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There are many challenges associated with the integration of synthetic and real im-
agery. One particularly difficult problem is the automatic extraction of salient parameters
of natural phenomena in real video footage for subsequent application to synthetic ob-
jects. Can we ensure that the hair and clothing of a synthetic actor placed in a meadow
of swaying grass will move consistently with the wind that moved that grass? The video
footage can be seen as a controller for the motion of synthetic features, a concept we
call video input driven animation (VIDA). We propose a schema that analyzes an input
video sequence, extracts parameters from the motion of objects in the video, and uses
this information to drive the motion of synthetic objects. To validate the principles of
VIDA, we approximate the inverse problem to harmonic oscillation, which we use to
extract parameters of wind and of regular water waves. We observe the effect of wind
on a tree in a video, estimate wind speed parameters from its motion, and then use this
to make synthetic objects move. We also extract water elevation parameters from the

observed motion of boats and apply the resulting water waves to synthetic boats.
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Chapter 1

Introduction

The success of computer animation as an expressive medium has put increasing demands
on integrating computer animation with real video or film footage. Techniques from
augmented reality and inverse rendering now permit the rendering of synthetic models
within still images [FGR93, DRB97, LFT97, SWI97, YDH99, BG01]. However, inserting
objects that interact with or are affected by forces and real objects present in the video
is a difficult open problem. How do we ensure that the hair on a synthetic actor placed
in a meadow of swaying grass will move consistently with the real wind field that moved
that grass?

In this case, raw video footage can be seen as a kind of controller for the motion of
the synthetic hair. We call this concept video input driven animation, or VIDA. The
schema we propose for VIDA is to analyze an input video sequence, to extract relevant
parameters of the motion of objects in the video, and to use these parameters to drive
the motion of synthetic objects which are introduced into the real environment (Figure

1.1). One aim of VIDA is to allow synthetic objects to be natural participants in a video.
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Input Video Sequence

extract forces, velocity, acceleration
or statistics of the movement of
certain objectsin the scene.

Information such as
force, velocity, acceleration, etc.

Apply such forces to computer
generated characters or objects.
Animate them.

: : Computer synthesized character
\égi%:gﬁgg which responds to the forces derived
Sequence from the input video sequence.

H computer generated movement

'

Figure 1.1: Using video input to drive computer animation.

This opens up a huge and fascinating range of problems. Our goal in this thesis is to
explore some of these problems, to validate the approach through the development of a

nontrivial VIDA application, and to point the way to further results.

1.1 Scope

Computer graphics has enjoyed rapid growth over the past fifty years. With dramatic
technological advances in all areas of computer graphics such as geometric modelling,

rendering, animation, we are able to model more and more complicated scenes, environ-
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ment, motion and situation. However, the dazzling beauty and amazing complexity of
the natural real world still has much more to offer in computer graphics applications in
addition to or in comparison to what we can artificially generate by computer simulation.
Increasingly, researchers are exploring different possibilities of sampling the real world to

extract useful information to enrich computer graphics applications.

1.1.1 Computer Augmented Reality

In computer augmented reality, researchers are interested in integrating synthetic and real

imagery. There are several interesting research directions that arise from this problem:

e Recover common viewing parameters. Whenever one wants to mix three dimen-
sional computer graphics with footage of the real world, one needs to match the
computer graphics camera with the actual camera that took the footage. This
process ensures that the computer graphics elements match the perspective and
movement, of the real objects in the real camera shot. This is called camera track-
ing or match moving. There are several commercially available software packages
that automate this task, such as boujou from 2d3 (www.2d3.com) and SceneGenie

from 3D Studio MAX.

e Approximate common global illumination for real video and computer generated
objects. A number of researchers [FGR93, DRB97] proposed different approaches
using different assumption and constraints about surface reflectance properties of

objects in the real video.

e Recover surface reflectance function from one photograph or multiple photographs.
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This enables us to change the lighting condition and correctly render the surface
of objects under different illumination. Many researchers [YDH99, BG01] have

explored this topic in depth.

In this thesis, we propose to extract parameters of forces and the parameters of
natural phenomena which caused object motion, then use the inferred information to
drive the animation of computer synthesized object, making them appear to be natural
participants of the real video. The different tasks in augmented reality naturally link

computer vision and computer graphics research together.

1.1.2 Sampling, Analysis, Synthesis

The methodology behind VIDA falls into the category of vision directed sampling-
analysis-synthesis. By vision directed sampling-analysis-synthesis, we are referring to
a three step process. First, sample the real world using equipments such as camera,
video camera, etc. Second, analyze the images we obtained for different purposes such as
extracting properties and parameters of objects in the scene. Then, use the inferred infor-
mation to synthesize new images or scenes or scenarios. In fact, as different variations of
sampling-analysis-synthesis approach emerge in a number of research areas in computer
graphics, there is a growing interest in the strong bond between computer vision and
computer graphics research.

For instance, researchers realized that texture mapping and computer-synthesized tex-
ture based on mathematics formulas have their limitations. Recently, several researchers

have experimented with different techniques for synthesizing textures that match the ap-
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pearance of a given texture sample [HB95, Bon97, EL99, WL00, Tur01, WL01]. Most of
the approaches use statistical models while others rely on deterministic structural mod-
els. Soatto et al. [SDWO01] studied dynamic textures, which are sequences of images
of moving scenes that exhibit certain stationarity properties in time. These include sea-
waves, smoke, foliage, whirlwind, talking faces, traffic scenes, etc. They presented a novel
characterization of dynamic textures by learning models of the dynamic textures. Once

learned, a model can be used to extrapolate synthetic sequences of arbitrary length.

1.1.3 Causal Information Inference

In computer graphics, we are always fascinated with making objects move realistically.
Both artificial intelligence and psychology researchers have argued for the need to rep-
resent “causal” information about the world in order to make inferences. In particular,
understanding motion sequences requires the observer to postulate forces on objects and
force transfer between interacting objects or within an object. VIDA naturally lands it-
self in this research area. To push the recovery of “causal” information one step further,
VIDA poses questions not just about objects in the scene but also about the natural

phenomena we can observe in the scene.

There are a number of interesting research results in causal inference of informa-
tion based on motion understanding. Bregler et al. [BCS97] propose the idea of video
rewrite, where they use existing video footage to create automatically new video of a
person mouthing words that she did not speak in the original footage. In the paper

“Voice Puppetry” [Bra99], Brand introduced a method for predicting a control signal
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from another related signal, and applied it to voice puppetry: Generating full facial
animation from expressive information in an audio track. Popovié and Witkin [PA99]
introduced an algorithm for transforming character animation sequences that preserve
essential physical properties of the motion. Hoshino and Saito [HYSO1] proposed a new
technique for merging computer generated clothes onto the human in a video sequence.
Black and Yacoob [BY95b, BY95a] track and recognize rigid and non-rigid facial motions
using local parametric models of image motion. They showed how expressions such as
anger, happiness, surprise, fear, disgust and sadness can be recognized from the local
parametric motions in the presence of significant head motion. Mann et al. [MJ97] rea-
soned about qualitative scene dynamics based on an analysis of the Newtonian mechanics

of a simplified scene model.

1.1.4 How VIDA Relates to the Overall Scope

VIDA has a close connection to the landscape we described in section 1.1, and it aims
at extending and expanding these existing research topics into a new territory. As an
application, VIDA can provide solutions to tasks in augmented reality. As a methodology,
VIDA is based on the vision directed sampling-analysis-synthesis approach. In terms of
recovering parameters or characteristics of natural phenomena and object interaction,

VIDA opens up more challenges in this area.
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1.2 What is VIDA?

Computer-based image synthesis transforms an input model to an output, such as com-
puter animation or rendered images. Both the transformation and the model are de-
scribed and controlled by some parameters. VIDA couples the inverse problem to such a
synthesis process. The inverse problem is to observe the motion of objects and environ-
ments in a scene, fit a model to the components in the scene, such as objects or wind,
and extract parameters of the input to a system, such as forces and wind velocity. One
of the immediate benefits of such a parameter extraction process is that we can use the
parameters that are estimated from the input video sequence to indirectly drive computer

animation of synthetic objects.

The complexity of this task is open ended. In any given scene, there could be different
types of objects involved, such as fluids, deformable objects, rigid objects, articulated
objects, particles, etc. There are also different types of forces among objects or within
each object. It is difficult to tackle these problems in a unified and comprehensive way.
Rather, it would appear that different approaches are needed for difference classes of
phenomena. To make the process tractable, we propose to use simple models for solving
this inverse problem. Physics provides a consistent way to account for the motion we see
in real world video sequences, whether the motion is caused by natural phenomena such
as wind and water, the ballistic motion of objects in flight, or the biomechanical motion
of animate beings, etc. In a forward computer animation or computer synthesis problem,
people might apply control inputs such as forces or a wind field to computer generated

objects. A physical model allows these objects to react to internal and external forces in
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a natural way. The output is the resulting computer simulation. For an inverse problem,
we are only given the observable motion of the object. Since real life object movement
obeys the laws of physics, fitting models to the objects in the scene allows us to link
the observed movement to the input which caused the components to move, as shown in

Figure 1.2.

A

input = model output

Figure 1.2: VIDA process pipeline.

Just like the forward animation process, which consists of specific approaches for fluid
dynamics, facial expression, articulated figure motion, etc, we envision that the inverse
problem (VIDA) will also have solutions which are like tools in a toolbox. There might
be different classes of dynamic analysis for different types of objects and phenomena. As
part of a long term research effort, we intend to study many more of the different useful
instances of the VIDA problem in the future. They would be powerful tools for computer
animators. Our work here will demonstrate the plausibility of VIDA.

In a broader sense, video input driven animation does not necessarily have to be
physics based. For instance, the animator might want to use VIDA to simply track the
movements of flowers on a hillside, and add some autonomous virtual butterfly or bees to
interact with the video captured swinging flowers. In this case, we may not need to use
physics. This is similar to conventional or digital rotoscoping. Or in some other instances,
say, in a games setting, a real physical simulation might be too time consumming, then
pseudo-physics or motion based method can be used to allow the video input to indirectly

drive the computer animation of virtual objects.
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In this thesis, to demonstrate the importance and exploit the usefulness of the VIDA
methodology, we will explore some natural scenes and estimate parameters of natural
phenomena, such as wind and regular water wave elevation. We use a physics based
approach for our analysis, and we explain the reasoning behind this choice later in the
chapter. The examples are intended to illustrate the strength of VIDA, in particular its
application in indirect animation. We will show how to recover wind speed parameters by
observing objects in a scene and how to estimate regular water wave elevation parameters
by observing boat motion in a scene. These example VIDA techniques are interesting,

important, and novel in their own right.

1.3 Motivation

As a simple example of a possible VIDA application, we will contrast it with the back
projection technique traditionally used in cinematography. Back projection is commonly
used for creating a background environment as shown in Figure 1.3. The background is
the projection of video footage of a surrounding environment at some distance far away
or medium range, such as open outdoor scenery or a street scene shot from a moving
vehicle. To make the foreground objects and characters look like they are placed in the
scene and are consistent with the background, people sometimes create artificial wind
using a fan or rock a car to given audiences the illusion that the car is being driven on a
bumpy road.

When we try to use such real life video background in computer animation and place

computer generated objects in it, typically, the artists/animators are responsible for mak-
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ing sure that the video background and the synthetic foreground objects are compatible.
For example, if the background is a windy scene, the synthesized objects/characters
should be animated compatibly as if the wind is also blowing on them. In general, ani-
mators need to take care of similar scene continuity and consistency problem as in regular
cinematography. This type of effort for maintaining scene consistency largely relies on
the animator’s intuition and interpretation of the real life video input. The task is time

consuming and tedious for an animator.

The question we ask ourselves is: “Which scene consistency relations can we au-
tomatically enforce?” In other words, can we analyze the input video sequence, extract
parameters and information from the motion of objects in the scene and use these param-
eters to drive a certain class of motion for the computer generated objects/characters? As
we have mentioned before, we categorize this class of problem as Video Input Driven

Animation (VIDA).

For example, in a windy scene, we might want to “reverse engineer” a natural phe-
nomenon such as wind, in the video sequence, and use the extracted wind field parameters

to drive new computer animated objects. When the animator does not have to take care

video sequence

Projector

Figure 1.3: Back projection set-up in cinematography. Video footage is used as the
background.
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of such tedious details, they can concentrate more on the artistic and creative compo-
nents of the scene and character animation. Moreover, this does not have to be restricted
to just the background-foreground relation of the scene. In computer animation, there
are many creative ways that the computer generated objects can interact with and be
driven by the environment in the video input.

There are many applications for VIDA, such as movie making, animation prototyping,
virtual reality simulations, and landscape design, to name a few. It is challenging because
it requires that we think about things in a new way. We need to capitalize on the
existing computer vision tools, and push ourselves to invent new computer vision tools to
satisfy the requirements of computer graphics applications. For computer graphics, VIDA
introduces a rich new source for animation creation and animation control. It allows us to
use video to give indirect inputs, such as forces and constraints, to computer animation.
VIDA combines the strength of computer vision and computer graphics, and at the same
time, pushes the envelopes in both fields. VIDA is inherently phenomenological, which

lies at the core of both computer graphics and computer vision.

1.4 Objects and Forces in VIDA

When a VIDA application takes a physics based approach, we might be concerned with

several types of forces (Figure 1.4):

e the forces that natural phenomena such as wind exert can exert on objects;

e the forces an object can exert on other objects, and this force can be observed

without knowing a lot about the inner structure of the object;
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Figure 1.4: The forces in the video sequence which might be of interest to us.

e the forces an object exerts on itself.

In terms of types of object primitives that VIDA might be dealing with, here we list

some of the primitives:

fluids such water and wind.

rigid objects such as the body of a car.

articulated objects/figures such as animals.

deformable objects such as tree branches and hair.

particles such as snow.

There is a great deal of computer vision research which deals with rigid and articulated
objects. The list above does not exhaust every type of primitive. There might be other

primitives people might want to deal with and add to this list.
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model
(extract parameters)

= synthesize

Figure 1.5: Three stages of our problem.

1.5 Goal and Tasks

The goal of VIDA is to extract parameters from a background video sequence, and to use
these parameters to drive the animation of the foreground computer generated objects.
One important application of VIDA is to make the computer generated foreground objects
appear as natural participants of the video captured background.

The process consists of three stages as depicted in Figure 1.5: scan, model, synthesize.
The scan stage analyzes the input video sequence. It would focus on the part of the
scene or objects in the scene which we are interested in, and perhaps ignore much of the
rest. Scanning will often employ techniques from computer vision. The model stage
establishes reasonable models of observed objects or natural phenomena in which we are
interested, and a model might have unknown parameter values initially. We analyze the
information obtained in the scanning stage according to the model. This allows us to
estimate and extract a model’s parameters. Some examples of the parameters in which
we are interested may be kinematic, such as position or velocity of objects, while other
parameters may be dynamic, such as determining the forces exerted on objects. The
synthesize stage uses the parameters we extracted in the modelling stage to drive the
animation of computer generated objects.

Due to the richness and complexity of the natural as well as man-made environment
surrounding us, there are many aspects to this problem. Hence there are a great many

interesting, important and potentially difficult sub-topics of VIDA which await study.
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Figure 1.6: The layout of the components of this thesis.

We can not hope to cover all these problems in a single thesis. We instead shall establish
the importance of the idea and demonstrate it through several key contributions. In
particular, we identify the principle of harmonic oscillation as an extremely effective way

of modelling the passive motion of many objects when disturbed by external forces.

1.6 Focus of This Thesis

In this thesis, we would like to demonstrate the basic principles behind VIDA by studying
the inverse problem to harmonic oscillation and use it to “reverse engineer” natural
phenomena such as wind or regular water waves. Here, by “reverse engineer” natural
phenomena, we meant the following process: we observe harmonic oscillation of objects
in the scene, infer the driving force, and deduce the natural phenomenon which induced
the driving force, as shown in Figure 1.8. The layout of this thesis is as shown in Figure
1.6. Two examples will be used to demonstrate the strength and applications of this
methodology. The first example is related to wind-object interaction. We observe the

effect of the wind on a tree in the scene, estimate the wind speed from the tree’s motion,
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(a) Wind (b) Water wave

Figure 1.7: Two examples of inverse problems to harmonic oscillation.

natural phenomenon - —
whichinducedthe |~———|  drivin g force harmonic 93(:| Ilation
driving force of object

Figure 1.8: Going back in the harmonic oscillation process pipeline to “reverse engineer”
parameters of natural phenomenon.

then use the wind information to make computer generated objects move, as shown in
Figure 1.7(a). The second example is related to boat-water interaction. We study the
motion of boats anchored to the shore as shown in Figure 1.7(b), estimate the water wave
elevation which drives the boat motion, then use the water wave parameters to control a
computer synthesized floating structure.

We have chosen such a focus for a number of reasons. First, it is an interesting
computer vision problem with useful applications. Second, it is an interesting computer
graphics problem and application. Third, our inverse of harmonic oscillation examples
nicely demonstrate the principles behind VIDA. Next, we will explain each point in turn.

First, it is an interesting computer vision problem with useful applica-
tions. The problem VIDA poses requires us to combine the strengths of computer vision

and computer graphics. Traditionally, the computer vision analysis of real world video
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sequences has been closely linked to the development of artificial intelligence (AI) and
robotics research. A great deal of progress has been made in vision which is both driven
by and somewhat limited to satisfying the demands of Al/robotics research. Many com-
puter vision experiments are based on man-made environments, and some are related
to a natural environment. There is a limited amount of vision literature which direct
targets the natural phenomena around us, such as wind and water. By vision problems
targeting the natural phenomena, we mean trying to understand the parameters and
characteristics of the natural phenomena by analyzing image sequences of a natural phe-
nomenon. For example, we could be interested in problems such as trying to derive the
wind parameters by observe a windy scene or trying to recover parameters of the water
wave by observing the movement of the water. In recent years, Soatto et al.’s work in
dynamic texture [SDWO01] took an interesting step in such a direction. Soatto et al. stud-
ied sequences of images of a moving scene that exhibit certain stationarity properties in
time. These include sea-waves, smoke, foliage, whirlwind, talking faces, traffic scenes etc.
They present a novel characterization of dynamic textures that poses the problems of
modelling, learning, recognizing and synthesizing dynamic textures on a firm analytical
footing. Their algorithms learn models of the dynamic textures. Once learned, a model
can be used to extrapolate synthetic sequences of similar phenomena to infinite length.
Our idea of “reverse engineering” wind information from, say, wind-plant interaction and
estimating water wave information from water-boat interaction are interesting attempts
at analyzing natural phenomena via visual observation. We are taking the parameter ex-
traction process one step further to infer the cause of the phenomenon, so that synthetic

objects which are not similar to the observed objects can also be added to the scene.
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In terms of computer vision inspired graphics research, in recent years, there is quite
a lot of work on texture analysis in natural settings [HB95, Bon97, WL00, WL01, Tur01].
A number of recent algorithms create synthetic texture images by clever re-sampling from
the original texture image. Although these do not provide an explicit model for texture,
the results are visually stunning. The topics of texture re-sampling and synthesis serves
as a good example of using computer vision research for computer graphics applications.

Second, it is an interesting computer graphics problem and application. It
is useful in computer graphics to have synthetic objects be driven by video input. In the
case of wind, we can use extracted wind parameters we estimate to drive a grass field,
trees, snow, synthetic actor’s hair and clothes, a flag, etc. Such details in the scene can be
taken care of automatically fashion, relieving animators of tedious work. This provides a
kind of indirect puppetry in which indirectly observed influences are consistently applied
to all objects in a scene. In the case of water wave, we can use inferred wave elevation to
animate other boats and floating structures. Using traditional techniques, the animator
would have to calibrate each boat’s motion by hand to match the background. They
would have to make sure the boats’ motions are not completely synchronized, but at the
same time not completely unrelated, because the boats are moving in roughly the same
water wave. VIDA provides a physically sound tool for automating this type of task.

Third, our inverse of harmonic oscillation examples nicely demonstrate the
principles behind VIDA. Specifically, we show how to find the force or the cause of
the observed motion and use the cause or the correct force to drive a new object. One
application of VIDA is to maintain the continuity and consistency of the (foreground)

synthetic objects and the (background) video input. This takes the guess work away
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Envi ronment Driven Animation + Story Line Driven Animation
e.g., animtion due to wind e.g., character’s expressions
use VIDA if possible done by animators

Figure 1.9: This is one possible way of using VIDA.

from the artists or animators, but leaves them a high degree of creative control.

There can be two types of animation in the scene as shown in Figure 1.9. One type is
closely related to the environment the objects are in, so it has to be environment driven,
which is where VIDA could be very useful. The other type has more to do with the story
being told by the animation, which is usually best done by the animators. The inversion
of harmonic oscillation is by no means the only way to demonstrate the strength of VIDA,
but it is certainly an interesting and novel way to bring out the principles and explain
the processes involved in VIDA. Further, it is a novel technical contribution in its own

right.

1.7 Physics Based Approach

As we mentioned in section 1.6, we will demonstrate the basic principles behind VIDA
using the inverse harmonic oscillation problem and its applications. Depending on the
VIDA application, we can choose to use a physics based approach or some other approach.
In the case of the inverse harmonic oscillation problem, we made an important decision
to use a physics based approach. We think, in this case, physics is both important and
it helps to simplify the task.

If we look around in our natural environment, there are many circumstances in nature

in which something is oscillating and in which the resonance phenomenon occurs [Fey63].
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Harmonic oscillation is studied in marine engineering, because a ship’s swaying, heaving
and vibration are oscillations. It is studied in material engineering, because the motion
of beam under wind force or during an earthquake is harmonic oscillation. Many more
examples of harmonic oscillation can be found in everyday life, and its ubiquity is re-
flected in textbooks for many other disciplines such as mechanical engineering, electrical
engineering, chemical engineering, etc.

There is a unified and simple physics formulation which explains the phenomenon
of harmonic oscillation. We will give a concise mathematical description of the physics
principle in section 2.

People might ask: when you add computer generated objects to the video captured
scene, why not just animate the virtual objects by hand? Physics provides a consistent
way to account for the motion of objects we see in real world video sequences. If we
can extract a number of parameters and infer the cause of the motion based on physics
principles, then it makes the animation of virtual object more automatic, more consistent
and simpler. For instance, when we want to generate the motion of many boats influenced
by the same waves, animators would have to ensure that the boats’ motions are not
completely synchronized, but at the same time not completely unrelated. This is hard
to do by hand, but it is easy to do using physics.

Another question people might ask is why not cheat? For instance, when you have
trees moving in the wind in the original video, why not link the real tree’s movement
to the virtual tree by an invisible spring, so that the new tree’s movement is influenced
by the real tree’s motion? We would like to point out that this trick is not simpler or

computationally cheaper than our inverse harmonic oscillation solution. First, to figure
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out the motion of the original tree automatically, one still has to use computer vision
to track the original tree in the video. Second, the physics formulation of harmonic
oscillation is very simple and easy to compute, so the idea of linking the virtual tree to
the real tree by an invisible spring is not necessarily computationally cheaper.

In general, we can try to “cheat” and create each different “cheating” trick for a
different application. So for a hundred different situations, we would have a hundred
different tricks. Such an ad hoc approach makes things more complicated than necessary.
Instead of using different tricks, the physical formulation of harmonic oscillation can be
used in a consistent way in each situation which falls into this category. It is a principled
approach. It is simple, straight forward and consistent.

As we will discuss later in section 2, there are two key parameters in our parameter
extraction process — the natural frequency of the oscillation wy, the damping coefficient
~. This helps us to capture the characteristic of the oscillating system in a very simple
and concise fashion. It simplifies the problem. The physics principle captures the essence

of harmonic oscillation in a very clean way.

1.8 Potential Limitations

There are potential limitations and challenges surrounding VIDA.

We want the computer generated objects to appear as natural participants in the
video. Sometimes, we might need to alter the video sequence slightly to create a more
realistic effect. For example, we might have a sandy beach video sequence into which a

virtual character steps. The character should leave footprints and cast shadows on the
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beach. It might require slight alteration of the scene to create footprints on the sand.
While this phenomenon itself is not hard to model and simulate, the problematic aspect
is its identification.

Furthermore, the introduction of synthetic objects might have a large influence on
the video captured scene. In this case, it is no longer a simple case of dealing only with
video input driven animation. The reverse problem also needs to be studied, which is
how the synthetic objects would change the video sequence. In that case, we would need
to augment the VIDA concept to accommodate and create more interaction between the
captured video sequence and the synthetic objects. The captured video sequence might
also need to be modelled, parameterized and changed. This is by no means a simple task.

For the time being, we would like to concentrate our effort on studying video input
driven animation (VIDA) where the synthetic character does not have too much influence

on the video captured sequence.

1.9 Overview

In this section, we give an overview of the organization of this thesis. In chapter 2,
we describe the VIDA inverse problem of harmonic oscillation. In chapter 3, we review
related work. In chapter 4, we review background physics related to forced harmonic
oscillation. In chapter 5, we focus on the modelling part of VIDA, and explore some of
the basic ingredients in extracting useful parameters by observing harmonic oscillation.
In chapter 6, we discuss the example of “reverse engineering” wind speed parameters

by observing object motion due to the wind. In chapter 7, we look at the example of
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estimating water wave elevation parameters by studying the motion of boats anchored
to shore. In chapter 8, we validate our approach and provide methods for calculating
the error in our estimation. In chapter 9, we summarize the VIDA problem and our

methodology for approaching it. We lastly discuss our contributions and future work.



Chapter 2

The Inverse Harmonic Oscillation

Problem

To demonstrate the principles and strength of VIDA, we will develop a methodology for
the inverse harmonic oscillation problem, and use our approach to extract parameters of
natural phenomena such as wind and water waves from relevant video sequences.

Before we start, we would like to say a few words about why we use the harmonic
oscillation problem as our example. If we look around in our natural environment, there
are many circumstances in nature in which something is oscillating and in which the
resonance phenomenon occurs [Fey63].

In many situations when an object is slightly disturbed from its equilibrium or resting
position, there might be a lone or combined push and pull force that tends to restore
it to the equilibrium position. For example, if a marble is rolled up the side of a bowl,
gravitational attraction to the Earth pulls it down, and the walls of the bowl confine it,

so it moves back towards the bottom of the bowl. If an atom of, say, the table, is pushed

23
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slightly out of place, its chemical bonds to its neighbours pull it back in place. If air
molecules gather in a crowd of higher density, the added intermolecular collisions drive
them apart again. If a mass hanging from a spring is pulled down, the spring pulls the
mass back up. When a weeble toy is pushed to the side, it tends to rotate back towards
the upright position, due to its round bottom and its very low center of gravity. A tree
branch pulled away from its resting position will try to return to its resting position due
to the strain, stress and the elasticity of the tree branch. If a soap bar floating in our
bath tub is pushed down on one side and released, it will try to get back to its original
upright facing state. A boat floating on the water works in similar ways as that of the
soap floating on the water. In each of these cases, if no external forces were added to
the system, due to the interplay of the inertia, restoring force and frictional force, the
object oscillates back and forth about its equilibrium position and eventually stops at its
resting position.

Feynman [Fey63] points out many more examples of harmonic oscillation. For in-
stance, the atmosphere which we suppose surrounds the earth evenly on all sides is
pulled to one side by the moon or, rather, squashed prolate into a double tide, and if we
could then let it go, it would go sloshing up and down. It is an oscillator. This oscillator
is driven by the moon, which is revolving about the earth. Not surprisingly, the idea of
measuring and inferring the parameters of harmonic oscillation has existed and been used
by scientists in many areas of research. In the case of the earth’s atmosphere for example,
initially, people inferred the oscillation parameters of the atmosphere by observing the
size of the atmospheric tides and the phase, i.e., the amount of delay. Another way to

confirm this inferred information is by hoping that someone disturbs the atmosphere,
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then it would oscillate with its natural frequency wy. It turns out that there was such a
sharp disturbance in 1883, when the Krakatoa volcano exploded and half of the island
was blown away. It made such a terrific explosion in the atmosphere that the period of
oscillation of the atmosphere could be measured. The period of oscillation came out to
105 hours.

There are many more examples of harmonic oscillation which we can observe in ev-
eryday life. In harmonic oscillation, the resting state of the system corresponds to the
state with the lowest energy. Almost everything we see around us tends to return to and
rest at the configuration with the lowest energy. That is why harmonic oscillation is so
ubiquitous.

The idea of observing an harmonic oscillation and inferring parameters of the os-
cillating system is commonly used in different scientific disciplines such as mechanical
engineering, electrical engineering, naval architecture, etc [Fey63]. In this chapter, we will
explain the basic idea behind inferring parameters of harmonic oscillation, and defining
the inverse harmonic oscillation problem. This is the basic component of this thesis. It
will be used again and again in more specific applications such as retrieving wind and
water wave parameters later in this thesis.

Of course, the natural environment surounding us is very complex. There are many
natural phenomena that can not be modeled using harmonic oscillation. The related
VIDA problems would be interesting to investigate in the future. However, in this thesis,
we will only focus on the inverse harmonic oscillation problem, and use it to demonstrate
the principles behind VIDA. The ubiquity of harmonic oscillation makes it an attractive

class of problems for the purpose of our demonstration, and it can be widely used in



CHAPTER 2. THE INVERSE HARMONIC OSCILLATION PROBLEM 26

many harmonic oscillation situations which we encounter in our daily lives.

2.1 Forward Problem vs. Inverse Problem

The forward problem of harmonic oscillation is well-studied. A simple example would
be the forced harmonic oscillation of a spring-mass system as shown in Figure 2.1, in
which the point mass with mass m is placed at the top of a horizontal surface, and it
is connected to the wall by a spring. As depicted in Figure 2.2, typically, we are given
the external force f(¢) as a function over time and other properties of the oscillating
system. The properties of the oscillating system includes the mass, the initial position
and velocity, the damping characteristic, and the stiffness properties. We are looking for
the response of the system, such as its displacement from the equilibrium position over
time.

We would like, however to consider the inverse problem to harmonic oscillation. As
shown in Figure 2.3, in the inverse problem, the only information we are given is the
observed displacement of the oscillator. We do not know the properties of the oscillating
system, the external driving force, and parameters of the phenomenon that cause forces
to be exerted on the oscillating system. The solution to the inverse problem of harmonic

oscillation uses the known observed displacement of the oscillator to recover the unknown

spring mass

m

SSSSSSSSSS S S S S

AN

Figure 2.1: An example oscillator: a spring-mass system.
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Figure 2.2: Harmonic oscillation, the forward problem.
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parameters which caused the motion. By observing the motion of an oscillating system,

if we are able to extract the parameters of the natural phenomenon which determines the

forcing function of such a harmonic motion, we might be able to re-use these parameters

in the forward simulation of computer synthesized objects. This inverse problem, which

is a technical challenge on its own to solve, also nicely demonstrates the principles and

methodology behind VIDA.
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Figure 2.3: Estimating the driving force by observing the displacement.

2.2 Problem Formulation

In a harmonic oscillation system, the speed at which the system oscillates is heavily

influenced by the natural frequency wy of the oscillating object. When the outside driving

force dies down, the oscillation should also decay. This decay depends on the damping

characteristic v as some proportion of the energy in the system is expended in order to

overcome friction and other resistance.
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In general, the physical relationship between the displacement of an object and the

external force that caused the motion is described by Newton’s law:

mass X acceleration = net force.

For a harmonic oscillator, the net force is the sum of the external driving force f, the

restoring force —kz, and the frictional force —c‘fi—’t”. That is,

d*x dz
ar _ Yy
dt? “dt T+
or
d*x dz
g - = 2.1
mdtz—i-cdt-l—k:v fs (2.1)

where f is the force which drives the oscillator, z is the displacement, m, ¢ and k are

the mass, damping characteristic and stiffness of the oscillator respectively. The term

dz

4 accounts for the force due to friction or

m‘ng accounts for the force due to inertia, ¢
resistance, and kz accounts for the restoring force, say due to the stiffness of the spring
in a spring-mass system. To make Equation 2.1 easier to analyze, we divide both sides
by m, where m > 0. Let v = ¢/m and k/m = w?, we have

A’z dz

f
az TV

+ wir = p— (2.2)

We call v the damping coefficient and wy the natural frequency of the oscillator.

As we will show in chapter 4, we can treat the driving force as an input signal, the
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oscillating system as a filter and the displacement of the oscillator as the output of the
system, as shown in Figure 2.4. We want to go backwards in this chain, starting from

the observed output and trying to estimate the filter and the input.

2.3 Suggested Steps

In general, there are three stages to the process: scanning raw data; modelling; and
synthesis. In preparation for their solution later in this thesis, we shall summarize the

steps. More explicitly, the information flow is as shown in Figure 2.5:
Step 1: Extract motion information from the video sequence.

Step 2(a): Use the oscillator’s displacement over time to estimate the natural frequency

wo and the damping coefficient 7 of the oscillating system.

Step 2(b): Use the displacement data x(t) and the estimated information about the
properties of the oscillating system to compute the external driving force f(¢) which

caused the motion.

Step 2(c): Use the estimated driving force f(¢) to infer the parameters of the natural

phenomenon which caused the motion.

— sgd | o o
processing | | jnput | filter | output

’ ! driving 3 3 oscillating 3 3 resulting

forced . I . I AT
oscillaor | | force | 7| system | " | oscillation |

Figure 2.4: Forced harmonic oscillation in terms of input, filter and output relation.
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Step 3: Once we have extracted the parameters of the natural phenomenon, we use

these parameters to apply forces to computer generated objects.

step 1

step

2

step 3

model
[scan— (extract parameters)

step 2(c)

unknown

parameters of
natural phenemenon
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unknown

driving
force
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/\
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oscillating
system
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synthesize

oscillator
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X

Figure 2.5: The process for the VIDA inverse problem of harmonic motion: suggested

steps.

In chapter 3, we will talk about related work.

In chapter 4, we introduce some

background information about harmonic oscillation analysis. In later chapters, we will

cast two different situations as instances of inverse problems of harmonic oscillation.

One is related to wind-object interaction, and the other one is related to water-boat

interaction in regular water waves.



Chapter 3

Related Work

We break related work into two categories. One category consists of work which has a
similar flavor to our idea, i.e., using one type of input signal to control another type of
output signal or to create a new object/character. The other category consists of work
related to the subtasks of our VIDA inverse problem of harmonic oscillation, namely,

scan, model, synthesize.

3.1 Indirect Puppetry

In this section, we talk about the work which has a similar flavor to ours which can be
viewed as some kind of indirect puppetry.

Bregler et al. [BCS97] propose the idea of video rewrite, where they use existing
video footage to automatically create new video of a person mouthing words that she did
not speak in the original footage. Video rewrite uses computer-vision techniques to track

points on the speaker’s mouth in the training footage, and it uses morphing techniques to
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combine these mouth gestures into the final video sequence. The new video combines the
dynamics of the original actor’s articulations with the mannerisms and setting dictated
by the background footage. In the paper “Voice Puppetry” [Bra99|, Brand introduced
a method for predicting a control signal from another related signal, and applied it
to voice puppetry: generating full facial animation from expressive information in an
audio track. Using techniques from computer vision, the voice puppet learns a facial
control model from estimates of real facial behavior, automatically incorporating vocal
and facial dynamics such as co-articulation. Animation is produced by using audio to
drive the model, which induces a probability distribution over the manifold of possible
facial motions. Brand presents a linear-time closed-form solution for the most probable
trajectory over this manifold. The output is a series of facial control parameters, suitable
for driving many different kinds of animation ranging from video-realistic image warps
to 3D cartoon characters. This is a nice example of using one type of signal to control
another type of signal by studying their correlation. Though it has a similar flavor to
VIDA, voice puppetry work and VIDA explore quite different research areas. Video
rewrite [BCS97] and Voice puppetry [Bra99] are based on correlation, whereas our work
is based on physics.

Popovi¢ and Witkin [PA99] introduced an algorithm for transforming character ani-
mation sequences that preserves essential physical properties of the motion. They take
the approach of motion transformation as the underlying paradigm for generating com-
puter animations. They take physically consistent motion, such as captured motion, as
an input. Their transformation algorithm first constructs a simplified character model

and fits the motion of the simplified model to the captured motion data. From this
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fitted motion, they obtain a physical spacetime optimization solution that includes the
body’s mass properties, pose and footprint constraints, muscles and an objective func-
tion. To edit the animation, they modify the constraints and physical parameters of
the model and other spacetime optimization parameters. From this altered spacetime
parameterization, they compute a transformed motion sequence. Lastly, they map the
motion change of the simplified model back onto the original motion to produce a novel
animation sequence. To some extent, this approach could be used by VIDA to study
the forces or the spacetime optimization parameters within one object and eventually
adapt them to create or drive other objects. While they are interested in the forces and
mechanics within an articulated figure, we are interested in the forces surrounding us in

the natural environment, such as forces generated by wind and water waves.

Hoshino and Saito [HYS01] proposed a new technique for automatic registration of
virtual objects with the human body images. As an example, they merge computer
generated clothes onto the human in a video sequence. First, they track current 3D
pose of human figure using the spatio-temporal analysis and the structural knowledge
of human body. Then they take computer generated clothes and merge them with the
human in the video. Both their work and our work takes a physics based approach.
Their work is based on analyzing human body motion, whereas in this thesis, we study

the motion of objects due to natural phenomena such as wind and water waves.
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3.2 Vision Based Facial Motion Modelling

Researchers have studied using video and computer vision to capture more subtle details
of real human facial expressions and use this information to improve computer facial

motion modelling.

Williams [Wil90] describes a means of acquiring the expressions of real faces and
applying them to computer-generated faces. To track facial expressions of live performers,
Williams applied Scotchlite spots to a performer’s face to mark the important facial
features. A spot tracking routine is used to keep track of the spot as the performer
makes different facial expressions. The tracked facial expression is directly mapped to
a computer generated 3D facial model. This work is concerned with the motion itself,

whereas we are interested in the cause of the motion.

Some particularly interesting work in vision based on models of natural phenomena
is that of Black and Yacoob [BY95b, BY95a] in tracking and recognizing rigid and non-
rigid facial motions using local parametric models of image motion. Parametric flow
models are popular for estimating motion in rigid scenes. They observed that within
local regions in space and time, such models not only accurately model non-rigid facial
motions but also provide a concise description of the motions in terms of a small number
of parameters. These parameters are intuitively related to the motion of facial features
during facial expressions and they showed how expressions such as anger, happiness,
surprise, fear, disgust and sadness can be recognized from the local parametric motions
in the presence of significant head motion. Their idea of extracting a concise description

of motion in terms of a small number of parameters is similar to ours. We try to extract



CHAPTER 3. RELATED WORK 35

parameters of harmonic oscillation. Their work is concerned more with facial motion
modelling, whereas this thesis studies the parameter extraction for natural phenomena

such as wind and water waves.

3.3 Computational Perception of Scene Dynamics

The understanding of the dynamics in a scene is an interesting problem. Mann et al.
[MJ97] point out that understanding observations of interacting objects requires one
to reason about qualitative scene dynamics. For example, on observing a hand lifting
a can, we may infer that an “active” hand is applying an upwards force by grasping
to lift a “passive” can. They implemented a computational theory that derives such
dynamic descriptions directly from camera input. Their approach is based on an analysis
of the Newtonian mechanics of a simplified scene model. Interpretations are expressed
in terms of assertions about the kinematic and dynamic properties of the scene. The
feasibility of interpretations relative to Newtonian mechanics is determined by a reduction
to linear programming. To select plausible interpretations, multiple feasible solutions are
compared using a preference hierarchy. This is a useful approach for understanding the
forces between objects. In this thesis, our investigation focuses on the forces that natural

phenomena such as wind and water exert on objects.
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3.4 Video Based Animation

Increasingly, computer animation has turned to video input for inspiration. Schdédl et
al. [SSSE00] introduced a video based animation technique called wvideo texture. They
take a source video with fixed camera position, and the video has a finite set of images.
They randomly rearrange and possibly blend original frames from the source video to
synthesize a continuous infinitely varying stream of images. Some of their example videos
include a candle flame, a clock, a flag fluttering in the wind, a campfire, a video of a
woman posing for a portrait, a waterfall and blowing grass. Their work is based on
visual continuity. Our work is based on physics and we are also interested in the cause
of the object movement. Schddl and Essa [SE01] present techniques for rendering and
animation of realistic scenes by analyzing and training on short video sequences. This
work extends the video texture idea. Schodl and Essa create video sprites which are a
special type of video texture. With video sprites, instead of storing whole images, the
object of interest is separated from the background and the video samples are stored as a
sequence of alpha-matted sprites with associated velocity information. Schodl and Essa
can be rendered anywhere on the screen to create a novel animation of the object. They
present methods to create such animations by finding a sequence of sprite samples that
is both visually smooth and follows a desired path. To estimate visual smoothness, they
train a linear classifier to estimate visual similarity between video samples. Both their
work and ours are video based animation. Their work studies the visual smoothness and
how an object can follow a desired path, whereas we are interested in the force which

caused the motion of the object. In the video texture paper [SSSE00], the camera is static
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for all the video sequences. If a video sequence is taken using a moving camera, it poses a
problem. Fitzgibbon [Fit01] considers the registration of sequences of images where the
observed scene is entirely non-rigid, for example, a camera flying over water, a panning
shot of a field of sunflowers in the wind, or footage of a crowd applauding at sports event.
The problem is that, in these cases, it is not possible to impose the constraint that world
points have similar colour in successive views, so existing registration techniques can not
be applied. The relationship between a point’s colours in successive frames is essentially
a random process. Fitzgibbon proposes a technique for automatically searching for the
camera registration parameters for such nowhere-static scenes. Fitzgibbon’s work is
focussed on the problem of recovering the camera registration parameters related to video
based animation. We can eventually use their work when we experiment settings where
we video tape the scene with a moving camera. For the time being, our experimental

setup consists of only a static camera.

Our work differs from the above, in that we are interested in the cause of the object
motion in the scene and the parameters of the natural phenomenon which produced the
objects’ motion. Once we extract the parameters of the natural phenomenon, we can use
them to drive the animation of objects that are significantly different from the objects
captured. For instance, after estimating the wind speed in the scene by observing the

tree movement, we can apply the wind to snow, hair, clothes, etc.
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3.5 Vision Directed Sampling and Synthesis

In recent years, the general idea of vision directed sampling and synthesis has been used in
many computer graphics research areas such as augmented reality, and texture synthesis

from example.

3.5.1 Augmented Reality

The ability to combine real video with computer generated objects enhances the useful-
ness of both. Many researchers are interested in the subproblem of combining real video
with computer generated objects and computer generated lighting conditions. The result
is sometimes referred to as computer augmented reality. Some of the problems people
have looked into are recovering common viewing parameters and common illumination,
recovering surface reflectance function, etc.

Fournier, Gunawan and Romanzin [FGR93| presented a technique for approximating
the common global illumination for real video and computer generated object, assuming
some elements of the scene geometry of the real world and common viewing parameters
are known. They approximate the global illumination of the merged environment by
making the real video part of the solution to the common global illumination computa-
tion. The objects in the real scene are replaced by a set of covering boxes. The image
intensity of the real video is used as the initial surface radiosity of the visible part of the
boxes; the surface reflectance of the boxes is approximated by subtracting an estimate of
the illuminant intensity based on the concept of ambient light; finally, global illumina-

tion using a classic radiosity computation is used to render the surface of the computer
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generated objects with respect to their new environment and for calculating the amount
of image intensity correction needed for surfaces of the real image. This approach uses
only a single image. However, this technique is limited to perfectly diffuse environments
and is not able to take specular surfaces into account.

In [DRB97], Drettakis, Robert and Bougnoux pointed out that providing common
illumination between the real and synthetic objects can be very beneficial. They proposed
a new frame work for solving this problem. They addressed three specific aspects of the
common illumination problem for computer augmented reality: simplification of camera
calibration and modelling of the real scene; efficient update of illumination for moving
computer generated objects; and efficient rendering of the merged world. Their approach
allows interactive update rates on mid-range graphics workstation.

In [YDH99], Yu et al. presented a method for recovering the reflectance properties
of all surfaces in a real scene from a sparse set of photographs, taking into account both
direct and indirect illumination. The result is a lighting-independent model of the scene’s
geometry and reflectance properties, which can be rendered with arbitrary modifications
to structure and lighting via traditional rendering methods. Their technique models
reflectance with a low-parameter reflectance model, and allows diffuse albedo to vary
arbitrarily over surfaces while assuming that non-diffuse characteristics remain constant
across particular regions. The method’s input is a geometric model of the scene and a
set, of calibrated high dynamic range photographs taken with known direct illumination.
The algorithm hierarchically partitions the scene into a polygonal mesh, and uses image-
based rendering to construct estimates of both the radiance and irradiance of each patch

from the photographic data. The algorithm computes the expected location of specular
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highlights, and then analyzes the highlight areas in the images by running a novel iterative
optimization procedure to recover the diffuse and specular reflectance parameters for each
region. Lastly, these parameters are used in constructing high-resolution diffuse albedo
maps for each surface.

Boivin and Gagalowicz [BG01] presented a new method for recovering an approxima-
tion of the bidirectional reflectance distribution function (BRDF) of the surfaces present
in a real scene. This is done from a single photograph and a three dimensional geometric
model of the scene. The result is a full model of the reflectance properties of all surfaces,
which can be rendered under novel illumination conditions with, for example, viewpoint
modification and the addition of new synthetic objects. Their technique produces a
reflectance model using a small number of parameters. These parameters nevertheless
approximate the BRDF and permit the recovery of the photometric properties of diffuse,
specular, isotropic or anisotropic and textured objects. The input data are a geometric
model of the scene including the light source positions and the camera properties, and
a single image captured using this camera. Their algorithm generates a new synthetic
image using classic rendering techniques and a Lambertian reflectance model of the sur-
faces. It then iteratively compares the original image to the new one, and chooses a
more complex reflectance model if the difference between the two images is greater than
a user-defined threshold.

These pieces of work have similar flavor as VIDA in the sense that they are trying
to analyze a scene and recover properties of objects or parameters of material, then use
this information to add new objects or modify the scene in a consistent way. Their work

is focussed on rendering and we are interested in animation.
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3.5.2 Texture Sampling and Synthesis

Many researchers have proposed interesting methods of sampling images to produce syn-

thesized textures.

Heeger and Bergen [HB95| presents a technique for synthesizing an image or solid
texture that matches the appearance of a given texture sample. The key advantage of
this technique is that it works entirely from the example texture, requiring no additional
information or adjustment. The technique starts with a digitized image and analyzes it
to compute a number of texture parameter values. Those parameter values are then used
to synthesize a new image of any size that looks in its color and texture properties like
the original. The analysis phase is inherently two-dimensional since the input digitized
images are two dimensional. The synthesis phase, however, may be either two- or three-
dimensional. For the three dimensional case, the output is a solid texture such that
planar slices through the solid look like the original scanned image. In either case, the

two or three dimensional texture is synthesized so that it tiles seamlessly.

De Bonet [Bon97] described a two-phase process for analysis and synthesis of texture
images. The input texture is first analyzed by computing the joint occurrence, across
multiple resolutions, of several of the features used in psychophysical models. In the
second phase, a new texture is synthesized by sampling successive spatial frequency
bands from the input texture, conditioned on the similar joint occurrence of features at
all lower spatial frequencies. The sampling methodology is based on the hypothesis that
texture images differ from typical images in that that there are regions more discriminable

at certain resolutions than at others. By rearranging textural components at locations
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and resolutions where the discriminability is below threshold, new texture samples are
generated which have similar visual characteristics

Efros and Leung [EL99] proposed a non-parametric method for texture synthesis.
The texture synthesis process grows a new image outward from an initial seed, one pixel
at a time. A Markov random field model is assumed, and the conditional distribution
of a pixel given all its neighbors synthesized so far is estimated by querying the sample
image and finding all similar neighborhoods. The degree of randomness is controlled
by a single perceptually intuitive parameter. The method aims at preserving as much
local structure as possible and produces good results for a wide variety of synthetic and
real-world textures.

Wei and Levoy [WL00] present a very simple algorithm that can efficiently synthesize
a wide variety of textures. The inputs consist of an example texture patch and a random
noise image with size specified by the user. The algorithm modifies this random noise
to make it look like the given example. This technique is flexible and easy to use,
since only an example texture patch is required. New textures can be generated with
little computation time, and their tileability is guaranteed. The algorithm is also easy
to implement; the two major components are a multiresolution pyramid and a simple
searching algorithm.

Turk [Tur01] pointed out that many natural and man-made surface patterns are
created by interactions between texture elements and surface geometry. He suggested
that the best way to create such patterns is to synthesize a texture directly on the
surface of the model. Given a texture sample in the form of an image, he created a

similar texture over an irregular mesh hierarchy that has been placed on a given surface.
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A texture created this way fits the surface naturally and seamlessly. Wei and Levoy
[WLO01] address the same problem by extending their own texture synthesis method in

[WL00].

In [SDWO01], Soatto et al. studied dynamic textures, which are sequences of images
of moving scenes that exhibit certain stationarity in time. These include sea-waves,
smoke, foliage, whirlwind and also talking faces, traffic scenes, etc. They presented a
novel characterization of dynamic textures that poses the problems of modelling, learn-
ing, recognizing and synthesizing dynamic textures on a firm analytical footing. They
borrowed tools from system identification to capture the “essence” of dynamic textures.
They do so by learning and identifying models that are optimal in the sense of maximum
likelihood or minimum prediction error variance. For the special case of second-order
stationary processes, they identified the model in closed form. Once learned, a model
has predictive power and can be used for extrapolating synthetic sequences to infinite

length with negligible computational cost.

These research works are similar to our idea in the sense that we are both trying to
synthesize new image or image sequences which are consistent with the original input.
Their work is concerned with texture synthesis, and we are interested in inferring the

cause of the motion of the observed objects in a video footage.
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3.6 Subtasks of The Inverse Harmonic Oscillation

Problem

There are three stages to the inverse harmonic oscillation problem: scanning, modelling

and synthesis. Next, we discuss related work at each stage.

3.6.1 Scanning

Scanning an input video sequence so as to analyze the motion of an object in the scene
is a typical vision problem. There is a great deal of literature on it. In our application,
we would like to track particular features in an image sequence from frame to frame.

Shi and Tomasi show how to monitor the quality of image features during tracking
using a measure of feature dissimilarity that quantifies the change of appearance of a
feature between the first and the current frame [ST94]. The idea is straightforward:
dissimilarity is the feature’s root mean square (rms) residue between the first and the
current frame, and when dissimilarity grows too large, the feature should be abandoned.
They provide experimental evidence that pure translation is not an adequate model
for image motion when measuring dissimilarity, but affine image changes are adequate.
They propose a numerically sound and efficient way of determining affine changes by
a Newton-Raphson style minimization procedure. In addition, they propose a more
principled way to select features than the more traditional “interest” or “cornerness”
measures. Specifically, they show that features with good texture properties can be
defined by optimizing the tracker’s accuracy.

Tracking features in an image involves computing the optical flow of the region we
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want to track. The computation of optical flow relies on merging information available
over an image patch to form an estimate of 2D image velocity at a point. This merging
process raises a host of issues, which includes the treatment of outliers in component
velocity measurements and the modelling of multiple motions within a patch which arise
from occlusion boundaries or transparency. Jepson and Black [JB93] present an approach
that allows them to deal with these issues within a common framework. Their approach
is based on the use of a probabilistic mixture model to explicitly represent multiple
motions within a patch. They use a simple extension of the expectation maximization
algorithm to compute a maximum likelihood estimate for the various motion parame-
ters. From the wide range of different measurement strategies for component velocities,
they chose a phase-based approach. The approach they use is based on only two con-
secutive frames, and the actual component velocity measurement method is similar to
the phase-based stereo disparity measurement scheme discussed by Jepson and Jenkin
[JJ89]. Experiments have indicated that this approach is computationally efficient and
can provide a robust estimates of the optical flow values in the presence of outliers and
multiple motions.

Jepson, Fleet and El-Maragh [JFEMO1] proposed a framework for learning robust,
adaptive, appearance models to be used for motion-based tracking of natural objects. The
approach involves a mixture of stable image structure, learned over long time courses,
along with 2-frame motion information and an outlier process. An on-line EM-algorithm
is used to adapt the appearance model parameters over time. They developed an imple-
mentation of this approach for an appearance model based on the filter responses from a

steerable pyramid. This model is used in a motion-based tracking algorithm to provide
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robustness in the face of image outliers, such as those caused by occlusions. It is also
provides the ability to adapt to natural changes in appearance, such as those due to fa-
cial expressions or variations in 3D pose. They show experimental results on a variety of
natural image sequences of people moving within cluttered environments. In this thesis,
the automatic tracking of objects in the scene was done using their system. Their work
is very much drawing its strength from all the papers we have discussed in this section

(section 3.6.1).

3.6.2 Modelling

Mathematical modelling generally allows one to characterize the behavior of a phe-
nomenon and to make predictions about it. In our case, modelling is intended to extract
parameters from the observed motion sequences in the input video. We can then use these
parameters to drive the animation of synthesized objects. Even more specifically, in our
VIDA inverse problem of harmonic oscillation, we want to model the object motion in
terms of forced oscillation. Such oscillations are resonance phenomena. The estimation
of parameters of a resonance phenomenon has been studied by physicists and researchers
in many other disciplines [Fey63]. For instance, the response of the earth’s atmosphere
to the tidal pull of the moon is that of oscillation. From the size of the atmospheric tides,
and from the phase, the amount of delay, one can estimate the atmosphere’s oscillation
properties, such as its natural frequency and damping coefficient. Such estimation is
very similar in spirit to our task of estimating the vibrational properties of a harmonic

oscillation system.
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In this thesis, we discuss two applications of the inverse problem to harmonic oscilla-
tion. In the first application, we model the tree or stem of a plant as a cantilever beam
structure. The properties of such a structure are well studied in structural engineering
[CP93, Smi88, Tim49, Tim47, TL25, TM49]. In the second application, we model a boat’s
oscillating motion due to regular water waves. This type of dynamics is studied in Marine
Engineering and Naval Architecture [Bha78, GJ82, Mor90, MT87, Pat89, PS78, RC42].

We used many of the mathematical formulas in these books.

3.6.3 Synthesis

In this thesis, we will use the parameters extracted by the modelling process to drive

computer animation.

3.6.3.1 Synthesizing Plant Motion

The wind speed estimation problem is to take a video footage of a windy scene, analyze
the motion of the objects moving in the wind, try to estimate the parameters of the wind
force on the objects, and infer the parameters for large scale wind velocity fluctuation.
For the wind speed estimation problem, we re-apply the extracted wind field parameters
to synthetic plants and then simulate the result. The synthesizing process of a plant or
a tree moving in the wind has been studied by several researchers.

Shinya and Fournier [SF92| synthesized the motion of trees and plants by modelling
a cascade system of three components: wind model, dynamic model and deformation
model. Wind models produce spatio-temporal wind velocity fields using the power spec-

trum and auto-correlation of wind. Dynamic models describe the dynamic response of
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the systems, using equation systems or response functions. Deformation models produce
deformed shapes of objects according to the geometric models of the object and the re-
sults of the dynamic systems. The simulation is done by integrating dynamical equations

over time.

Stam [Sta97] addresses the problem of realistically simulating the motion of tree-
branches subjected to turbulence. Since the resulting motion is random in nature, it is
modelled as a stochastic process. He synthesizes this process directly by filtering white
noise in the Fourier domain. The filter is constructed by performing a modal analysis of
the tree. He uses a sophisticated numerical technique to compute the first few significant
modes of large trees. This enables him to compute complicated motions without the
necessity of integrating dynamical equations over time. A user can view and manipulate

tree-motions in real-time.

Shinya, Mori and Osumi [SMO98] propose a simple, robust and efficient method to
compute periodic motion from systems of linear equations. They applied their method

to model the swaying motion due to wind of bamboo in a given wind field.

These pieces of work are strictly those of synthesizing the tree’s movement. There is
no attempt at “reverse engineering” the wind speed by observing the tree’s movement in
the wind. After we use our approach to infer wind speed parameters, one can use their
work to make elaborate simulations of complicated tree structure moving in the wind

field.
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3.6.3.2 Synthesizing Boat Motion

The dynamics of the motion of boats in regular water waves are studied mainly in naval
architecture and marine engineering. There is commercially available software package
such as SHIPMA [Hyd] developed by Delft Hydraulics which uses a mathematical model
to compute the track and course angle of a vessel. The model takes into account the
influences of wind, waves, currents, shallow water and bank suction. The mathematical
model is used in port design and inland waterway studies to give the designer an insight
into the inherent possibilities and restrictions of vessels, infrastructure and environmental
conditions.

In this thesis, we implemented our own procedure which calculates the motion of a
boat under water waves. We use the same mathematical principles as the commercial
software. We use a simple boat model for fast computation and a reasonable computer
graphics visual effect. The commercial software is overkill for our application, because
for port design or vessel design, engineering accuracy due to the shape and design of the

boat is critical, but it is not essential for our application.
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Oscillatory Motion

It is well-known that motion around an equilibrium is well approximated by harmonic
oscillation. In this chapter, we shall discuss harmonic oscillators and, in particular, the
forced harmonic oscillator [Fey63, Fre71]. Readers who are familiar with this subject
area in physics can skip this chapter.

With the help of complex numbers, we can present the physics behind forced harmonic
oscillation cleanly and clearly. We will first briefly explain how we intend to use the
complex exponential method. Then we will use it to solve Newton’s equation of motion.

A complex number a can be written as a = a, + ja;, where a, denotes the real
part of a, and a; denotes the imaginary part of a. Referring to Figure 4.1, we see that
we may also write a complex number a = z + jy in the form z + jy = re’?, where

rt =2 +y? = (z+jy)(@ - jy) = aa”.

(The complex conjugate of a, written a*, is
obtained by reversing the sign of j in a.) We represent a complex number in either of

two forms, a real plus an imaginary part, or a magnitude r and a phase angle 6. Given r

and 6, then x and y are clearly r cos # and 7 sin # and, in reverse, given a complex number

20



CHAPTER 4. OSCILLATORY MOTION 51

IMAGINARY
AXIS
a
r
y
-8

X REAL AXIS

Figure 4.1: A complex number may be represented by a point in the “complex plane.”

x + jy, then r = /22 + y? and tanf = y/z, namely, the ratio of the imaginary to the

real part.

We apply complex numbers to our analysis of physical phenomena by the following
trick. We have examples of things that oscillate; the oscillation may have a driving force
which is a certain constant times coswt. Now such a force, p = p, cos(wt), can be written
as the real part of a complex number p, = pye’“? because e/“! = cos(wt) + j sin(wt).
We write a little tilde (7 ) over the variable, in this case p., to remind ourselves that
this quantity is a complex number. The reason we do this is that it is easier to work
with an exponential function than with a cosine. So the whole trick is to represent our
oscillatory functions as the real parts of certain complex functions. The complex number
p. that we have so defined is not a real physical force, because no force in physics is really
complex; actual forces have no imaginary part, only a real part. We shall, however, speak
of the “force” pye’!, but of course the actual force is modelled by the real part of that

expression.

Let us take another example. Suppose we want to represent a force as a cosine wave
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with a phase delay of A. This, of course, would be the real part of pye?@+2) but
exponentials being what they are, we may write e/“+2) = e/“'ei®  Thus we see that the
algebra of exponentials is much easier than that of sines and cosines; this is the reason

we choose to use complex numbers. We shall often write
Pe = poe’ e’ = e, (4.1)

where p represents a function which depends on the magnitude and phase shift and stands
for

p= poejA-

Now let us solve an equation using complex numbers to see whether we can work out
a problem for some real case. For example, let us try to solve a simplified version of

Newton’s equation Eq. 2.2 which does not involve the damping term:
0
— + wyT = — = — cos(wt), 4.2
+wgr =2 =B cos(ur) (12)

where p is the force which drives the oscillator and z is the displacement. Now, let us
suppose for mathematical convenience that x and p are complex. That is to say, x can
be written as z, + jz;, and similarly for p. If we had a solution of Eq. 4.2 with complex

numbers, and substituted them in the equation, we would get

&(z, + jz;)
dt?

. i + 1D
+ wgk(xr + jx;) = Pr T JB;
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or

d’z, 2

dt?

AT P Jp;
+ Wi, —l—j(ﬁ + wiz;) = E’" + EJ

Since two complex numbers are equal only if their real parts are equal and their complex
parts are equal, we deduce that the real part of = satisfies the equation with the real
part of the force. We must emphasize, however, that this separation into a real part
and an imaginary part is not valid in general, but is valid only for equations which are
linear, that is, for equations in which z appears in every term only in the first power or
the zeroth power. For instance, if there were in the equation a term Az?, then when we
substitute z,+iz;, we would get A(z,+jz;)?, but when separated into real and imaginary
parts this would yield \(z? — :c?) as the real part and 2jA\z,x; as the imaginary part.

So we see that the real part of the equation would not involve just Az?

, but also —Az?.
In this case we get a different equation than the one we wanted to solve, with z;, the

completely artificial thing we introduced in our analysis, mixed in.

Let us now try our new method for the problem of the forced oscillator, which we
already know how to solve. We want to solve Eq. 4.2 as before, but we say that we are
going to try to solve

Li, .. pet
I + wyde = — (4.3)

where pe’“* is a complex number. Of course #, will also be complex, all the while
remembering that the real component is the only relevant term. Now we will discuss how
to solve Eq. 4.3 for the forced solution. The forced solution has the same frequency as
the applied force, and has some amplitude of oscillation and some phase, and so it can

be represented also by some complex number & whose magnitude represents the swing
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of z and whose phase represents the time delay in the same way as for the force:

T, = e,

A wonderful feature of an exponential function is that d(ze’“?)/dt = jwie’*. When
we differentiate an exponential function, we bring down the derivative of the exponent as
a simple multiplier. The second derivative does the same thing, it brings down another
jw. Thus, it is very simple to write immediately, by inspection, the equation for z: every

time we see a differentiation, we simply multiply by jw. Thus Equation 4.3 becomes

(jw)*Z + waT = p/m. (4.4)

We have divided out the common factor e’“!. Differential equations of this form are
immediately converted, by inspection, into mere algebraic equations; we virtually have a

solution by sight, that since (jw)? = —w?. Hence,

- p
= (@R — ) (4.5)

This, of course, is the solution we had before; for since m(ws — w?) is a real number, the
phase angles of p and of % are the same (or perhaps 180° apart, if w? > w3). As advertised
previously, the magnitude of Z, which measures how far the oscillator oscillates, is related
to the size of the p by the factor 1/m(w? —w?), and this factor becomes enormous when w
is nearly equal to wy. So we get a very strong response when we apply the right frequency

w. This phenomenon is called resonance.
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4.1 The Forced Oscillator with Damping

Equation 4.5 tells us that if the frequency w were exactly equal to wg, we would have an
infinite response. Actually, no such infinite response occurs because some other factors,
like friction, limit the response. Let us therefore add to Eq. 4.2 a friction term to bound

the response.

Ordinarily such a problem is very difficult because of the character and complexity of
the frictional term. There are, however, many circumstances in which the frictional force
is proportional to the speed with which the object moves. An example of such friction is
the friction for slow motion of an object in oil or a thick liquid. There is no force when it
is just standing still, but the faster it moves the faster the oil has to go past the object,
and the greater is the resistance. So we shall assume that there is another term which
models a resistance force proportional to the velocity, namely: py = —mydz/dt, where y
is the damping coefficient. Thus our equation will be Newton’s equation of motion:

d*z dz

p
az TV a

Now we have the equation in the most convenient form to solve. If v is very small, it
represents very little friction; if v is very large, there is a tremendous amount of friction.
How do we solve this new linear differential equation? Suppose that the driving force
is equal to pg cos(wt + A); we could put this into Eq. 4.6 and try to solve it, but we
shall instead solve it using complex exponentials. Thus we write p as the real part of

pel@t = poe?®el“t and z as the real part of Ze/**, and substitute these into Eq. 4.6. It is
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not even necessary to do the actual substitution, for we can see by inspection that the

equation would become

[(jw)*T + y(jw)i + wyzle’™" = (p/m)e’™”". (4.7)

If we divide by e’“! on both sides, then we can obtain the response Z to the given force

p; it is

& = p/[m(w; — w’ + jyw)]- (4.8)

Thus again T is given by p times a certain factor called the frequency response function

R, namely
~ 1
R = 4.9
R =¥ 70) 9
and
i=pR (4.10)
This factor R can be written as
B = p(w)e?®®), (4.11)

where p(w) and 6(w) are the magnitude and the phase of of R. Let us see what it means.

We know the complex representation of the force is
ﬁejwt — poejAejwt’

and the actual force p is the real part of this, that is, pgcos(wt + A). Eq. 4.10 tells us
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that 7 is equal to PR, so we can rewrite it as

Z=Rp= ,o(w)eja(“’)poejA = p(w)poej(g(“’HA). (4.12)

Finally, going even further back, we see that the physical x, which is the real part of the
complex Ze/*!, is equal to the real part of p(w)pee’ @+ eivt. But p(w) and p, are real,

and the real part of e/(?@)+A+wt) g gsimply cos(wt + A + #(w)). Thus

z = p(w)pg cos(wt + A + O(w)). (4.13)

This tells us that the amplitude of the response is the magnitude of the force p multiplied
by a certain magnification factor, p(w); this gives us the “amount” of oscillation. It also
tells us, however, that x is not oscillating in phase with the force, which has the phase
A, but is shifted by an extra amount @(w). Therefore p(w) and #(w) represent the size

of the response and the phase shift of the response.

Now let us work out what p(w) is. If we have a complex number, the square of the

magnitude is equal to the number times its complex conjugate; thus

1

2

m?(wf — w? + jyw) (w§ — w? — jyw)
1

R R .
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w

Figure 4.2: Plot of p? versus w.

In addition, the phase angle 6 is easy to find, for if we write

we see that

Yw

wi — w?

tanf = — (4.15)

The right hand side is negative because tan(—#) = — tan . There are multiple solutions
for #. For a given w, we choose a solution of # such that § < 0 and it corresponds to the

displacement x lagging the force p.

Figure 4.2 shows how p?(w) varies as a function of frequency. The function p? is phys-
ically more interesting than p, because p? is proportional to the square of the amplitude,
which is proportional to the energy that is developed in the oscillator by the force. We
see that if 7 is very small, then 1/(wj —w?)? is the most important term, and the response

is large for w near wy (see Figure 4.2). The phase shift varies as shown in Figure 4.3.

In certain circumstances we get a slightly different expression for the resonance for-
mula in Eq. 4.8. In situations for which ~ is very small, the most interesting part of the

curve is near w = wy, and we may replace Eq. 4.8 by an approximate formula which is
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-180

Figure 4.3: Plot of 0 versus w.

99

very accurate if v is small and w is near wy. Since wi — w? + jyw & 2wo(wy — w + 77/2),

so that

p
2muwo(wo —w +j7)

T =

if v << wp and w =~ wy.

It is easy to find the corresponding formula for p?. It is

9 1

P Am2wd[(wy — w)? + %]

(4.16)

(4.17)

In this case, the information about v is embedded in the curve p?(w). The maximum

height of the curve p?(w) is at w = wy, and it equals

1

2,272
dmPwy L

My = p*(wp) =

by Eq. 4.17. Tt turns out that the interval over w for which p*(w) > %MO is of great

interest. If we ask for the width Aw of this interval I, we have

1
2 awy 1,
p*(wo + 5 ) 5P (wo)
1 11
Am2wd (B 4 1) 2 4m23 %
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Aw? 2
w+7_ 0
4 4

Aw = 7. (4.18)

So the full width of I, namely the length of the interval between which p?(w) > M, is
Aw = v, supposing that - is small. The resonance is sharper and sharper as the frictional

effects are made smaller and smaller.

4.2 Transient Behavior in Damped Oscillation

We now turn to the discussion of transients. By a transient we mean a solution of the
differential equation when the force is f(t) = 0, but when the system is not simply at
rest. Suppose when the oscillation starts it was driven by a force for a while, and then we
turn off the force. What happens then? The system stores energy and there is a certain
amount of work done to maintain it. Now when we turn off the force, and no more work
is being done, the losses consume the energy that the system has stored. Let us suppose
that the system moves so nicely, with hardly any force, that if we let go it will oscillate
at essentially the same frequency all by itself. So we will guess that w is the resonant

frequency wg, and the stored energy will decrease.

Our goal is thus, starting with the following equation,

d*x dz

p7e) + tors + wpr =0, (4.19)

solve for z. Let us try as a solution an exponential curve, z = Ae/*. We put this into
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Eq. 4.19 with F(t) = 0, using the rule that each time we differentiate z with respect to

time, we multiply by ja. Thus our equation is of the form
(—a? + jya + wi) A’ = 0. (4.20)

The net result must be zero for all times, which is impossible unless either A = 0, which
is the rest state, or

—a® + jay +wi = 0. (4.21)

If we can solve this and find an «, then we will have a solution in which A need not be

zero. We find

a=jv/2 +\Jwd —2/4. (4.22)

For now we shall assume that + is fairly small relative to wy, so that w? — /4 is

definitely positive, and there is a real valued square root. Then we get two solutions:

a1 = §v/2 4+ \Jwg — V2[4 = §v/2 + wy, (4.23)
and likewise
ay = Jjv/2 — w,, (4.24)

where w, = \/w§ — 7?/4. Let us consider the first one. Then we know that one solution

for z is xy = Ae’*!, where A is any constant whatever. Thus ja; = —v/2 + jw,, and we
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get © = Ae(77/2+394)t or what is the same,

Ty = Ae 12l (4.25)

First, we recognize this as an oscillation at a frequency w.,, which is not eractly the
frequency wg, but is rather close to wy if the damping coefficient v is small. Second, the
amplitude of the oscillation is decreasing exponentially! If we take the real part of Eq.
4.25, we get

z, = Ae "% cosw,t. (4.26)

This is like our guess, except that the frequency really is w,.

Now let us consider the other solution, which is oy in Eq. 4.24. We see that the

difference is only that the sign of w, is reversed:

zy = Be 27wt (4.27)

What does this mean? Since Eq. 4.19 is a linear equation, if x; and x5 are each a possible
solution of Eq. 4.19 with f(¢) = 0, then x; + x4 is also a solution of the same equation.

So the general solution x is of the mathematical form

x = e "2 (At 4 BeT), (4.28)

In order for z to be real, Be~/“7* will have to be the complex conjugate of Ae/“»* so that

the imaginary parts disappear. So it turns out that B is the complex conjugate of A,
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and our real solution is

x = e 2 (Aedt 4 AreTIt), (4.29)

We can write the complex number A as A = pse’4. Then

r = e—’Yt/?(pAej(w»yt-i-ﬂA) + pAe_j(w'yH'eA))

= 2e72p, cos(wyt + 04)

So our real solution is an oscillation with a phase shift and a damping.

In this chapter, we introduced the background mathematics and physics for modelling
harmonic oscillation. The basic formula will be used again and again in different appli-
cation in the next few chapters. We will use it to model tree branch swaying motion, as

well as the heaving, pitching and rolling motion for boats in regular water waves.



Chapter 5

Modelling Inverse Harmonic

Oscillation

There are three stages to the inverse problem of harmonic oscillation, namely, scan, model
and synthesize, as shown in Figure 5.1. The scan and synthesize stages are dependent on
the specific application. In this chapter, we describe the basic parameter extraction steps
which are common to many applications of the inverse problem of harmonic oscillation,

namely, steps 2(a) and 2(b) at the modelling stage in Figure 5.1. These two steps translate

step 1 step 2 step 3 .
@,— ‘ model (extract parameters) ‘ synthesize

step 2(c) step 2(b) step 2(a)

/\property /\ can be

unknown unknown unknown observed
parameters of driving oscillating oscillator
natural phenemenon|  |° force system displacement
0 @9 X
O )

Figure 5.1: Steps 2(a) and 2(b) are the basic parameter extraction subtasks of the inverse
problem of harmonic oscillation.

64
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observed displacement to effective force parameters. Step 2(c), which relates the effective
force to the natural phenomenon, is again dependent on the specific application. We defer

the discussion of step 2(c) until later chapters when we deal with actual applications.

5.1 2z and f in Terms of Fourier Series

Before we discuss steps 2(a) and 2(b) in detail, we will briefly describe the representation

which we use to express the displacement x(t) and the driving force f(t).

Our goal is to represent x and f in their Fourier series expansion. First, we will talk
about the case where x and f are smooth functions. Then, we will apply the theory to

our sampled data.

5.1.1 The General Case

We do not know the driving force, f(¢), but we can express it as a Fourier transform:

fit)=fo+ i ficos(iwit + A;),

=1

where w; = 27 /(NT) is the fundamental frequency, NT is the duration of f(t), i.e., f(t)
is defined for ¢t € [0, NT'), i is an index, the f;’s are the amplitude coefficients and the
A;’s are the phase delays.

We know the impact of each part of this force. Recall that, in chapter 4, we discussed

an example oscillating system where the driving force is a simple cosine curve p(t) =
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facos(wt + A). From that example, we know for the driving force

pilt) = f;cos(iwnt + A;) = real part of fie™?,

where f; = fie?®i. In complex exponential form, the resulting displacement is #;e/™1,

where

Since Newton’s equation of motion Eq. 4.6 is a linear equation, the displacement

caused by the driving force

flt) = ipi(t) = fo+ i ficos(iwt + A),
i—0 i—1

is just the sum of the real parts of the individual displacements 7;e/*?,

o
z(t) = )_ real part of Z;e’™"
i=0

o0
= Y real part of Rf;e’™"
i=0

From Eq. 4.12, we know that the complex number R = pei® serves the purpose of
amplifying the magnitude of f; by p and shifting its phase by 6. So we can rewrite z(t)

as

z(t) = p*0)fo+ io: p(iwy) fi cos(iwit + A; + 6;)

=1

= zo+ »_ z;cos(iwit + ¢;), (5.1)

=1
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driving force
0= [ To | + [ficos(wt+a)] + [facos(2wt+h, )|  + eee
l etc

causes
ﬁ: X + ‘xlcos( w1t+A1+61)‘ + ‘X2005(2w1t+A2+92)‘ + o060

di spl acenment

Figure 5.2: At each frequency, the driving force at that frequency determines the dis-
placement at that frequency.

where

x; = p(iwr) f; (5.2)

and

¢i = Ai + 6;. (5:3)

The relationship between the Fourier series f(¢) and z(¢) is as shown in Figure 5.2.

5.1.2 Applying the Theoretical Analysis to Sampled Data

Now we need to apply the theoretical analysis above to our observed data. This time,
instead of going from the force to the displacement, we reverse the process to use the

observed displacement to predict the driving force.

First, we need to find the Fourier series expansion for our observed data. In our

experiment, we sampled the displacement function z(t) at N sample points,

t:to—f—’TT,

where 7 = 0,1, .., N —1 is the sample point index, 7" is the sampling period. This gives

us a discrete representation of z(t), namely Z(7), The Fourier series expansion of Z(7)
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has only M + 1 terms,

#(1) = &+ 3 &, cos(2m(v/N)T + 8,), (5.4)

v=1

where M is roughly half of N

v is a measure for the number of cycles over the N samples, and the fundamental fre-
quency corresponds to v = 1, i.e., one cycle per N samples. The fundamental angular
frequency is

w, = 2 /(NT).

Therefore, we expect our estimated force f (7) to have only M terms as well, such as

M
fr)y=fo+ 3 focos@@n(v/N)T + A,), (5.5)
v=1
where
-/i'u - ﬁ(y)fu (5 6)
and
b =A, +0,. (5.7)

Here, p(v) and 6, are sampled from p(w) and #(w) at w = 27v/(NT).

Next, we will discuss the driving force parameter extraction steps 2(a) and 2(b).
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5.2 Example Input Displacement z

In addition to the general explanation of the process of inferring a driving force from the
observed displacement, we will use an example to demonstrate how information can be
estimated and analyzed at each step. The data is obtained by observing the top of a tree
swaying in the wind (Figure 6.16). We will discuss this in more detail in chapter 6. For
the time being, this data set will be used as an example to demonstrate the basic data
analysis process. Figure 5.3 is the example observed oscillator displacement #(7) plotted
against sample point index 7, where 7 = 0,1, . . , N — 1, the total number of samples is
N =1047, and the sampling period is T = % second. This data is based on the observed

displacement of an oscillator due to natural wind force.

5.3 Obtaining Properties of the Oscillating System

In order to extract the driving force of a harmonic oscillation by observing its displace-
ment, we need to learn the properties of the system, such as its natural frequency wy and
its damping coefficient . The harmonic oscillation is a resonance phenomenon, in which
case, information about wy and ~ are embedded in the displacement data z. To extract

this information, we can study z’s behavior in frequency domain.
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Figure 5.3: An example plot of the oscillator displacement z component of the oscillator’s
movement plotted against sample index 7.

5.3.1 Transforming z(7) to Frequency Domain

We transform Z(7) to the frequency domain using the discrete Fourier transform (DFT):

L 2n(v/N)r
__Z *]7rll
NT:O

where the quantity v/N is analogous to frequency measured in cycles per sampling in-
terval.

Taking our example displacement data z in Figure 5.3, we apply the DFT to it to
obtain its frequency domain response. The amplitude of the DFT, | X (v)| is shown in

Figure 5.4.
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frequency domain response for the tree top data (v=0..1046)
6 T T T T

magnitude of discrete Fourier transform |X(v)|
w
T
Il

0 200 400 600 800 1000 1200
\Y

Figure 5.4: Frequency domain analysis of the oscillator’s displacement data for v =
0 ..1046.

As explained in Appendix A, in Figure 5.4, forv =1.. N —1, |X(1/)| is symmetric.
Also, since the highest frequency needed corresponds to v = | N/2], the second half of
Figure 5.4 contains redundant information. We thus only need to analyze the first half

of it, as shown in Figure 5.5

5.3.2 The Natural Frequency and Other Phenomena

Every structure has what is called a natural frequency, or rate at which it tends to vibrate.
This is determined by its height, shape, material and other details [Fey63]. An oscillator
is like a type of signal filter which amplifies the signal at around the neighbourhood of
its natural frequency and it tends to “annihilate” the signal at other frequencies. This
is the so-called resonance phenomenon. We can estimate the natural frequency of such

an oscillator by analyzing its response in the frequency domain and look for peaks in the
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frequncy domain response for the tree top data (v=0..523)
6 T T T T

Xl
w
T
I

0 100 200 300 400 500 600
v

Figure 5.5: Frequency domain analysis of the oscillator’s spatial domain data for v =
0..523.

plot.

In our example, there are several significant peaks in the frequency domain analysis
in Figure 5.5. For the time being, we intend to have the user observing the pattern in
the plot. No method is provided to analyze the peaks in the graph automatically by the
computer. Identification of the peak in the graph relies on the user’s intuition. This is

not a difficult task. The peaks are normally quite prominent.

e There is a dominating spike at ¥ = 0 in Figure 5.5, which corresponds to angular

frequency w = 0. This spike shows the average displacement of the oscillator.

e There is a peak at ¥ = 8 in Figure 5.5. This corresponds to the angular frequency

v

~7> Where

w =2

v 8 8 _, 1

~

NT ~ 1047+ (1/6)s _ 1047° 225
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The object from which we acquired this data was oscillating due to the wind force
exerted on it, and this frequency is roughly related to the large scale wind move-
ment. Once every 22 seconds or so, a gust of wind starts, blows stronger and

stronger, then slowly dies down.

e There is a peak at ¥ = 89 in Figure 5.5. This corresponds to angular frequency

v

~7> Where

w =27

v 89 N
NT ~ 1047 % (1/6)s  2s’

When we watch the object oscillate, it tends to move left and right once every 2
seconds or so. This clearly corresponds to the natural frequency of the observed
object, which is

wo = 2m— = . (5.8)

5.3.3 Damping Coefficient

Another interesting thing about a resonance phenomenon is that sometimes it is possible
to infer the damping property of the system by observing the frequency domain response
X (w) of the displacement z(t) near the oscillator’s natural frequency wy [Fey63]. Here,
we will briefly explain how this is done.

First, we take a close look at the behavior of Z(7) near the natural frequency of the
oscillating system, and check to see what it depends on. This information will help us
to extract the damping coefficient. Since the driving force is like an input signal, the
oscillator is like a filter and the displacement is like an output. The relationship between

the frequency domain response of the input and the output will give us insights about
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the filter.

We have written down the Fourier series expansion for Z(7) in Eq. 5.4 as

i(T) = &g+ D &, cos(2m(v/N)T + ).

v=1

In the previous section, we used the DFT to transform Z(7) to the frequency domain to

study its behavior at near the natural frequency of the oscillator

1 & —]27r I//N)

The coefficients in function #(7) are related to X (v) in the following way

.’2'0 = X(O),
i, = 2XW)|, forv=1..M—1,
2|X(M)|, when N is odd
Iy =
|X(M)|, when N is even
¢, = phase angle of X(v), forv=1.. M. (5.9)

We analyze the unknown f(7) function in a similar way. Recall that we had predicted

that the Fourier series expansion of f(7)

M-—1
fo+ S focosn(v/N)r +A,).

v=1

fr) =
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Its DF'T shows the driving force’s frequency domain response,
. 1 N1 .
P) = = ¥ flr)eieir,
N 7=0
Similarly, the coefficients in function f (1) are related to F (v) in the following way:

fo = F(0)7
f, = 2FW)|, forv=1..M—1,
2|F(M)|, when N is odd

|[F(M)|, when N is even
A, = phase angle of F(v). (5.10)

In Section 5.1, Eq. 5.6 expresses the relationship between the amplitude coefficients
of 2(7) and f(7)

z, = p(v) fo- (5.11)

Using Equations 5.9 and 5.10, we can rewrite the equation above as
1X,| = p(v)|F,|, forv=0.. M. (5.12)

Thus, in terms of magnitude, the frequency domain spectrum of the displacement and

that of the driving force are related by the amplification factor p(v).

For the example, from our analysis in Section 5.3.2, we notice that the dominant

frequencies of the wind force is near v = 8, whereas the natural frequency of the oscillator
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Figure 5.6: Plot of p? versus w.

is near vy = 89. In the plot of | X (v)| in Figure 5.4, the two peaks at those two values are
clearly separated. Since the dominating wind force frequency is much lower, we assume
that the frequency spectrum of the wind has no significant features near the natural

frequency of the oscillator.

Therefore, the peak in | X ()| near the oscillator’s natural frequency is mainly due to
the resonance effect, which is mathematically due to the the amplification factor p(v).

In other words, near the tree’s natural frequency, | X (w)| is roughly proportional to j(v).

Recall that in Section 4.1 we talked about the relationship between p?(w) and the
damping coefficient y. As shown in Figure 5.6, clearly, the magnification factor is much
larger around the neighborhood of the oscillator’s natural frequency. As we explained
in Section 4.1, the information about 7 is embedded in the curve p?(w). Let Mj be the
maximum height of the curve p?(w) at w = wy. The length of the interval between which

p?*(w) > $ My is Aw =+, supposing that +y is small as shown in Figure 5.6 [Fey63].

For our example, since we expect | X (w)| to be roughly proportional to j(v) near the
oscillator’s natural frequency, instead of plotting p?, we can examine \X (v)|?, as shown in

Figure 5.7. The width at half the maximum height is Av = 14. The damping coeflicient
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scuare of the magnitude of the frequency domain response for tree fop displacement data
zoomed in at the neightbourhood of w=89.
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Figure 5.7: Estimate  from |X (v)|2.

is thus estimated to be

27 Av 21 x 14 1
YTONT T 104715 0.504s".

5.3.4 Step 2(b): Going from Displacement to Force

Knowing the natural frequency wy and the damping coefficient v, we can use the equation
of harmonic oscillation, Eq. 5.13, to drive the force per unit mass f /m from the observed

displacement data # and its frequency domain transformation X (v):

d’z  dxr f
=L 1
s +7dt + wyz = (5.13)

For our purposes, knowing the fluctuation of the force up to a constant scaling factor
1/m is good enough. We do not need to know the absolute value of the force. This is
because we intend to apply the wind to virtual objects, for instance a virtual plant. For
computer graphics purposes, the virtual object does not have a real mass. So long as the

ratio of mass between the virtual object and the observed real object is estimated to be
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Table 5.1: Components of the Fourier series of f(t) and x(¢).
force effect of oscillator displacement
(unknown) | (due to wy and ) | (can be calculated)

~ ~

amplitude fu v Ty

~ ~ A~

phase A, 0, by

a reasonable value, the absolute value of the mass of the observed object does not have

to be known.

The Fourier series expansion of Z is

2(r) = 3o+ Y &, cos(2m(v/N)T + 4,)

v=1

and the Fourier series expansion of the unknown wind force f is

fr)=fo+ f f,cos(2m(v/N)T + A,).

v=1

The relationship between the Fourier series f(¢) and z(t) is as shown in Figure 5.2. The
relevant components are listed in Table 5.1.

Here, p, and 0, are the sampled functions of the force-to-displacement magnification
factor p and the additional phase shift # due to the oscillating system. We want to
derive the relationship between force per unit mass f /m and displacement z. For Z, the
coefficients and phase shifts can be obtained from X , the frequency domain response of

% (Eq. 5.9). Hence, to obtain the coefficients and phase delays of the driving force per
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unit mass f /m, we only need to re-arrange Equations 5.6 and 5.7, yielding:

fo _ 1 a0 _ 1|X(0)

m — mp0)  m p0)’
fi 1 i, 12 X(v)
m  mplv) m pv)

~ ~

¢, — 0, = ( phase angle of X(v)) —0(v), forv=1.. M —1.

b
I

Note that mp(v) is a function which depends on only the natural frequency and the

damping coefficient of the oscillator.

5.3.5 Calculation Using Example Data

In this section, we want to calculate the driving force using the method above (Equation
5.14). First, we will show the estimated phase shift of the driving force at each frequency.

Then we will show its estimated magnitude at each frequency.

5.3.5.1 Phase Shifts of Driving Force

For the phase shift calculation, the observed resulting phase shift (;3 in displacement z
at each frequency is plotted in Figure 5.8. The phase shift 0 due to the effect of the
oscillator is plotted in Figure 5.9. Using QAS and é, we estimated the initial phase delay
A in the wind force as shown in Figure 5.10. The phase delay in the wind force looks

random, which is what we expected.
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phase shift @ of X(v) for observed displacement data
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Figure 5.8: Phase shift ¢(v) for the observed displacement data’s Fourier series represen-
tation.
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Figure 5.9: Phase shift §(v) due to the oscillator.
5.3.5.2 Amplitudes of Driving Force

For our example data, the amplitude of the DFT of the driving force at each frequency is
calculated using Eq. 5.14. In Figure 5.11, we plot the estimated amplitude of the DF'T
of the driving force against v.

We would like to be able to say something about the reliability of our estimate. In
order to do that, we need to address an important issue, namely, the noise in our input

displacement data. Since we are dealing with data obtained from the real world, the data
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Figure 5.10: Estimated phase delay of the driving force.
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Figure 5.11: Estimated amplitude of the driving force in frequency domain.

will be noisy. Such noise might contaminate the data at certain frequency range so much
that the noise would obscure the signal. We should trust the estimated data only in the
frequency range where the signal component is dominates the noise component. In the
next section, we will talk about how the theoretical white noise analysis is done for our
specific problem, namely, extracting the driving force parameter from observed harmonic
oscillation. Then, we will demonstrate how to apply this white noise analysis theory to

our example data. This will tell us in which frequency range the extracted parameters
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contain usable information.

5.4 White Noise Analysis

Since it is likely that our tracking result is not 100% accurate, we shall model the tracking
error using Gaussian white noise. Let z,(t) be the white noise in the displacement data
z(t). To characterize white noise’s behavior in frequency domain, we need to look at its

power density spectrum [Pee87].

5.4.1 White Noise Power Density Spectrum

In this section, we will briefly derive the discrete representation of the expected power

density spectrum of white noise given N sampling points in the spatial domain [Pee87].

5.4.1.1 Energy

Let z,(t) be a Gaussian noise function, where the random variable is drawn from a
Gaussian distribution with standard deviation o,,;,.. Note that here we use the subscript
n in z,(t) to mean noise, so that the reader will not confuse the noise function z,(¢) with
the displacement function z(t). The energy contained in z,(t) in the interval ¢ € [to, 1]
is

t1
Energy(t; — ty) = / o2 (t)dt.

to

In our applications, we are more likely to deal with the discrete presentation of signal
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and noise. Assume that we sampled function z,,(¢) at N points,
t = t() + ’TT.

We obtained the sampled function Z,(7), where ¢, is the starting point of the sampling
process, 7 is the sampling index, 7 =0 .. N — 1, and T = 55 is the sampling period.

The discrete Fourier transform of Z,(7) is

N-1
)f'n(y) =N Z in(T)e*jQ”(”/N)T,

7=0

where the quantity v/N is analogous to frequency measured in cycles per sampling in-

terval. The discrete representation of the energy contained in Z,(7) is

to— o N,
N > @ (r). (5.14)

7=0

Energy(tN) =

5.4.1.2 Power and Power Density Spectrum

By dividing the energy by the time duration, we obtain the power of the white noise

function

Energy(TN)

1 N-1
P(TN) = P— = > &2(7).
7=0

By Parseval’s theorem [Pee87], we can relate the power of Z,(7) to its discrete Fourier

transform [PM92]:

N-1 N-1

> an(r) = 1 Xa()]".
v=0

=0

P(TN) =

2|~

3
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The sequence | X, (v)|? for v = 0,1, ..., N —1is the distribution of power as a function

of frequency and is called the power density spectrum (PDS).

The variable Z, (7) is a random variable for each 7, and P(7N) is actually a random
variable with respect to the random process which generated Z,(7) [Pee87]. By taking

its expected value, we can obtain an average power Py pite_noise for the random process:

Paicanul V) = EIPGN = B |4 T 20| £ |5 K] )

Since Z,(7) is independently sampled Gaussian white noise for each 7, the expected value
is

1 N—-1
E lﬁ Z ii(T)] = OVZLoise7

where o2,

is the variance of the Gaussian. We can rewrite Equation 5.15 as

N-1
Pyhite_noise(TN) = Uvzzoise = z E[|Xn(’/)|2] (5.16)

v=0

5.4.1.3 Band-Limited White Noise

For our applications, we are only dealing with band-limited white noise. This white noise
has a nonzero and constant power density spectrum (PDS) over a finite frequency band
and zero everywhere else, as shown in Figure 5.12. Here, between v = 0 .. N — 1, the

white noise power density spectrum’s expected value is constant

E[|X,(v)|?] = constant = S (5.17)

white noise:
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power density spectrum (pds)

SWhite noise

0 N-1
U

Figure 5.12: Band-limited white noise power density spectrum.

and outside of this range the power density spectrum is zero. Substituting Eq. 5.17 into
Eq. 5.16, we have:

N-1
Pihite noise(™N) = Tnoise = Zo Swhite noise = NSwhite noise (5.18)

Re-arranging this equation, we see that the power density spectrum is constant for band-

limited white noise:

Swhite noise — %Se’ (5.19)

for the discrete representation with N samples.

5.4.2 Noise Power Density Spectrum in Force

Given the white noise in the displacement measurement, we would like to know how
much noise is introduced into the estimated driving force parameter.

When the displacement is used to extract parameters of the driving force, the white
noise #,(7) in the displacement introduces noise f,(7) into the driving force. Let F,(v)
be the discrete Fourier transform of f,(r). The noise f,(7) in the force is related to

Z,(7) in the displacement in the same way as how the force and the displacement are
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Figure 5.13: (a) The theoretically expected power density spectrum for white noise in
displacement; (b) The expected power density spectrum for noise in the estimated force
parameter, when 7v/wy = 1/10.

related. In particular, the amplitudes of their discrete Fourier transforms are related in

the following way:

where p is a discrete representation of the amplitude magnification function as shown in
Figure 5.6. The power density spectrum |F},(v)[? of the noise in the estimated force has

an expected value, by Equations 5.17 and 5.19, of:

EHX?(V)‘Q] _ Suhite noise _ Tnoise L (5.20)

I B I N p*

B[] =
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Figure 5.13(a) shows an example of a white noise power density spectrum where the
standard deviation of the white noise is 0,5 = 1 and the number of samples is N = 1000.
Figure 5.13(b) shows the expected power density spectrum E[|E}, (v)[?] of the noise in the
estimated driving force. Clearly, near the natural frequency wy of the oscillating system,
the amplitude of the noise is suppressed. The expected amplitude of the noise becomes
larger as we move away from the neighbourhood of the natural frequency. It is up to the
analyst to decide what is an acceptable frequency range where the noise in the estimated
force is tolerable. For instance, some user might think a signal to noise power spectrum
ratio of more than 10 : 1 is good enough, whereas someone else might think ratio ought
to be higher than 20 : 1 or 30 : 1, etc. Wiener filtering can be used to remove noise from
the estimated parameters. Since effective use of Wiener filter requires the user to choose

appropriate window size for the filter, user intervention would still be necessary.

5.4.3 Application to a Real Example

To demonstrate how this analysis can be used in our applications, we will apply it to our

example displacement data in Figure 5.3, which we studied earlier.

We shall assume that the only source of white noise is the discretization error in
sampling the video input signal. Each video frame has a finite resolution. When we
are extracting features from the video, the discretization causes inaccuracy in our mea-
surement and estimation. The inaccuracy in the observed displacement, which is due to
tracking error, is roughly 1 pixel, so we let the standard deviation of the white noise be

Onoise = 1. After extracting the driving force parameter from the displacement informa-
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compare power density spectrum of estimated force and expected noise in force
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Figure 5.14: Noise in estimated force parameter: (a) compare power density spectrum
of estimated force parameter and expected power density spectrum; (b) power density
ratio between estimated force parameter and noise in the force.

tion, we plot the power density spectrum of the estimated force and compare it to the
expected power density spectrum of the noise in the force, as shown in Figure 5.14(a).
By inspection, at high frequencies, the power density spectrum (PDS) of the estimated
force oscillates about the expected PDS of the assumed noise. So we expect the higher

frequency components to be largely contaminated by noise.

To get a more intuitive idea about how much signal and noise are at each frequency,

we investigate the power density spectrum ratio between the estimated force parameter
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and the expected noise at each frequency:

PDS of estimated force parameter at v

ower density spectrum ratio = —
P y 5P expected PDS of noise in force

Ew)P

|
EIAGE. (521)

where the expected PDS E[|E,,(v)[?] of noise in the force is determined by Equation 5.20.
The result is plotted in Figure 5.14. Clearly, at around the neighbourhood of the natural
frequency, the recovered signal (i.e., the estimated force parameter) dominates the power
density spectrum, because the signal to noise power density ratio is very high. So we
can trust the parameter over this range. A small part of the low frequency and the high
frequency components have low signal to noise power density ratio, so the noise is likely
to obscure the signal. Once again, a person can look at the graph and use some intuition
to decide on a frequency range near the natural frequency where the accuracy of the

estimated parameter is considered to be acceptable.

For our example, the signal to noise power density ratio is relatively large for w/wy =
0 .. 1.15, which corresponds to » = 0 .. 102. We are willing to accept the estimated

driving force in this frequency range as being usable.

For our example data, based on the information we have analyzed and calculated,
we can reconstruct the large scale fluctuation of the driving force. We can check our

calculation using our intuition, which we now discuss.
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5.5 Driving Force Reconstruction

Since we have estimated the driving force’s magnitude f,, and phase delay A, at each
frequency, we can use the Fourier series (Equation 5.5) to calculate the estimated driving
force function.

For our example data, our white noise analysis in Section 5.4.3 has shown that only
approximately the first 102 terms of the Fourier series are relatively reliable. This is
fine for our purposes, because we are only interested in the large scale or low-frequency
fluctuation of the driving force.

Intuitively, the large scale movement of the oscillator should be due to the large scale
fluctuation of the wind force. To capture the large scale wind movement, we normally
take the first 30 terms of the f(r)/m’s Fourier series expansion. The plots would be
roughly similar with a few more higher frequency details. We want to plot it against the
observed oscillator’s displacement, to see if our experiment confirms our intuition. Since
f /m and % do not have the same units, we scaled f /m by a constant factor to make
them fit into the same graph, and this does not change f /m’s fluctuation pattern. In
Figure 5.15, we plot f /m using its first 30 terms against the oscillator’s displacement.
Clearly, the large scale oscillating movement follows the large scale wind fluctuation, as

we expected.

5.6 Comparing Simulated and Actual Displacement

In this section, we conduct an experiment to demonstrate the difference between the

true driving force and the extracted force, and show their effect on the same oscillating
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Figure 5.15: The large scale driving force fluctuation (datal) compared against the ob-
served oscillator displacement (data?2).

system.

5.6.1 Experimental Setup
Figure 5.16 shows the experimental setup.

e We create a simple true force f, with sample period 7"= 1 and sample size N = 513.
We choose the amplitude of the true force in the frequency domain to be constant,
say, 1. We let the phase shift of the true force at the frequency domain to be

random between [0, 27| as shown in Figure 5.17.

e The true natural frequency wy corresponds to vy = 30 cycles per N samples, and

the true damping coefficient v corresponds to Av = 10.

e Using the true force and the true parameters, we calculate the true displacement

x, as shown in Figure 5.16.

e Since in real life, there is noise in our measurements, the displacement we observed

x* is modelled as the sum of the true displacement and a white noise component.
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Figure 5.16: Constructing the simulated displacement, then comparing it to the true
displacement without added noise.

For this experiment, the Gaussian white noise we added has its standard deviation

1

being 55 of the maximum true displacement amplitude, 5 - maz(|z(r)]).

e To obtain the estimated natural frequency wj and the estimated damping coeffi-
cient v*, we examine the discrete Fourier transformation (DFT) of the observed
displacement z*. The square of the amplitude of the DFT is plotted in Figure 5.18.
The estimated natural frequency corresponds to vj = 30, and the estimated damp-
ing coefficient v* corresponds to Av* = 10.76. There is a 0% error in the natural

frequency estimation and a 7.6% error in the damping coefficient estimation.

e Next, we estimate the parameters of the force from the observed displacement. In
Figure 5.19, we plot the amplitude of the estimated force f* and that of the true
force f. The difference between the phase delays of the extracted force and the true

force at each frequency is plotted in Figure 5.20. By observing the two figures, we
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Figure 5.17: The amplitude and phase shift of the true force in frequency domain.

can tell that the estimated values after the first 50 terms are becoming inaccurate.

To obtain a quantitative measure of the error, we calculated the average error for a

L

sequence of frequency windows with window size 3

wp-. The average relative errors
for the extracted force amplitude and the average absolute errors for the phase
delay are listed in Table 5.2. The relative error for the extracted force amplitude
is less than 6.9% near the natural frequency of the system. And the error increases

as the frequency becomes higher. At frequency 2wy, the relative error in the force

amplitude is near 20%.

e Now, we apply the estimated force f* to the original system with the true nat-
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Figure 5.18: The square of the amplitude of the frequency domain response of the ob-
served noisy displacement.
ural frequency wy and the true damping coefficient . The resulting simulated
displacement is x;. The true displacement x and the simulated displacement x; are
compared in Figure 5.21. As we can see from the plot, the movements of the two

displacements are similar but not exactly the same.

So far, we have discussed how to extract the effective driving force information from
observed oscillator displacement. We demonstrated how to analyze the noise in the result
and the effect of the noise in the extracted driving force. This is a basic component which

will be used in different applications of the inverse problem of harmonic oscillation.
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Figure 5.19: A comparison of the amplitude of the actual force and the estimated force.

To demonstrate the usefulness of VIDA, in particular, the inverse problem of har-

monic oscillation, we will discuss two applications in the next few chapters. In the first

application, we extract wind speed parameters, and in the second, we estimate regular

wave parameters. In addition to the basic modelling steps 2(a) and 2(b) discussed above,

we will explore the other application dependent parts in the processing stages:

model, synthesize.

scan,
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estimated force phase shift- true force phase shift
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Figure 5.20: The difference between the phase shift of the estimated force
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Figure 5.21: A comparison of the simulated displacement due to the estimated force and
the true displacement without added noise.
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Table 5.2: Experimental result: the average relative error in extracted force for different
frequency windows.

Center of window relative error  absolute error

(w/wp) for amplitude for phase delay
0.2000 0.0628 0.0130
0.5333 0.0702 0.0220
0.8667 0.0613 0.0169
1.2000 0.0698 0.0078
1.5333 0.0929 0.0249
1.8667 0.1796 0.0668
2.2000 0.2367 0.0462
2.5333 0.2612 0.1331
2.8667 0.5169 0.0939
3.2000 0.4917 0.1814
3.5333 0.5153 0.1889
3.8667 0.5365 0.4287
4.2000 0.6863 0.2430
4.5333 0.9835 0.2608
4.8667 1.3753 0.4242
5.2000 2.1689 0.4788
5.0333 1.7016 0.3137
5.8667 2.4852 0.4749
6.2000 2.8746 0.3284
6.5333 3.4773 0.3827
6.8667 2.6939 0.3266
'7.2000 4.2162 0.4853
7.5333 4.6616 0.5016
7.8667 3.2204 0.4277

8.2000 5.1462 0.4203




Chapter 6

Extracting Wind Speed Parameters

In this chapter, we show how to extract wind speed parameters by observing the motion

of objects in the video, such as plants, as shown in Figure 6.1.

Ta bserved
. oscillating system 00S
wind wind force properties motion of
acting on the
speed pI%n ! W, Y aplant

Figure 6.1: Extract wind speed from the motion of a plant in the wind.

6.1 Assumptions about the Input

An example input video sequence could be tree branches moving in the wind as shown
in Figure 6.2. The swaying of a plant or a tree branch in the wind is approximated by
the motion of a harmonic oscillator.

The video sequence is the 2D projection of the 3D world as shown in Figure 6.3.

When our camera is far away from the tree, we assume the projection is orthogonal.

98
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Figure 6.2: An example frame from a video of tree swaying in the wind.
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Figure 6.3: The video sequence is a 2D projection of the 3D world.

In the video, we observe the z and y components of the tree movement in the image
coordinate system. For the purpose of demonstrating the principle of our wind speed
estimation technique, we can assume that the direction of the large scale wind movement
is parallel to the ground. For our purposes, we want to recover the large scale wind speed
variation over time, so we will consider only the large scale tree motion, ignore the small
noise and minor turbulence. Hence, small scale tree movements such as leaves fluttering

due to small scale wind turbulence are neglected.
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direction of
current

Figure 6.4: Projecting the length of the cylinder to a plane perpendicular to the direction
of the current.

6.2 Assumptions about the Model

To simplify the problem, we treat the situation as the air flowing around a cylinder.
This simplification is made based on the following argument. The main tree branch we
observed has a number of sub-branches. This main branch and its sub-branches roughly
move together as a whole. At wind speed V', the force the wind exerts on a cylindrical
object is proportional to V2Dl cos(a), where D is the diameter of the cylinder, [ is the
length of the cylinder and [ cos(«) is the projection of the cylinder length to the plane
perpendicular to the direction of the fluid motion as shown in Figure 6.4. We consider
the main branch and its sub-branch as consisting of ncyinder segments of cylinders. A
cylinder segment would have diameter D;, length [; and wind instance angle a;. So the

total amount of wind force the structure experiences is proportional to

Neylinder

V2 Z Dzlz COS(O!i).

=1

This summation merely estimates the effective cross-sectional area which is directly at-

tacked by the wind. For our purposes, using a single cylinder for this estimate is sufficient,
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where for the simple cylinder

Neylinder

Dicos(e) = > Djl;cos(ey), (6.1)

i=1

for an appropriate D and [. We make this simplifying assumption for the following

reasons:

e We are only interested in the wind speed fluctuation along the direction parallel
to the image plane, not its magnitude. When we use this fluctuation to drive the
computer generated objects, only the relative dimensions and masses of the virtual
objects and the original object matters. For instance, if we want to use the wind
to drive synthetic snow flakes, the mass ratio between the tree and a snow flake
only needs to be a rough and a somewhat reasonable guess, possibly achieved by
trial and error. But that is in any event the best we could do, because we have no
way of accurately finding out the tree’s actual mass versus the snow flake’s actual

mass.

e When the tree is not moving too wildly, the summation in Eq. 6.1 is roughly
constant for a given tree branch. Estimating the main tree branch and its sub-
branches together as one cylinder would be a reasonable and efficient approach,

and it would not affect our estimate of the wind speed fluctuation pattern.

e For a similar reason as our argument about the relative masses of two objects above,
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Figure 6.5: Flexure beam treated as a SDOF system.

the gain in parsing the detailed tree branch structure to estimate the summation

TNeylinder

> Djl;cos(a)

=1

is minimal.

6.3 Cantilever Beam Model

In Chapter 5, to make the explanation simple and intuitive, we used a single degree of
freedom (SDOF) system with point mass to model an oscillator. In this chapter, we will
use a cantilever beam model to approximate flexible beams such as the stem of a plant or
the trunk of a tree, as shown in Figure 6.5. We will show the close relationship between
the cantilever beam model and the point mass model. We will use our knowledge of the

point mass model to solve for the oscillation parameters of the cantilever beam model.
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6.3.1 Beam Bending

Since a plant swaying in the wind is similar to a beam bending, we will start our discussion
by explaining how to use beam bending to model the forces exerted on a plant or tree

like object.

Let us consider a formulation of the equation of motion for the cantilever beam in
Figure 6.5 in two dimensional space (2D). The essential properties of the beam (excluding
damping) are its flexural stiffness EI(h) and its mass per unit of length m(h). Here,
h = 0. .1 is the distance from a point on the beam to the base of the beam measured
along the beam, [ is the length of the beam, E is the Young’s modulus of elasticity and
I is the moment of inertia of the cross section of the beam. The beam is assumed to be

subjected to external force perpendicular to it with magnitude per unit length p eﬂhﬂ t).

When a beam deforms in flexure, the system in principle has an infinite number of
degrees of freedom. The shape of the beam at a given point in time can be represented as
a linear combination of different mode shapes. A simple single degree of freedom (SDOF)
analysis can be used, by assuming that only a single flexure deflection pattern can be

developed [CP93].

To approximate the motion of this system with a single degree of freedom, it is
necessary to assume that the beam will deform only in a single shape. The deflection
function will be designated ¢(h), and the amplitude of the motion relative to the moving

base will be represented by the generalized coordinate x(t). Thus, the shape of the
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deflection of the beam at a particular time ¢ is

v(h,t) = (h)x(?). (6.2)

Typically, the generalized coordinate is selected as the displacement of some convenient
reference point in the system, such as the tip displacement of this beam. In this case,
the shape function is the dimensionless ratio of the local displacement to this reference

displacement [CP93, TL25, TM49|:

p(h) = : (6.3)

Since we need to take the derivatives of a variable with respect to time ¢ or with respect
to the length parameter h, we will define some notations to make the mathematical
formulas easier to read. We will use the single dot (") and the double dot (™) to denote
taking the first and second derivatives of a function with respect to ¢, respectively. We
will use the single apostrophe mark (/) and the double apostrophe mark (") to denote

taking the first and second derivatives of a function with respect to h, respectively. Thus,

for example,

ov(h,t) .
5 = O(h,t),
and
ov(h,t) ,

Since the structure we are considering is flexible, internal virtual work W7 is per-
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formed by the real internal moments M (h,t) acting through their corresponding virtual
changes in curvature 6v” = o [%]. The virtual-work principle requires that the ex-
ternal virtual work, 6Wg(t), performed by the external loadings acting through their

corresponding virtual displacements be equated to the internal virtual work, i.e.,
oWg = Wi (6.4)

To develop the equation of motion in terms of relative displacement v(h,t), the base of
the structure can be treated as fixed while an effective loading p eﬁ(h, t) is applied. The

inertial loading is then given by
fr(h,t) = m(h)o(h,t). (6.5)
Using the full set of external forces, the external virtual work is given by
Wi = — /Ol f1(R)dh + /Olpeﬁ(h, 1)6v(h, t)dh (6.6)
and consistent with the above statement regarding internal virtual work,

SWi(t) = /0 " M(h, £)0v" (b £)dh. (6.7)

where v"(h,t) = 82:9’2’;’0

is the curvature.

Based on many years of engineering experimentation and practices, engineers find

that, for most applications, the damping stresses are developed approximately in propor-
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tion to the strain velocity, a uniaxial stress-strain relation of the form
o0 = Ele + a1€] (6.8)

may be adopted, where E' is Young’s modulus and a; is a damping constant. Intuitively,
the strain € is due to the curvature v”(h,t) of the bending beam. Hence, the bending
moment M is also related the bending beam. Now, we want to establish the relationship
between the bending moment M and the bending curvature v”(h,t). Figure 6.6 shows a
bending beam. Let the curve C;C; be the neutral axis where the length of this axis does
not change during the bending. Let y be the coordinate which indicates the distance a
point on the beam is from the neutral axis C1C5. In material engineering, the strain € is

related to the curvature v”(h,t) of the bending beam by
e = —yv"(h,t). (6.9)

According to Timoshenko [Tim49], the bending moment M and the stress o are related
by

M=— /A yodA, (6.10)

where A is the area of the cross section of the beam. Substituting Eq. 6.8 into Eq. 6.10,

we have the relationship between the bending moment M and the strain e:

M = —/AyE(e—i-ale)dA, (6.11)
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Figure 6.6: The bending moment M is related to the curvature of the bending beam.

Substituting Eq. 6.9 into Eq. 6.11, we have the relationship between the bending moment

M and the curvature v"(h, t):

M = /A yE(yv"(h, 1) + a1y0”(h, t))dA

— B / y2dA) (" (h, t) + a0 (h, 1)). (6.12)
A
Notice that the moment of inertia I of the cross section of the beam is exactly

1:/ y2dA
A

Hence, we can simplify Eq. 6.12 to be
M (h,t) = EI(h)[v"(h,t) + a10" (h,1)]. (6.13)

The basic relations may be expressed as follows:

v(h,t) = p(h)x(?) v"(h,t) = " (h)X(?)
v'(h,t) = ¢'(h)x(t) dv(h,t) = ( )6x(%)
v"(h,t) = ©"(h)x(t) 0v'(h,) = ¢ (h)OX(t)
o(h,t) = p(h)X(t) ov"(h, t) = ¢"(h)ox(t)

Finally, expressions for the external and internal virtual work may be expressed as
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follows:

Wy = }ﬂﬂ/ %+/ pegi(hs )e(R)dhlox

SW; = / EI(R)" (h)2dh + a1 (1) / EI(h)¢"(h)2dh]ox.  (6.14)

Putting Eq. 6.14 into Eq. 6.4 yields the generalized equation of motion with respect

to the moving base x(¢):

mjzp+w4%Q+WM0=%ﬁﬂ (6.15)

Here, we have

I
generalized mass : m* = / m(h)¢?(h)dh,
0
generalized damping : ¢ =a, [ EI(h)¢"(h)*dh,
generalized flexural stiffness : k* = [ EI(h)¢"(h)*dh,

I
generalized effective load : p*eﬂe: / pefh, t)o(h)dh (6.16)
0

Clearly, the generalized equation of motion for the beam is very similar to the Newton’s
equation of motion for a single degree of freedom (SDOF) system with a point mass.
In fact, the magnitude x(¢) of the beam motion is proportional to the displacement in
the point mass system. We would like to explore the relationship between them in more
detail. Before we do that, we would like to say a few words about the beam shape

function ¢(h).
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6.3.2 Shape of Deflection for Bending Beam

Under most practical circumstances, there is no analytical solution to the shape of a
bending beam. Often a certain approximate deflection that satisfies some reasonable
constraints is good enough for engineering purposes [Tim47, TM49]. For the deflection
of the bending beam, there are a number of simple deflection often used in engineering
textbooks. The one we chose for our example is based on a beam deflection equation in
[TM49]. We adapted it to our generalized equation of motion. In our case, the beam

shape equation is

o(h) = (h?/24)(61* — 4hl + h?). (6.17)
The maximum deflection ¢4, at the top of the beam is

(6.18)

Moreover, the shape function ¢ can be calculated from the deflection at the top of

the beam ¢4, To simplify things, we will reparametrize the beam using
h € cl, where ¢ € [0,1],

so that Eq. 6.17 becomes

A2
o(h) =p(cd) = 5(612 — del® + 1)
4

1" 5 2
= — —4c+
24c(6 c+c)
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_ 8 l4 2 4 2
- (@mamﬁ)ﬂc (6 —4dc+c )
c? )
= gomamg(G —4c+¢%) (6.19)

So knowing the maximum deflection, ¢,,,;, of the beam, we can use it to define the

deflection at other points on the beam given by parameter c.

6.3.3 Relation to the Point Mass System

A SDOF system with a point mass is very closely related to the SDOF cantilever beam
system. In this section, we will show how their parameters are related. Since the gen-
eralized equation of motion, Eq. 6.15, is in the same form as the Newton’s equation of
motion for SDOF system with a point mass, we will use it as the departure point for our
discussion.

We rewrite the generalized equation of motion into a form we are familiar with by

dividing both sides of Eq. 6.15 by m*:

Ext) | i) | o Pegd)
t) = —— 6.20
T + wg x(t) e (6.20)

where v* = ¢*/m* and w}? = k*/m*, and m* > 0.
If we know what x(t) is, then the oscillating system pipeline would be as shown in
Figure 6.7. We do not have x(t), but it is related to the beam’s top displacement z(?).

Specifically,
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generalized force " displacement
per unit generalized mass oscillator magnitude
P %
m * y * X (t )

Figure 6.7: Using displacement magnitude to estimate generalized force per unit gener-
alized mass.

effective driving force ~ Ocillator ~ beam top

per unit generalized mass property displacement
P &, ;
eﬁm *max & X (t)

Figure 6.8: Using beam top displacement to estimate generalized force per unit general-
ized mass.

(t) = Pmazx(t), (6.21)

where ¢,a. = @(h = 1) is a constant for our model of the cantilever beam. To make use

of this relation, we multiply both sides of generalized equation of motion Eq. 6.20 by

Qomam:

X)L dx(l) Pef!)
max maxr~ 5, mazx t) = mazx- 6.22
Pmas— 5+ Pmar— o T WG PmanX(t) = — (6.22)

Since z(t) = @mazX(t), () = PmazXx(t) and £(t) = YmazX(t), Eq. 6.22 can be rewritten

as:

Pxt)  dz(t) Pept)
o 7 + Wiz (t) = 7]Zf90maw- (6.23)

So the pipeline now looks like Figure 6.8.
The generalized natural frequency wj and generalized damping coefficient y* can thus
be estimated from the observable quantity x(t). It makes sense, for in this model the

beam shape @(h) is fixed for a given beam, and thus the whole beam moves in the same
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fluid
e.g., wind

Figure 6.9: A fluid flows around a cylinder.

frequency and with the same damping.

p* t)
Now we would like to know what em—*gomax is related to forces in the real world.

6.3.4 Drag Force

In fluid dynamics, when a fluid flows around a cylinder, as shown in Figure 6.9, it produces

a drag force, farqq-

We know

o(h) = (h2/24)(612 — 4hl + h?)

l
o= /0 Pefrh, t)e(h)dh
l

m* = /0 m(h)?(h)dh

In our example, for simplicity, we would assume that the beam structure is a cylinder
with constant diameter D and uniform mass distribution. Also, the drag force fg44 the

wind exerts on the beam is assumed to be uniformly distributed along the length of the
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beam. So we have the following simplified situation:

l
vig="22 [ o(hyan

l
m* = Tt /O ©*(h)dh,

where My, is the total mass of the cylindrical shape cantilever beam like structure.

Therefore,

Vg e Redn
a1 2 ()

Jarag Cshapes (6.24)

Motal

where

Jo p(h)dh 81
shape — T o/~ 1, Pmaz — To> 6.25
T (R 5 (02

and this is a constant for any particular shape function.

Hence, we can simplify the generalized equation of motion further and rewrite it as:

d?z(t)  ,dz(t)
az T

+ w™

P lt) Omaz
*2.T(t) _ 6ﬁf( - _ fdmgcshape (626)
m

Miotal

which is a simple Newton’s equation of motion with point mass. So, TﬁdT“:%cshape can be
estimated from observed beam top displacement z(t). This makes sense, because the

beam top motion is a representative of the beam’s motion as a whole. So the pipeline

becomes as shown in Figure 6.10.

Note that the terms x(t), m* and p’é f are merely used for deriving the relationship
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Figure 6.10: Estimate the drag force per unit mass from beam top displacement.

between the point mass model and the cantilever beam model. In practice, they never

need to be calculated explicitly.

6.3.5 Wind Velocity

In this section, we will study the relationship between the drag force and the wind

velocity.

6.3.5.1 Drag Coefficient

When a fluid flows around a cylinder, the drag force experienced by the cylinder depends
on several factors. The drag force depends on many factors. One of the factors is the drag
coefficient. Based on experimental data, physicists plotted the so-called drag coefficient
Cp as a function of Reynolds’ number Re — which is proportional to the air speed V, as

shown in Figure 6.11. Reynolds’ number Re is defined as

Re = gVD,
n

where o and 7 are the density and the coefficient of viscosity of the fluid, D is the
diameter of the cylinder. The drag coefficient C}, is a dimensionless number equal to the

drag force fyrag divided by 10V2DI cos(c), where [ is the length of the cylinder, I cos(c)
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Figure 6.11: The drag coefficient C'p, of a circular cylinder as a function of the Reynolds
number. Courtesy of Schlichting [Sch60].

is the projection of the cylinder length to the plane perpendicular to the direction of the

fluid as shown in Figure 6.4:

fdrag
= ) 2
Cp s0V2Dl cos() (6:27)

The drag coefficient is useful, because the experimental points for the drag coefficient of
circular cylinders of widely differing diameters fall on a single curve [Ide94] as shown in

Figure 6.11.

6.3.5.2 Reynolds Number and the Flow Pattern

The flow changes for different ranges of Reynolds number. The significance of the
Reynolds number is that for any two situations which have the same Reynolds num-

ber, the flows will be similar. Figure 6.12 shows some of the changes in flow pattern
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Re = 225 Re = 281

Figure 6.12: Field of flow of oil about a circular cylinder at varying Reynolds numbers
from Homann [Hom36]. It shows the transition from laminar flow to a vortex street.

at different Reynolds number. This gives us some intuitive understanding as to how
Reynolds number affects the flow around a circular cylinder. Physicists noticed that,
as the Reynolds number increases, there are several typical type of flows: steady flow,
laminar flow, periodic turbulent flow and turbulent boundary layer flow. The Reynolds
number range for each type of flow is shown in Figure 6.13, and it also indicates how the
drag coefficient is related to the change of flow pattern. Interested readers are referred

to Schlichting [Sch60] and Feynman [Fey63] for details.
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Figure 6.13: The change of flow pattern in relation with the Reynolds number and the
drag coefficient.

6.3.5.3 Factors Affecting Wind Speed Estimation

There are many parameters which affect the relationship between the wind velocity and
the drag force. Table 6.1 lists those factors that stay constant and those factors that

might change:

The relationship between wind speed and wind force on a cylinder is as shown in

Figure 6.14:
e The wind speed determines the Reynolds number,
e the Reynolds number determines the drag coefficient Cp,
e the wind speed and the drag coefficient Cp determine the drag force.

Now, we know the estimated drag force up to a scaling factor, and we would like to infer



CHAPTER 6. EXTRACTING WIND SPEED PARAMETERS 118

Table 6.1: Factors which effects the relationship between the wind velocity and the drag
force.

input wind force per unit mass f/m = cspape farag/m
unknown | wind velocity V up to a scaling factor
constants | air density o

air viscosity 7

cylinder roughness

cylinder diameter D

cylinder length [

attack angle «

variables | Reynolds number Re

drag coefficient Cp

drag coefficient drag force
wind and
\Y C b fdrag

Reynolds number
Re

Figure 6.14: The relationship between wind speed and wind force on a cylinder.

the wind speed V. We do not know what drag coefficient Cp is, which might depend on
the Reynolds number. In engineering, when the fluid flow around a cylinder is roughly
in the categories shown in Figure 6.13, engineers typically treat the drag coefficient as a
constant, such as Cp = 1.2, which is roughly the average drag coefficient for such flows.

In this thesis, we will also use this constant.
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Figure 6.15: Estimate the wind speed from beam top displacement.

6.3.5.4 Estimating Wind Velocity up to a Scaling Factor

Eq. 6.27 gives us the relationship between the velocity V' and the drag force fgq, it

exerted on a circular cylinder. We can rewrite it as

V2 — fdrag _ fdragcshape/mtotal — fdragcshape/mtotal (6 28)
CpsoDlcos(e)  CpzoDlcos(a)Cshape/Miotal Cshapeki? ’

where the k depends on the parameters of the cylinder:

. \/1 CpoDl cos(c) (6.29)

2 m ’

and k is a constant for a given cylindrical beam.

Since faragCshape/Mtotar can be estimated from the beam top displacement z(t) using
Eq. 6.26, we are able to estimate the wind speed fluctuation up to a scaling factor
\/Cshapeti- Note that we left V2 in the Equation 6.28, because, for many applications such
as re-applying the wind speed to other objects, we do not need to explicitly calculate V.
For instance, we can use the relationship between k4 in the original scenario and the
Knew N a synthesis scenario to work out the ratio between the estimated force per unit
Mass faragCshape/ Mtotar and the new force per unit mass for a synthesized plant or tree

branch.
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Now, our process pipeline can be extended to include wind speed as shown in Figure
6.15.

So far, we have talked about the modelling aspect of the wind speed extraction prob-
lem. Next, we will discuss the scanning and synthesis stage of the process. For the

synthesis stage, we will show two example applications.

6.4 Scanning Stage

The video input feature tracking process is automatically done using a software imple-
mented by Jepson, Fleet and El-Maraghi using algorithms based on Shi and Tomasi
[ST94], Jenkin and Jepson [JJ94], Jepson and Black [JB93], Jepson and Jenkin[JJ89],
Jepson, Fleet and El-Maraghi [JFEMO01], El-Maragi [EM02]. We want to track the move-
ment of the top of the tree. Figure 6.16 shows one example frame of the tracking result.
The regions in the ellipses are tracked from frame to frame. For synthesizing a computer
generated object, normally, we need only the tracking result from one of the ellipses.
For instance, in this example, we pick the rightmost ellipse. The center of the ellipse is
used as an approximation for the top of the tree branch. We record the displacement
(Zimage_planes Yimage_plane) Of the branch top from its resting position in the image coor-
dinate system. The resting position of the top of the tree branch is estimated by the
user. During the video sequence, there are periods of time when the wind dies down,
and the tree branch comes to rest briefly. Since, most of the time, the change in the y
component is negligible, we only need to consider the displacement in the x component.

The displacement data is sampled at time interval 7. As such, we will use the notation
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Figure 6.16: Trace the movement of the top of tree branches.

Timage_plane (T) for it, where sample index 7 =0.. N — 1, and N is the total number of
samples.

The measured displacement value Zimage_piane in the image coordinate system is related
to the corresponding displacement x of the real object by a scaling factor as shown in

Figure 6.17,

T = Cdistancewpizelximage_pla.ne; (630)

where
|Zobject|

Cdistance 3
| Zimage_plane |

|Zimage_piane| 1S the distance from the view point to the image plane, |Zgpject| is the
distance from the view point to the observed tree branch, and wp, is the width of each
pixel in the image plane.

Hence, we need to modify the pipeline in Figure 6.15 to take the scaling factor cg;sance

into account. After this modification, our pipeline is as shown in Figure 6.18.
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Figure 6.17: The relationship between Zjmqge_piane in the image coordinate system and
the corresponding x in 3D space.
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Figure 6.18: Estimate the wind speed parameter from beam top displacement measured
in the image coordinate system.

6.5 Synthesis

For the wind-plant interaction scenarios, we can use the wind speed parameter we es-
timated to drive the animation of synthetic objects, such as trees, plants, snow, hair,

clothes, etc.

6.5.1 Example: Wind and Synthesized Plant

In this section, we show an example of using the wind velocity parameter we estimated
to drive animation of a computer synthesized plant in the foreground. A frame of the
original video is as shown in Figure 6.2. We will refer to this video sequence as “trees-

by-the-lake”. The sampling parameters are shown in Table 6.2.

The data analysis pipeline is as shown in Figure 6.19. The plots of the data at each
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Table 6.2: Sampling parameters for the trees-by-the-lake video sequence.

Number of sample points N | 761
Sampling period T (second) | =

15
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Figure 6.19: Pipeline for applying estimated wind velocity parameter to a new computer
synthesized plant.

step are summarized below:

e Figure 6.20 shows the displacement for the top of the observed the plant branch.
The resting position of the tree top is selected by user using his/her intuition.
There were brief period in the video sequence when the wind is died down for a
little while. During this time, the top of the tree is restored to its resting position.
It is possible that the human observer could incorrectly pick the resting position
of the top of the tree branch wrong. This would result in the displacement values

being shifted by a constant value.

e Figure 6.21(top) shows the amplitude of the discrete Fourier transform of the ob-
served displacement. The amplitude squared in Figure 6.21(bottom) is used for

estimating the natural frequency and damping coefficient, of the oscillation.
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e Figure 6.22(top) compares the power density spectrums of the estimated force
parameter and the expected noise. Figure 6.22(bottom) is the signal to noise
power density spectrum ratio. This ratio is reasonably high for frequency range

w/wo € 10, 3].

e We obtain the large scale fluctuation of the force parameters by applying a low
pass filter to the estimated force parameters. Figure 6.23 is the drag force large
fluctuation curve to within a scaling factor, %cshwe, which we recovered using
Eq. 6.26. In the video, it is clear that the wind blows in one direction, in this case,
from left to the right. Hence, we expect the drag force to be having the same sign,
say, positive. Note that it is possible for the human observer to choose the resting
position of the top of the tree branch incorrectly by a few pixels. As we mentioned
earlier, this could result in the displacement values being shifted by a constant
value. In turn, the estimated driving force curve could be shifted by some constant
value. This could potentially cause the driving force to be negative while we expect
it to be positive. The relative fluctuation of the driving force curve remains the

Same.

Next, we make a computer synthesized plant. Table 6.3 compares the parameters of
the observed plant branch and the computer synthesized plant branch.

We computed the displacement for the synthesized plant branch. In Figure 6.24,
we compare this displacement to the displacement for the observed plant branch in the
original video. We place the synthesized plant in the foreground in front of the captured

video video. Figure 6.25 shows one frame of the resulting video sequence.
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Figure 6.20: The displacement of one tree branch.
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displacement; Bottom plot: the amplitude squared.
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Figure 6.22: Top plot: the amplitude of the discrete Fourier transform (DFT) of the
displacement; Bottom plot: the amplitude squared.
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Table 6.3: Comparing the parameters of the observed plant branch and the synthesized
plant branch for the trees-by-the-lake example.

observed plant branch

synthesized plant branch

natural frequency cor- 21 20
responds to v

damping corresponds 1.1818182 1
to Av

velocity scaling factor 1 1.1
Kk (relative)

view point to object 1 0.8
scaling factor cg;stance

(relative)

initial displacement, 0
initial velocity 0
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http://www.dgp.toronto.edu/~meng/animation

Figure 6.25: Adding a computer synthesized shrub in the scene and letting it sway
alongside the trees in the video sequence.
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Table 6.4: Sampling parameters for the tree-on-the-street video sequence.

Number of sample points N | 1047

Sampling period T (second) | ¢

6.5.2 Example: Wind and Snow

In this section, we show an example of using the wind velocity parameter we estimated

to drive the animation of snow in the foreground.

The input video sequence is the same example we used earlier, as shown in Figure 6.16,
when we discussed the feature tracking process. We will refer to this video as the “tree-
on-the-street” example.

The sampling parameters for the original video sequence are shown in Table 6.4.

6.5.2.1 Wind Velocity Parameter at One Location

The analysis we have talked about so far would allow us to estimate the wind velocity

parameter for the small local region around one branch of a tree or plant over time.
The data analysis process is similar to the trees-by-the-lake example. For the cur-

rent example, the estimated force fluctuation is plotted in Figure 6.26. The velocity is

estimated within a scaling factor, and it is plotted in Figure 6.27.

I I I I I
0 200 400 600 800 1000 1200

Figure 6.26: The estimated wind force parameter for the tree-on-the-street example.
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Figure 6.27: The estimated large scale wind velocity within a scaling factor for the tree-
on-the-street example.

6.5.2.2 Wind Movement in Space

So far, we have obtained an estimate of the wind velocity parameter at a small local
region around the branch we observed. We would like to extrapolate the wind field at
the vicinity of the observed object. From a single view point, we do not have an estimate
of the distance between the view point and the object. We decided instead to generate
snow the region around the image plane, as shown in Figure 6.28, then project the snow
on to the image plane. This is equivalent to having an uniformly scaled miniature version
of the real world. To blow the snow around, we would like to establish a wind velocity
estimate Vyina(,y, 2z, 7) for every point in the three dimensional (3D) miniature space,
where 7 is the sampling index which corresponds to the time t = 77".

For our example, we make some observations that help us build a simplified wind

movement model:

e The wind field is clearly moving from left to right across the image plane and the

air moves parallel to the ground.

e We could do an elaborate aerodynamic simulation of the virtual snow particles
under the influence of the wind. However, the tree we observed occupies most of

the screen space. The wind we captured is strong enough that an air particle near



CHAPTER 6. EXTRACTING WIND SPEED PARAMETERS 131

vicinity of the object
snow within this region

\ image plane
\ .
NS \\ //
\ . y, : /sky
[ IR |
1 |
1 ‘ : |
) ) il | show
t
view poin S //:L : ’/ " flake
T 1 | \
(| | X
—L A
\L‘: : Vy
|

Figure 6.28: Generating snow in the vicinity of the image plane.

the tree passes by the tree within a fraction of a second. Therefore, we decided
that a simple naive model of air flow might be sufficient. An elaborate aerodynamic
simulation may not improve the visual effect significantly when the lifespan of any

particle on a screen lasts for only a fraction of a second.

Based on these assumptions, we use a simple method to assign velocity to each location
at a given time. Let Vg ameter(7) be the wind velocity parameter we estimated and is

shown in Figure 6.27. We know that, as shown in Figure 6.18,

Cshape
‘/parameter (T) = K,V; (631)
Cdistance Wpizel

where V' is the x component of the air’s velocity as it passes by the observed tree top.
This velocity is projected onto the image plane. The corresponding velocity we observed

along the x axis of the image plane is Vimage piane and

V= Cdistance ‘/image_plane-
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So Equation 6.31 can be rewritten as

/C hapeCdi
V;Jarameter (T) = Lzsmnce’i‘/;mage_plane (T) (632)
Wpigel

Since both cg;stance and k need to be estimated, we will simplify things by using just one

parameter cyinq. Let
1
)
v CshapeCdistance ¥

Cwind =

and we have

V;mage_plane (T) = Cwind\/ wpiwelv;)arameter (T) .

In the 2D image plane, the average velocity of air particles passing by the observed tree
top is

V;mage_plane = Cwind\/wpiwelv;)arameter-

In the synthesized 3D space, near the image plane, let the slab z = 0 experience wind

fluctuation Vipage piane(7) at time t = 77,

Vwind(x = 07 Y, z, 7-) = V;mage_plane(T)-

The slab x experiences the same wind fluctuation with a time delay of

At=Ar-T=—"

image_plane
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Hence,

X
Vwind(xa Y, =z, T) = sz'mage_plane(’r - AT) = Cwindy/ wpimel‘/zoa'rameter (T - ——)

‘/image_planeT

Values between sampled points are interpolated.

6.5.2.3 Snow Generation

We shall now place computer synthesized snow into a windy scene. We generate snow

using a particle system. The system has the following components:

e The sky is modelled by a plane as shown in Figure 6.29. Each new particle is

generated at a random location on this plane.

e The particle system has a particle birth rate to control how many snow particles

are generated per second.

e Since each snow flake is very light, for its downward motion, we assume the y-

component of its velocity is a constant v,, with no acceleration.

e For each snow flake’s sideways motion, the z-component of its velocity v,(z,y, 2, T)

is assumed to be the same as the wind velocity Viina(,y, 2, 7) at that location,

UI(IE,y,Z,T) = sz’nd(xaya ZaT)' (633)

To obtain a reasonable visual effect of the snow moving with the wind, an animator

using such a system only needs to adjust cying, S0 that the wind does not appear to be
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snow particles

Figure 6.29: The setup for the snow particle system.

too weak or too strong with respect to the background video. Figure 6.30 shows one

frame of the resulting video of adding snow to the example background video.
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Figure 6.30: Using the estimated wind velocity parameters to drive the falling snow
animation.



Chapter 7

The Regular Water Wave Elevation

Problem

In this chapter, we describe our experiments in which we estimate surface water wave
elevation parameters by observing a sailboat’s motion. Then we will use the these param-
eters to drive computer synthesized boats. Often we see boats anchored by the harbor
leisurely rocking back and forth. People might wonder what caused the boats to heave
and sway. It turns out the culprit is the regular water wave.

Regular water waves are unlike wind currents. A regular water wave propagates as
a wave, but each individual water particle does not go far. Each water particle merely
moves in an elliptical or circular orbit about a local neighbourhood, which we will discuss
in more detail in section 7.2.1. Whereas, for wind currents, the air particle does not just
orbit about a local neighbourhood. The air particles actually move along with the current.
Hence, regular waves are different from wind currents.

The regular water wave’s interaction with a boat produces a change of buoyancy

136
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Figure 7.1: Use observed boat motion to estimate regular water wave elevation.

change of buoyancy
and turning moment
exerted on the boat

boat

parameters~ |

boat
motion

137

Figure 7.2: An example frame from a video of sailboats doing rolling motion in the water.

force or turning moment exerted on the boat, and this causes the boat’s heaving and

swaying motion, as shown in Figure 7.1. Since these motions can be approximated by

harmonic oscillations, we can use a boat’s motion to estimate parameters for its change

of buoyancy and turning moment by using our basic modelling approach for the inverse

harmonic oscillation problem. However, that is only half of the story. Since regular

waves are fundamentally different from wind currents, “reverse engineering” the regular

water wave elevation from observed and inferred parameters poses a brand new challenge.

This subclass of problems can serve as yet another good example of our use of harmonic

oscillation for model extraction.

7.1 Input

Consider an example input to be a sailboat anchored at shore, as shown in Figure 7.2.

For the purpose of demonstrating the principle of our approach, we will simplify the



CHAPTER 7. THE REGULAR WATER WAVE ELEVATION PROBLEM 138

Base line
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Figure 7.3: Trochoidal water wave. (Courtesy of Muckle and Taylor [MT87])

problem by just considering the video sequence where
e the camera’s main axis is parallel to the boat’s longitudinal axis for rolling motion,

e or the camera’s main axis is parallel to the boat’s transverse axis for pitching

motion.

7.2 Background: Boats in Regular Water Waves

In this section, we will go over some background information about regular water waves

and boat-water interactions.

7.2.1 Regular Water Waves

The periodic nature of the motion of water in ocean waves suggests the possibility of a
simple mathematical treatment [RC42]. The water particles in a wave rotate in elliptical
or circular orbits, the plane of which is vertical and perpendicular to the line of wave
crests, as shown in Figure 7.3. This is the underlying basis for the trochoidal theory of
water waves [RC42].

For most engineering purposes, the trochoidal wave and sine wave differ little in
profile. Engineers normally assume the profile of the water wave as sine waves in the

interest of a convenient mathematical treatment. When the water wave is travelling in
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Figure 7.4: Surface wave profile is a sum of a series of sine progressive wave at different
frequency. (Courtesy of Gillmer and Johnson [GJ82].)

one direction, say, along the axis z,,, the surface wave profile ( is the sum of orthogonal

progressive sine waves:

C = Z a; COS(k‘wi.Tw - wit - Az) (71)
1=0

This is as shown in Figure 7.4. The sine wave frequency w; = iw; of the i-th term is a

multiple of the fundamental frequency w;. The wave number k,,; is

where ); is the corresponding wavelength, ¢ is the gravitational acceleration, and A; is
the wave phase delay. Interested readers are referred to Rossel and Chapman [RC42],

and Bhattacharyya [Bha78| for details.
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Figure 7.5: Basic forces on a boat: gravitational force and buoyancy. (Courtesy of Gillmer
and Johnson [GJ82].)
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7.2.2 Basic Forces Acting on a Boat

There are two basic forces acting on a boat floating in water: the force of gravity and the
force of buoyancy. The gravity acts vertically downwards through the centre of gravity of
the boat, as shown in Figure 7.5. The force of buoyancy acts vertically upward through
the centre of buoyancy, where the resultant of all of the buoyancy forces is considered to
be acting. The centre of buoyancy is the geometric centroid of the immersed portion of
the boat’s hull. When the ship is heeled, the shape of the underwater body is changed,
thus moving the position of the centre of buoyancy.

The Principle of Archimedes states that, for a wholly or partially submerged free
body in a fluid at rest, the gravitational force my,q: g is exactly equal to the buoyancy
force 0,9v/, i.e.,

Mpoatd = OwdV,

where myoq: is the mass of the boat, sy is the volume of the immersed portion of the

boat’s hull, g,, is the density of the fluid and g is the gravitational force.
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Figure 7.7: Heaving motion of a boat due to water wave.

A ship moving on the surface of open water is almost always in oscillatory motion
[Bha78]. There are six different kinds of motions that a ship experiences, three linear
and three rotational about its three principal axes. Only three kinds of motion, namely,
heaving, rolling, and pitching, are purely oscillatory motions, since these motions act un-
der a restoring force or moment when the ship is disturbed from its equilibrium position.
They are shown in Figure 7.6. In this chapter, we will study the three types of oscillatory

motions.

7.2.3 Heaving Motion

Heaving refers to a boat’s vertical up and down motion. The water waves are the source
of boat excitation. The exciting force for heaving can be calculated by assuming that
the ship remains still as far as vertical motion is concerned and the waves pass slowly
by the ship, as shown in Figure 7.7. Let z; be the longitudinal axis of the boat. Let z,,

be the direction of wave propagation as in Eq. 7.1. We will consider an example where
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the boat’s longitudinal axis x, is parallel to the wave direction of propagation z,. In
this case, for simplicity, we assume that these axes coincide, so that z,, = zp. Let wy(zp)
be the width of the boat. The additional buoyancy df (x,) on a section of a ship of unit

length dx, at x, due to the surface wave profile ((x,,t) is as shown in Figure 7.8(a):

df (zp) = owgws(zs)Cdry. (7.2)

In this figure the additional buoyancy due to the wave is negative, because this block is
in the wave trough. The exciting force F' for the boat’s heaving motion can be obtained

by integrating such additional buoyancy along the ship:
Ly/2
exciting force = F = owg/ / wy () Cdp (7.3)
—Ly/2

where Ly is the length of the boat, wy(z}) is the width of the boat. For a simple surface

wave profile with angular frequency w, i.e., for the case where

¢ = acos(kyxy —wt — A), (7.4)
the heaving exciting force is
Ly/2
F = Fycos(wt+ A) = awga/ / wp(xp) cos(kyxp)dxy cos(wt + A). (7.5)
—Ly/2

The restoring force in heaving can be attributed to the boat’s vertical movement. In

most engineering analysis, we assume the side of the boat as wall-sided, i.e., they are
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Figure 7.8: (a) Heaving excitation force on a buoy due to water wave, assuming boat
is fixed and water is moving. (b) Heaving restoring force due to excessive buoyancy,
assuming boat is moving and water is not.

parallel to the boat’s upright axis. If we assume now that the boat is moving and the
water is still instead, in Figure 7.8(b), the boat shown in solid line is in its the equilibrium
position, where the gravitational force my,,; g is exactly equal to the buoyancy force 0,9/,
where v/ is the volume of the immersed portion of the boat’s hull. The dotted lines show
the boat heaved into the water an amount Ah. The increase in buoyancy is o,9AAh,
where the boat’s water plane area A is assumed to be constant for the wall-sided boat.

This force will tend to restore the boat to its original position. The case when the boat
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heaved upwards is similar.

The inertial force for heaving is

d>Ah

Myirtual dt2 .

Here, myrtua is @ virtual mass which is the sum of the mass of the boat my.,: and the

added mass Magqeq Of the water accelerated by the heaving motion of the boat:

Myirtual = Mboat + Madded-

The added mass due to the entrained water is usually expressed as a percentage of
the mass of the boat. In marine engineering, this percentage is normally determined

experimentally for a given boat.

The damping force is

dAh
Myirtual Y heave W )

where ;... 15 the damping coefficient.

For heaving motion, the change of draft Ah due to the exciting force F' can be

described using Newton’s equation of motion:

d’Ah dAh
mvirtualw + mvirtualf)/heave? + JngAh =F (76)
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It can be rewritten as

d>Ah dAh F

2
n 7=y Ah = : 7.7
dt2 Vheave dt Woheave Meirtual ( )

where wWopeqe 1S the natural frequency the heaving motion of the boat, and wopegpe’ =

owgA

Myirtual

7.2.4 Pitching and Rolling Motion

Rolling is a boat’s angular motion about the longitudinal axis, and pitching is a boat’s
angular motion about the transverse axis, as shown in Figure 7.6. They can be modelled
using the same approach. Without loss of generalization, in this section, we will use the

pitching motion as our example.

The equation of motion for pitching is [Bha78]

d*a

Urr

do S
+ Ip’YpE + mboatgGQMa = Mp. (78)

Here, o is the rotational angle from the upright position due to pitching, I, is the mass

moment of inertia of the boat about its transverse rotational axis, so

d*a

inertia moment = Ipﬁ’

and

do

damping moment = Ipfypa.
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Figure 7.9: The restoring moment in pitching.

The restoring moment is due to the boat’s inclination angle o [MT87]. As shown in Figure
7.9. The inclination affects the shape of the underwater form and this in turn causes the
position of the centre of buoyancy to move from By to B;. This arises because a volume
UyOU; has come out of the water and an equal volume WyOW; has gone into the water
to maintain equilibrium. Now, the buoyancy acts upwards through B;. If the vertical
through B; is continued upwards, it intersects the original vertical at a point which is
denoted by (s in the diagram. This point @)y, is called the metacentre and for small
angles of inclination it is fixed in position. The inclination does not affect the position
of G, the centre of gravity, unless there is some weight which is free to move. Now,
the weight mpeeg acting downwards and the buoyant force of equal magnitude acting
upwards are not in the same straight line, but form a couple of magnitudes Mo 9GZ,

where GZ is the perpendicular on B;Q,; drawn from G. The couple will restore the
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body to its original position. Here,
GZ = GQysina ~ GQya, (7.9)

when « is small. The line GZ is called the righting arm and GQ,, is called metacentric
height. So

restoring moment = Mppat §GZ = Mpoat §GQ ey, (7.10)

The exciting moment for pitching is due to the unbalanced moment caused by the waves
about the transverse axis of the boat. We will consider an example where the boat’s
longitudinal axis is parallel to the wave’s direction of propagation. Once again, in this
case, we let x,, = x,. The wave’s profile ((z,,t) is defined in Eq. 7.1. Consider a narrow
strip of the boat with width dzy, as shown in Figure 7.10. The excess buoyancy df ()
experienced by this strip due to the wave is as shown in equation 7.2. The resulting

turning moment dM, around the boat’s transverse axis would be
dMy(25) = df (20) 75 = Owgws(ws)CTds.

Therefore, we can integrate the contribution from each strip along the boat to obtain the

exciting moment:
Lb/2
exciting moment = = owg/ ) b(Zp)Cxpdy. (7.11)
Ly 2

For a simple surface wave profile with angular frequency w, i.e., for the case where
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Figure 7.10: Pitching motion of a boat due to water wave.

¢ = acos(kyxy, —wt — A), (7.12)
the pitching exciting moment is

M, = M, sin(wt+A)

Ly/2

= [owga/ wy () sin(kyxp)xpdry) sin(wt + A), (7.13)

—Ly/2

where the amplitude of the exciting moment is

Lb/2
M, = aawg/ b(Zp) Sin(kyxp)xpds. (7.14)
Lb/2

7.3 Input and Assumptions

We observed sailboats anchored by the shore. We videotaped a sailboat with dominant
rolling motion with the forward axis of the camera perpendicular to the rolling motion.
In case of dominant pitching motion, we had the camera’s forward axis perpendicular to
the pitching motion, as shown in Figure 7.11. Since the harbor is a relatively sheltered

environment, heaving motion is not prominent enough to be analyzed, but the data for
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Figure 7.11: Boats in pitching motion.

pitching was measurable and was thus useful for validating our model.

7.4 Process

In this section, we describe our experiments where we estimate surface water wave ele-

vation by observing a sailboat’s motion.

7.4.1 Scan

As with our process for detecting tree displacement due to wind, the video input feature
tracking process is automatically done using a software implemented by Jepson, Fleet
and El-Maraghi using algorithms based on Shi and Tomasi [ST94], Jenkin and Jepson
[JJ94], Jepson and Black [JB93], Jepson and Jenkin[JJ89], Jepson, Fleet and El-Maraghi
[JFEMO1], El-Maragi [EMO02].

For a rolling or pitching video sequence, we decide on a sailboat we want to observe.
We want to monitor the inclination of a sailboat by tracking two points of its mast: the
top of the mast P, and the base of the mast P, as illustrated in Figure 7.12. Figure 7.13
shows one frame of the tracking result for the rolling motion example. The centres the

the ellipses are the points tracked by the tracking software.
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http://www.dgp.toronto.edu/~meng/animation
Figure 7.13: One frame of the tracking result.

We assume the image’s vertical axis is parallel to the upright position of the mast of
the sailboat. So the line P, P, and the image’s vertical axis form an angle c, which is the
inclination of the sailboat in the viewing plane. Since when the boat is experiencing a
pitching dominated motion, we videotaped it with the camera’s forward axis perpendic-
ular to the pitching motion, in which case o would be the pitching inclination. Similarly,

for rolling, the camera setup would ensure that « is the rolling inclination.

7.4.2 Modelling Pitching

The pitching motion is approximated by a harmonic oscillation. We can rewrite its

equation of motion (Equation 7.8) in a form similar to the one for simple spring-mass
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Figure 7.14: Obtain exciting moment by observing the listed angle.

system:

d*a do ) M,
aE T T T (719

where the natural frequency for the pitching motion is wo) = MpoatgGQu/Ip. We can
use the basic approach discussed in section 5 to obtain the exciting moment M,(t) for
pitching by analyzing the pitching inclination «(t), as shown in Figure 7.14.

As we can see from equations 7.12 and 7.13, a surface water wave at frequency w;
can cause pitching exciting moment only at frequency w;. Similar to our treatment of
converting wind force to wind velocity, we can express both the surface wave profile
and the exciting moment M, as Fourier series expansions.

By Equation 7.14, at each frequency w;, the relationship between the wave height a;

and the magnitude of exciting moment M), is

. M/ _ My, 716
ﬁ - Owg ffﬁ{jQ wy () sin(ky;xs)Tpdy Cp;
where
Ly/2 .
Owq [~ wy(xp) sin(ky;xp)pde
cpi(Lba Wp, kwia Ip) = gf Lo/2 b( b) ( b) b (717)

I,

is a scaling factor. Note that we keep the form M, /I, as it is in order to emphasize

the fact that Eq. 7.15 can only recover the turning moment up to a scaling factor.
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In other words, from the inclination angle, we can recover M, /I,, i.e., the fluctuation
of the turning moment at a frequency, not the magnitude of M,,. Let [c, ]observea De
the scaling factor for the observed boat and [cp;|synthesize be the scaling factor for the
synthesized boat. Since we are interested in using the wave elevation parameters to
synthesize movement of other floating buoys, the relative value of the scaling factor

[Cp;]synthesized/ [Cp;Jobserved 18 more relevant and useful than the absolute value of [c,;] =

[Cpi]observed-

7.4.3 Modelling Rolling

The analysis of the image sequence of rolling motion is similar to that of pitching motion,

except that the length and the width are switched in the analysis.

For rolling, let the transverse axis of the boat be the z-axis of the boat. Let the
direction the wave travels be the z-axis of the wave. We consider the scenario where the
boat’s transverse axis is parallel to the direction in which the wave travels. Similar to
our analysis of the pitching motion, we let the z-axes of the wave and the boat coincide.
At each frequency w;, the relationship between the wave height a; and the magnitude of

exciting moment M,, for rolling is

a; = s (718)

where

0wy ffvvi’,{jQ Ip(xp) sin(kyizs) Tpdxy,

cri(Wb: lba kwi, L") = T

(7.19)
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Figure 7.15: The inclination angle of the left most boat in the boat rolling example video
sequence.

is a scaling factor for the rolling motion, W is the width of the boat at its widest point,

lp(xp) is the the length of the boat at x;, and I, is the boat’s moment of inertia for rolling.

7.4.4 Synthesis

We want to use the water wave elevation parameters we extracted to drive the animation

of the synthesized boat.

7.4.4.1 Rolling Example

Figure 7.2 shows one frame of an example video sequence of sailboats’ rolling motion.

Figure 7.15 shows the observed inclination angle a for the left most boat in the video

sequence. The number of samples is N = 509. The sampling period is T = % second.

The discrete Fourier transformation of the inclination angle, DFT(«), is calculated.

Figure 7.16 shows the square of amplitude of the frequency domain analysis, |[DFT(c)|?.
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Figure 7.16: The frequency domain analysis of the inclination angle of the left most boat
in the boat rolling example video sequence.

The natural frequency is estimated to be corresponding to vy = 19,

Wy =

2T 219 1

12

and the damping coefficient is estimated to be Av = 1.21.

NT — 509- L second - 2.23 second’

The exciting moment parameter we extract is M, /I, where M, is the exciting moment

for rolling and I, is the moment of inertia for rolling. The amplitude of the exciting

moment parameter M, /I, at the frequency domain is plotted in Figure 7.17. The point

tracking result for the rolling sequence is accurate to % of a pixel. We can assume that

the tracking result might be off by -+ of a pixel for P; and off by 15 of a pixel for P, In
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Figure 7.17: The frequency domain analysis of the exciting moment which caused the
left most boat to roll in the boat rolling example video sequence.

total, the inclination angle estimation might be off by
1 1 1 i
arctan(2 - E/\P1P2|) A2 - 1—0/|P1P2\ =2- 5/159.2 ~ 0.001256 radian,

where | P P,| = 159.2 is the length of the mast. We use 0.001256 radian as the standard
deviation of the white noise in our measured inclination angle. Hence, this introduces
noise in the extracted exciting moment parameter. The power density spectrum of the
exciting moment parameter pds,,, ,; and that of the expected noise in it pds,, are plotted

in Figure 7.18(top). The ratio of the two power density spectrums

pdsyy, /I
pds

n

is plotted in Figure 7.18(bottom). The frequency range where this ratio is above 50 is
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Figure 7.18: Expected white noise in the estimated exciting moment.

w/wg =0 .. 1.6. Since the signal to noise power density spectrum ratio for the exciting
moment parameter is high for only w/wo =0 . . 1.6. We reconstruct the exciting moment
parameter curve M., .constructed USING only the frequencies within this range. This curve
is plotted in Figure 7.19(top). In Figure 7.19(bottom), we scale the exciting moment

parameter curve and compare it to the observed inclination angle.

The parameters of the synthesized boat and the observed boat are tabulated in Table
7.1. We use a rectangular block to model the shape of the sailboats. We can measure
the width of the observed boat in the video sequence and represent the width in terms
of pixels. We assume the boat has a length to width ratio of 4. We use Equations 7.18
and 7.19 to compute the exciting moment parameter (%)wmhesized for the computer
synthesized boat:

[Mrz] N §= [MTZ] ) i [cri(Wba Lba kw(za Ir)]synth,esized
“1 Isynthesized — |~ 5 Jobserve
Ir Y Ir [cri(Wb, Lb, kwi, Ir)]observed

(7.20)
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Figure 7.19: The exciting moment which caused the left most boat to roll in the boat
rolling example video sequence.

Since the boat is modelled using a solid rectangular block, the moment of inertia for

rolling is simply

I = mlb; (H,® + W,2). (7.21)

The exciting moment for the computer synthesized boat is used to calculate its incli-
nation angle for rolling. In Figure 7.20, we plot the inclination angle of the synthesized
boat, and compare it to the inclination angle of the observed boat.

We place our computer animated sailboat in the captured video sequence, Figure 7.21

shows one frame of the resulting video sequence.

7.4.4.2 Pitching Example

In this section, we show an example of analyzing the pitching motion of a boat, then use

the estimated regular water wave parameters to drive a computer synthesized boat.



CHAPTER 7. THE REGULAR WATER WAVE ELEVATION PROBLEM 158

Table 7.1: Comparing the parameters of the observed boat and the synthesized boat for
the rolling motion example.

observed boat | synthesized boat
boat width W (pixel) 55 55
boat length L, (pixel) 220 220
boat height without mast H, (pixel) 20 20
boat mass My (relative to each other) 1 1
natural frequency corresponding to v 19 21
damping corresponding to Av 1.21 1.3
initial inclination angle 0
initial inclination angular velocity 0

Table 7.2: Sampling parameters for the pitching motion example video sequence.

Number of sample points N | 1806

Sampling period T (second) | &

compare inclination angle of the observed boat and the synthesized boat

0.08 T T T T T
—— observed boat
— - synthesized boat
T

006 i

0.04r . LI I T

A
0.021 | | | I I I

-0.02+ '

inclination angle (radian)

-0.04F ' | i F b

-0.06 - l

-0.08 1 1 1 1 1
0 100 200 300 400 500 600

T

Figure 7.20: Comparing the inclination angle of the observed boat and the synthesized
boat for the sailboat rolling motion sequence.
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http://www.dgp.toronto.edu/~meng/animation

Figure 7.21: Putting a computer synthesized boat in the scene and letting it move along-
side video captured sailboats.

Figure 7.22: An example frame from a video sequence of sailboats in pitching motion
while anchored at the harbor.
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Figure 7.23: The inclination angle of the large boat in the boat pitching example video
sequence.

Figure 7.22 shows an example frame from a video sequence of sailboats in pitching
motion while anchored in the harbor. The sampling parameters for the pitching motion
video are as shown in Table 7.2.

The data analysis process is similar to the rolling example. The plots of the data at

each step are summarized below:

e Figure 7.23 shows the inclination angle of the large boat in the boat pitching ex-

ample video sequence.

e Figure 7.24(top) shows the amplitude of the discrete Fourier transform of the ob-
served inclination angle. The amplitude squared in Figure 7.24(bottom) is used for

estimating the natural frequency and damping coefficient, of the oscillation.

e Figure 7.25(top) compares the power density spectrums of the estimated exciting
moment parameter and the expected noise. Figure 7.25(bottom) is the signal to
noise power density spectrum ratio. This ratio is reasonably high for frequency

range w/wy =0 . . 1.6.

e Figure 7.26 is the exciting moment fluctuation curve we recovered.
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Figure 7.24: The frequency domain analysis of the inclination angle of the large boat in
the boat pitching example video sequence.

Next, we make a computer synthesized boat. The parameters of the observed boat
and the computer synthesized boat are compared in Table 7.3.

We compute the inclination angle for the synthesized boat’s pitching motion. In
Figure 7.27, we compare this inclination angle to that of the observed boat.

Finally, we place the synthesized boat in the background video. Figure 7.28 shows

one frame of the resulting video sequence.
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Figure 7.25: Comparing the power density spectrums of the estimated exciting moment
parameter and the expected noise.
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Figure 7.26: The exciting moment which caused the large boat to pitch in the boat
pitching example video sequence.
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Table 7.3: Comparing the parameters of the observed boat and the synthesized boat for

the pitching motion example.

observed boat | synthesized boat
boat width W (pixel) 69 55
boat length L, (pixel) 276 220
boat height without mast H, (pixel) 35 20
boat mass My, (relative to each other) 1 1
natural frequency corresponding to v 52 20
damping corresponding to Av 1.16279 2
initial inclination angle 0
initial inclination angular velocity 0
compare inclination angle of the observed boat and the synthesized boat
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Figure 7.27: Compare the inclination angle of the observed boat and the synthesized

boat for the sailboat pitching motion sequence.
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http://www.dgp.toronto.edu/~meng/animation

Figure 7.28: Adding the computer synthesized boat in the scene, and animate it. This
is an example frame from the resulting video sequence.



Chapter 8

Other Potential Errors

In Chapter 5, we talked about using white noise to account for measurement errors from
the feature tracking software. There are other potential errors which could occur that
would affect the accuracy of our model. For instance, we could have an error Awy in
the natural frequency estimation, and an error A~ in the damping coefficient estimation.
Since we use wg and vy to estimate the driving force f, as shown in Figure 8.1, errors in

wg or v would introduce error into the estimated force.

observed
displacement

Dy Ay X

NN

Figure 8.1: Error in natural frequency and damping coefficient estimations introduces
error into the estimated force.

For our wind-tree interaction and water-boat interaction experiments, we do not know
the actual values of the natural frequency and damping coefficient of the oscillating

system. In this chapter, we will merely give a theoretical discussion on the effect of

165
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the errors in wy or v on the accuracy of our driving force estimation, in particular, the

amplitude of the estimated force in frequency domain.

In Chapter 4, Equation 4.13 shows that, given a driving force at frequency w; with

amplitude f; and phase delay A;,

ficos(wit + 4;),

the resulting displacement z is

T; = p(wz)fl cos(wit + AZ + (9,)

The amplitude of the response is the magnitude of the force multiplied by a magnification

factor p(w;), where

1
m?[(w? — w§)? +7*w?]

p(w) =

Hence, to study the effect of errors in natural frequency and damping estimate on the
estimation of driving force amplitude parameter, we only need to investigate how they

affect the relative error in p(w;).

8.1 Effect of Relative Error in Natural Frequency

First, assuming there is no error in the damping coefficient estimation, we would like to
know how the relative error in the estimated natural frequency wy would cause relative

error in the magnification factor p.
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Figure 8.2: Relative error ¢,,, in magnification factor p due to the relative error ¢,, in
natural frequency wg when 7/wy = 0.1.

Figure 8.2 is a plot of the relative error in p due to the relative error in wy. Note that
since the mass m is a constant scale factor, the relative error in p(w;) is the same as the

relative error in mp(w;).

Figure 8.2 shows that, when v/wy = 0.1, a 10% relative error in wy can result in
large error near the true natural frequency. This is not surprising. Intuitively, as shown
in Figure 8.4, when the estimated natural frequency deviates from the actual natural
frequency by a factor of 10%, we do expect the relative error in p to be somewhat large.
The relative error in p gets smaller as w moves further away from wy. Figure 8.3 shows
that under a similar constraint, when 7 /wy is larger, in this case, v/wy = 0.2, the relative
error p is smaller. Figure 8.2 also shows that as the relative error in wy decreases to 5%,

3% and 1%, the relative error in p becomes more reasonable, even when w is near wy.
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Figure 8.3: Relative error €,,, in magnification factor p due to the relative error ¢,, in
natural frequency wo when 7/wp = 0.2.
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natural frequency natural frequency

w, +Auy o
Figure 8.4: Error in the case where the natural frequency estimation is off by 10%. The

error in p? is large near the actual natural frequency.

8.2 Effect of Relative Error in Damping Coefficient

Now, assuming that there is no error in the natural frequency estimation, we would like
to know how the relative error in the estimated damping coefficient v would cause relative
error in the magnification factor p. Figure 8.5 is a plot of the relative error in p when the
relative error in v is 10%. This graph shows that when the relative error in v is 10%, the

resulting relative error in p is merely 9% near wy and it gets smaller fairly quickly as w
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Figure 8.5: Relative error ¢,,, in magnification factor p due to the relative error ¢, in
damping coefficient 7.

becomes further away from wy. This tells us that the relative error in v does not become

amplified when we calculate p.



Chapter 9

Conclusion

9.1 Contribution

In this thesis, we proposed a novel way to indirectly drive computer animation using
real life video input, which we called Video Input Driven Animation (VIDA). We ob-
serve the motion of objects in the video captured scene, extract and estimate useful
parameters, and re-apply these parameters to drive the animation of computer generated
objects/characters. An example application of this idea would be to use real life video
as a background, and make computer generated objects/characters appear as natural
participants in the video.

To demonstrate this concept, we developed a methodology for extracting the driving
force of a harmonic oscillation system by observing the harmonic oscillation motion of
objects, and then inferring the parameters of the natural phenomenon which caused the
driving force. Two examples are used to show the strength and applications of this

methodology. The first example is related to wind-object interaction. We observe the

170
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effect of the wind on a plant in the scene, estimate the wind speed from the plant’s motion,
then use the wind information to make computer generated objects move. The second
example is related to boat-water interaction. We study the motion of boats anchored by
the shore, estimate the water wave elevation which drives the boat motion, the use the
water wave parameters to control a computer synthesized floating structure. This serves
the purpose of validating the principle behind VIDA as well as the processes involved
in VIDA. Also, the idea of observing the natural environment and “reverse engineering”

natural phenomena such as wind and water waves are novel ideas.

9.2 Limitations

One of the limitations of VIDA is due to the limited resolution of our video camera.
When an object of interest is far away, its movement spans merely a few pixels. In this
case, measuring accuracy becomes very critical, and we might not be able to capture

enough details of the objects motion to make the analysis meaningful.

Another limitation is that currently we are not considering the scenario where the
foreground computer synthesized object might create large alteration of the background

environment. This situation can be studied in the future.

Since VIDA depends on vision algorithms to provide us with information about the
background environment, it is constrained by the robustness and capability of existing
computer vision algorithms. The advance of computer vision research will provide us

with better tools for exploring VIDA related computer graphics problems.



CHAPTER 9. CONCLUSION 172

9.3 Future Work

In this thesis we discussed the VIDA inverse problem to harmonic oscillation in detail.
There are many interesting topics in VIDA and applications of it are awaiting to be

explored.

There are a number of VIDA projects where we might be able to utilize existing
computer vision techniques to extract object orientation and force information from the
scene which we could use to drive virtual objects and characters. For instance, we can
have virtual characters riding on a bus (Figure 9.1). Or we can have a virtual character
riding a deer (Figure 9.2). Such examples explore the forces between a real object and

the virtual object.

More difficult projects might require further studies in computer vision and our un-
derstanding of nature. For example, we might want to observe the white water flowing
down a stream. We would like to be able to estimate the water force by observing the

water flow. So far, there is no computer vision literature on this subject.

Since VIDA provides a new linkage between computer graphics and computer vision,
it helps to expand the impact of computer vision to applications such as movie making,
virtual reality and animation prototyping, to name a few. We need to capitalize on the
existing computer vision tools, and push ourselves to invent new computer vision tools
due to the demand of computer graphics applications. For computer graphics, VIDA
introduces a rich source for animation creation and animation control. It allows us to
use video to give indirect inputs, such as forces and constraints, to computer animation.

VIDA poses many new research challenges to both computer graphics and computer
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Figure 9.1: We can try to put a virtual character on the moving bus.

Figure 9.2: A frame from the gazelle riding sequence.
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vision.



Appendix A

The Discrete Fourier Transform

If one wishes to obtain the Fourier transform of a given function, often that function is
defined in terms of a continuous independent variable. But it may also happen that func-
tion values are given only at discrete values of the independent variable as with physical
measurements made at regular time intervals. Assume that when we sample continuous
function to obtain the discrete values. the sampling period is small enough that there
is no aliasing problem. Regardless of the form of the given function, if the transform
is evaluated by numerical computing, the values of the transform will be available only
at discrete intervals [Bra83]. We often think of this as though an underlying function
of a continuous variable really exists and we are approximating it. From an operational
viewpoint, however, it is irrelevant to talk about the existence of values other than those
given and those computed (the input and output). Therefore, it is desirable to have a
mathematical theory of the actual quantities manipulated. Hence, let us think in terms
of a signal that is a function of time; but to recognize the discreteness of the independent

variable, let us use the symbol 7. Here 7 can assume only a finite number N of consec-
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utive integral values, say, 7 € {0, ..., N — 1}. Thus, before entering into the realm of
the discrete Fourier transform, the independent variable is typically transformed using a
change of scale and a change of origin. Given a function g(t), where t is time, it can be
converted into a function f(7) by sampling the function g(¢). In general, if the sampling

interval is 1" and the first sample of interest occurs at ¢ = ¢y, then

f(r)y=glty+7T), 7=0,1,2,...,N—1.

By definition, f(7), f(7) possesses N discrete Fourier transform values F'(v) given by

N-1
F() = N7 Y f(r)e i,

7=0

where j denotes the imaginary number. The quantity v/N is analogous to frequency
measured in cycles per sampling interval. The correspondence of symbols may be sum-

marized as follows:

Time Frequency

Continuous case t w

Discrete case T (27v/N)

The symbol v has been chosen in the discrete case, instead of w, to emphasize that
the frequency integer v is related to frequency but is not the same as frequency w.

Given the discrete transform F'(v), one may recover the time series f(7) with the aid
of the inverse relationship

N-1

f(’T) _ Z F(V)ejQ'/r(u/N)'r.

v=0
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In order to regain our physical feeling for numerical orders of magnitude, let us con-
sider a record consisting of 1,024 samples separated by 1-second intervals. We expect
this to be representable by a Fourier series consisting of a constant term and multiples
of a certain fundamental frequency. The fundamental period should be 1,024 seconds,
corresponding to a fundamental frequency 1/1,024 hertz. The highest frequency needed
will be 0.5 hertz, which has two samples per period. This will be the 512th harmonic.
The reason that v assumes 1,024 values, whereas the number of frequencies is only 513,
is as follows. Remember F(v) is complex valued, except that F'(0) and F(N/2) have no
imaginary part and half the remaining values of F'(v) are complex conjugates of the other
half. This is because f(v) is real. If f(7) were complex, there would be 2, 048 real data
values and F'(v) would require 2,048 real numbers for its specification. Therefore, there
are 24511 x 2 = 1024 degrees of freedom in the values of F'(v), where v =0 . . 512, which
is the same as for f(7). The remaining coefficients of F(v), i.e., for v = 513 . . . 1023,

can be obtained from this first block by symmetry, using the fact f(7) is real.



Appendix B

Deflection of Cantilever Beam

The question of the deflection of beams is important, because the magnitudes of the

deflections are needed frequently [TM49]. In this section, we will use the double integral
method to determine the deflection of a two dimensional (2D) cantilever beam with a
uniform load of intensity w (Figure B.1). The direction of the load is perpendicular to

the length of the beam. The length of the beam is /. The bending moment M at any
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ﬁ
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Figure B.1: The deflection of a cantilever beam with a uniform load
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cross section ninsy distance h from the built-in end is the sum of the bending moments

at each section du above the cross section nins:

I—h
M = /0 w(l —h —u)du

=9$;f. (B.1)

where u is the distance from the cross section nin, to a point above nins. Let us denote
the deflection of the beam w(h). Timoshenko and MacCullough [TM49] showed that the
bending moment M is related to the flexure stiffness and the curvature of the beam:

d*w(h)
dh? ’

M = EI (B.2)

where di;flgh) is the curvature of the beam. Putting equations B.1 and B.2 together, we

have

d*w(h) _w(l—h)?
BISo 2 — =20 (B.3)

Integrating Eq. B.3 gives us the slope of the bending beam:

dw(h) w,, , h3
T _Yeh—m s Yy o B.4
EI 7 2(lh lh+3)+01 (B.4)

Since the slope of the beam dw(h)/dh at h = 0 is zero, we have C; = 0. Integrating Eq.
B.4, we obtain the deflection of the beam:
_w (PR?IR® R

Mﬂm—2&7—§ﬂfﬁ+@. (B.5)
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Since the base of the beam has deflection w = 0 at h = 0, we have Cy = 0. So, the

deflection of the beam is

w h?, 9
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