snapping actions. Free-
form surfaces are often completely smooth, limiting auto-
matic snapping because the user must manually specify snap
points. Our pivot widgets, combined with gestural com-
mands, provide a quick snapping interface which supports
both precise and coarse object positioning.

To apply a snap action to an object, it is first bound to a
pivot (Figure 9a). Drawing a line from this pivot to another
point on the surface generates a snapping suggestion, visual-
ized as a thin arrow (Figure 9b). The user can then cross this
widget to translate the pivot to the target point, or Perp-cross
it to apply translation plus an additional alignment of the
pivot to the target normal (Figure 9c). Alternately, the target
can be another pivot, providing more precise snapping.

The “cost” of this snapping operation is much lower than
in commercial free-form modeling tools, where a snapping
task first requires selection of the snap targets (which itself
is non-trivial if arbitrary points on a smooth surface are to be
used), and then navigation through menus and dialogs. In the
best case, our technique requires only 3 strokes - a Pigtail to
place the pivot, a line to specify the target point, and a Cross
to apply the snap. As a result, it can be efficient to formulate
even relatively simple tasks as snapping actions, followed by
minor adjustments using 3D widgets.

Figure 9: A snapping suggestion is generated by drawing
a stroke which starts on a pivot and ends on the surface, or
another pivot (a). Crossing this widget with a Perp stroke
(b) snaps the pivot to the target point while aligning the two
surface normals (c).

5.3. Fast 2D Orientation Strokes

One of the common manipulation strategies described by
several 3D artists we talked to was to use the 2D screen-
space widgets, to quickly (but only approximately) orient
objects, and then use the constrained widgets to tweak the
3D orientation. This often involves re-positioning the ro-
tation pivot, to avoid repeated rotation-translation cycles.
While our pivots and widgets can be used in the same way,
we designed another interaction technique specifically tar-
getting this 2D orientation task.

The idea is to make it quick to apply 2D translation and
rotation to an object. In it’s simplest form, this is a task of
transforming one 2D line (position + vector) into another.

c© The Eurographics Association and Blackwell Publishing 2007.

Ryan Schmidt & Karan Singh & Ravin Balakrishnan / Sketching and Composing Widgets for 3D Manipulation

Hence, this is our interface. The designer draws a Pigtail
stroke which starts on the selected object and crosses off
of it. The first vertex of the stroke specifies the 2D posi-
tion, and the line segment between the start and crossing
points of the stroke specify the direction (Figure 10). This
fully determines the source line, which is visualized with a
dark red arrow. The dark color indicates that the system has
entered a modal state, in which any straight-line stroke is in-
terpreted as the destination line, and the object immediately
transformed. The destination then becomes the new source
line, allowing the user to repeatedly draw strokes to exper-
iment with different orientations. To exit this mode and fix
the position of the object, the user de-selects the object.

Figure 10: A pigtail stroke (a) creates a transformation
stroke widget, which can be repreatedly re-drawn to quickly
orient an object in the view plane (b,c).

6. Widget History

One limitation of most 3D manipulation systems, ours in-
cluded, is that while canonical axes can be easily specified,
setting up arbitrary axes often requires time-consuming use
of pivots. However, it is often the case that the “right” axis is
a canonical axis of another object. For example, in Figure 11,
the horizontal rungs of the ladder need to be translated in the
coordinate system of the vertical beams. Generally, it would
be useful to be able to transfer axes between objects.

Instead of adding an explicit axis-transfer tool, we pro-
vide a more general solution, in the form of a widget history.
Our system tracks each change to the current widget set, but
instead of an undo / redo interface, the widget history is rep-
resented as a timeline. Scrubbing through the timeline causes
widgets from the past to be re-instantiated at the currently-
selected object. Hence, to transfer the current widget to a
new object, one simply selects the new object and scrubs
back to the most recent state in the history (Figure 11).

The widget history provides a solution to several other
problems. For example, we allow designers to construct ar-
bitarary sets of 3D widgets via composition. There is a nat-

ural desire to somehow save these widget sets, but an explicit
widget-saving system increases UI complexity. Instead, if
the widget history stores the associations between pinned
widgets and their target objects, complex widget sets are eas-
ily recovered. Pivots are also stored in the history, allowing
designers to “clean the palette” without worrying about los-
ing carefully-constructed pivot axes. Note that pivots have
fixed world coordinates, and hence are not re-instantiated
relative to selected objects.

The widget timeline also provides a simple way to remove
any existing widgets or pivots without having to explicitly
dismiss each one. The designer simply scrubs the timeline
“into the future”, where no widgets or pivots exist.

Figure 11: The user has duplicated the rung and wants to
translate it up the ladder. It has no suitable axis, but the
beam does (a), so the user selects the beam (b), strokes an
axis widget (c,d), and then selects the rung (e), placing the
beam axis in the history. Scrubbing back in the history time-
line (f) transfers the beam axis to the rung (g), allowing the
new rung to be accurately translated (h).

7. Evaluation

Our interaction design has in part been guided by a series of
pilot experiments. These informal tests involved six gradu-
ate students from HCI and graphics backgrounds perform-
ing a chair assembly task (Figure 12) with our system and
with standard 3D widgets in Maya [Aut07b]. Participants
used various input devices, including a mouse, pen tablet,
and direct input display-tablet. There were no accuracy re-
quirements, participants were encouraged to “think aloud”
as they worked, and we discussed the two approaches with
each participant after they completed the session. Note that
subjects were only instructed on basic translation and rota-
tion widgets, as Maya’s pivot and snapping techniques are
much more difficult to use.

The results of these pilot studies indicate that our system

c© The Eurographics Association and Blackwell Publishing 2007.

Ryan Schmidt & Karan Singh & Ravin Balakrishnan / Sketching and Composing Widgets for 3D Manipulation

Figure 12: Subjects were asked to assemble a set of parts
(left) into a chair model (right) using our system and Maya.

is likely to be quite effective. Our two ‘Expert’ participants
who regularly use 3D modeling tools took roughly twice as
long to complete the task using our system as they did with
the standard Maya widgets. We see this as a very positive
result, given that the experts had years of training with stan-
dard widgets in Maya, and less than an hour with our mod-
eling system and new manipulation interface.

The two participants with ’Average’ 3D modeling skills -
meaning that they were familiar with 3D manipulation con-
cepts, but did not regularly use 3D modeling tools - were
roughly as efficient with our system as with the Maya wid-
gets. Note that these users required extensive instruction
with both tools, indicating that neither is particularly “learn-
able” without some form of tutorial. Surprisingly, these users
seemed to become comfortable with our system faster than
some of the expert modelers, who tried to force our interface
to behave like the tools they were more familar with.

Two novice participants who had no familiarity with 3D
modeling were essentially unable to complete the task, re-
quiring heavy prompting in both our system and Maya. In
both cases they positioned the chair parts as if they were
2D objects. They would then rotate the camera and become
frustrated upon discovering that some parts were randomly
floating in space, exhibiting a fundamental lack of under-
standing of basic 3D orientation concepts. This observation
provided a strong indication that unconstrained 3D manip-
ulation is an expert task, and we have accordingly directed
our efforts towards expert use.

We found two major issues that recurred between most
participants. The first is that there is no way to draw a ro-
tation axis which is nearly parallel to the view vector. This
is problematic because it is often the desired rotation axis.
Although screen-space rotation can handle this issue, we
discovered that some experienced 3D modelers insisted on
using axis-constrained rotation, which required rotating the
view, drawing the axis, and then rotating back. Other than
relying on the axis-dragging widget (Figure 5), we have not
yet found a satisfactory resolution to this problem.

We also found that the discoverability problems often
seen in gesture interfaces [ZHH96] can arise due to context-
sensitivity. For example, some users assumed that axis

strokes should be drawn starting on the selected object, and
them made the same (incorrect) assumption about pivots.
However, a line from the pivot to another surface point pro-
duces a snapping suggestion instead of an axis widget, lead-
ing to user confusion. Once specific context-sensitive inter-
actions were explained, users rarely repeated their mistakes.
This leads us to suggest that context-dependence may be eas-
ier to learn (and remember) than a larger gesture vocabulary.

8. Concluding Remarks

We have proposed a new approach to interactive transfor-
mation of 3D objects, including translation / rotation / scal-
ing widgets, pivots, snapping, and transformation strokes.
To evaluate the system, we implemented it the ShapeShop
3D modeling tool [SWSJ05]. This useful exercise lead to
the discovery of various issues in our early designs, such
as an over-reliance on subtle differences in context which
users initially misunderstood. In our evaluation, we found
that context-sensitivity had discoverability problems similar
to those found in gesture interfaces [ZHH96], but that once
problems were explained, users quickly adapted. Visualiza-
tion techniques that hint at “hidden” context-dependent ac-
tions are a future direction for formal study.

The ability to compose systems of widgets was a surpris-
ing emergent property of our persistence mechanism. This
composability aspect would be interesting to explore fur-
ther. One can imagine constructing complex object-specific
manipulation systems, and several users requested this func-
tionality specifically. Combining this idea with interactively-
defined constraints [Gle92] could be very effective.

Finally, while our widget history already adds powerful
functionality at little UI cost, it can be improved substan-
tially. Better filtering could reduce the number of redun-
dant “events”. It may be useful to consider machine-learning
techniques in an attempt to predict which history events are
useful, or even to improve automatic widget generation.

Although our pilot studies have been very informative,
they do not constitute a formal evaluation. Given that we are
proposing a comprehensive re-design of the 3D manipula-
tion workflow, isolating independent variables will be diffi-
cult. Furthermore, our experience with novice users suggests
that isolated testing will not be indicative of integrated per-
formance. Instead, since our interface has been implemented
in the publicly-available ShapeShop system [SWSJ05], we
will test it “in the wild” in an upcoming release (and expect
to receive extensive feedback from the user population).

Acknowledgements

The authors wish to thank the anonymous reviewers, Tomer
Moscovich, and the rest of the DGP for their invaluable discussions
and feedback. This work was funded by MITACS and NSERC.

c© The Eurographics Association and Blackwell Publishing 2007.

Ryan Schmidt & Karan Singh & Ravin Balakrishnan / Sketching and Composing Widgets for 3D Manipulation

References
[AG04] APITZ G., GUIMBRETIÈRE F.: Crossy: a crossing-based

drawing application. In Proc. UIST 2004 (2004), pp. 3–12.

[Aut07a] AUTODESK INC.: 3ds Max 2008, September 2007.
http://www.autodesk.com/3dsmax.

[Aut07b] AUTODESK INC.: Maya 8.5, September 2007. http://
www.autodesk.com/maya.

[Avi07] AVID TECHNOLOGY INC.: SOFTIMAGE|XSI 6.5, Sep-
tember 2007. http://www.softimage.com/products/xsi.

[Bie86] BIER E. A.: Skitters and jacks: interactive 3d positioning
tools. In Proc. I3D 86 (1986), pp. 183–196.

[Bie90] BIER E. A.: Snap-dragging in three dimensions. In Proc.
I3D 1990 (1990), pp. 193–204.

[BK99] BALAKRISHNAN R., KURTENBACH G.: Exploring bi-
manual camera control and object manipulation in 3d graphics
interfaces. In Proc. CHI ’99 (1999), pp. 56–62.

[Ble07] BLENDER FOUNDATION: Blender 2.44, September 2007.
http://www.blender.org.

[BRP05] BADE R., RITTER F., PREIM B.: Usability comparison
of mouse-based interaction techniques for predictable 3d rota-
tion. In Smart Graphics (2005), pp. 138–150.

[CMS88] CHEN M., MOUNTFORD S. J., SELLEN A.: A study
in interactive 3-d rotation using 2-d control devices. In Proc. of
SIGGRAPH 88) (1988), pp. 121–129.

[CSB∗05] COLEMAN P., SINGH K., BARRETT L., SU-
DARSANAM N., GRIMM C.: 3d screen-space widgets for non-
linear projection. In GRAPHITE 05 (2005), pp. 221–228.

[CSH∗92] CONNER D. B., SNIBBE S., HERNDON K., ROBBINS

D., ZELEZNIK R., VAN DAM A.: Three-dimensional widgets. In
Proc. I3D 92 (1992), pp. 183–188.

[DL01] DIETZ P., LEIGH D.: Diamondtouch: a multi-user touch
technology. In Proc. UIST 01 (2001), pp. 219–226.

[ETW81] EVANS K., TANNER P., WEIN M.: Tablet based valu-
ators that provide one, two, or three degrees of freedom. In Proc.
of SIGGRAPH 81) (1981), pp. 91–97.

[Gle92] GLEICHER M.: Integrating constraints and direct manip-
ulation. In Proc I3D ‘92 (1992), pp. 171–174.

[Goo07] GOOGLE INC.: SketchUp 6, December 2007. http://
www.sketchup.com.

[GP95] GRIMM C., PUGMIRE D.: Visual interfaces for solids
modeling. In Proc. UIST 95 (1995), pp. 51–60.

[Hal07] Interaction tomorrow, 2007. ACM SIGGRAPH 2007
courses.

[Han97] HAND C.: A survey of 3d interaction techniques. Comp.
Graph. Forum 16, 5 (1997), 269–281.

[HBRG05] HINCKLEY K., BAUDISCH P., RAMOS G., GUIM-
BRETIERE F.: Design and analysis of delimiters for selection-
action pen gesture phrases in scriboli. In Proc. CHI ’05 (2005),
pp. 451–460.

[Hou92] HOUDE S.: Iterative design of an interface for easy 3-d
direct manipulation. In Proc. CHI ’92 (1992), pp. 135–142.

[HSH04] HENRIKSEN K., SPORRING J., HORNBAEK K.: Virtual
trackballs revisited. IEEE Trans. Vis. and Comp. Graph. 10, 2
(2004), 206–216.

[HTP∗97] HINCKLEY K., TULLIO J., PAUSCH R., PROFFITT

D., KASSELL N.: Usability analysis of 3d rotation techniques.
In Proc. UIST ’97 (1997), pp. 1–10.

[HZR∗92] HERNDON K., ZELEZNIK R., ROBBINS D., CONNER

D. B., SNIBBE S., VAN DAM A.: Interactive shadows. In Proc.
UIST 92 (1992), pp. 1–6.

[Iga03] IGARASHI T.: Freeform user interfaces for graphical
computing. In Proc. Smart Graphics 03 (2003), pp. 39–48.

[IH01] IGARASHI T., HUGHES J.: A suggestive interface for 3d
drawing. In Proc. UIST ’01 (2001), pp. 173–181.

[IMKT97] IGARASHI T., MATSUOKA S., KAWACHIYA S.,
TANAKA H.: Interactive beautification: a technique for rapid
geometric design. In Proc. UIST 97 (1997), pp. 105–114.

[JO95] JACOB I., OLIVER J.: Evaluation of techniques for spec-
ifying 3d rotations with a 2d input device. In Proc. HCI ’95
(1995), pp. 63–76.

[JSC03] JORGE J., SILVA N., CARDOSO T.: Gides++. In Proc.
12th Encontro Português de Computação Gráfica (2003).

[Lux07] LUXOLOGY LLC: Modo community forum, September
2007. http://www.luxology.com/community/tutorials.

[NISA07] NEALEN A., IGARASHI T., SORKINE O., ALEXA M.:
Fibermesh: designing freeform surfaces with 3d curves. ACM
Trans. Graph. 26, 3 (2007).

[OS05] OH J.-Y., STUERZLINGER W.: Moving objects with 2d
input devices in cad systems and desktop virtual environments.
In Proc. Graphics Interface 05 (2005), pp. 195–202.

[Par99] PARTALA T.: Controlling a single 3d object: Viewpoint
metaphors, speed and subjective satisfaction. In Proc. INTER-
ACT ’99 (1999), pp. 486–493.

[Sho92] SHOEMAKE K.: ARCBALL: A user interface for spec-
ifying three-dimensinal orientation using a mouse. In Graphics
Interface ’92 (1992), pp. 151–156.

[Sid07] SIDE EFFECTS SOFTWARE INC.: Houdini 9, September
2007. http://www.sidefx.com.

[Ske07] Sketch-based interfaces: techniques and applications,
2007. ACM SIGGRAPH 2007 courses.

[SSS06] SEVERN A., SAMAVATI F., SOUSA M. C.: Transforma-
tion strokes. In Eurographics Workshop on Sketch-Based Inter-
faces and Modeling (2006), pp. 75–82.

[SWSJ05] SCHMIDT R., WYVILL B., SOUSA M. C., JORGE

J. A.: Shapeshop: Sketch-based solid modeling with blobtrees.
In Eurographics Workshop on Sketch-Based Interfaces and Mod-
eling (2005), pp. 53–62.

[SZH94] STEVENS M., ZELEZNIK R., HUGHES J.: An archi-
tecture for an extensible 3d interface toolkit. In Proc. UIST ’94
(1994), pp. 59–67.

[vD97] VAN DAM A.: Post-wimp user interfaces. Commun. ACM
40, 2 (1997), 63–67.

[ZFS97] ZELEZNIK R., FORSBERG A., STRAUSS P.: Two
pointer input for 3d interaction. In Proc. I3D ’97 (1997).

[ZHH96] ZELEZNIK R. C., HERNDON K. P., HUGHES J. F.:
Sketch: An interface for sketching 3d scenes. In Proc. SIG-
GRAPH 96 (1996), pp. 163–170.

c© The Eurographics Association and Blackwell Publishing 2007.

http://www.autodesk.com/3dsmax
http://www.autodesk.com/maya
http://www.softimage.com/products/xsi
http://www.blender.org
http://www.sketchup.com
http://www.luxology.com/community/tutorials
http://www.sidefx.com

