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Abstract

Because real paper is approximately unstretchable, the surfaces obtained by bend-
ing a sheet of paper can be rolled out onto a plane without stretching or tearing. More
precisely, such a rolling out maps the surface onto the plane, after which the length
of any curve drawn on the surface remains the same. Such surfaces, when sufficiently
regular, are well known to mathematicians as developable surfaces.

Developable surface modelling is mainly used for engineering purposes in Com-
puter Aided Design (CAD). In this thesis, our focus is on using developable surface
to model artistic objects which we see in everyday life.

We formulate a new developable surface representation technique. We describe
a way of approximating a developable surface using a piecewise continuous tensor-
product Bézier surface, provided that the developable surface has certain special
properties. The feasibility of our model is demonstrated by applying it to the mod-
elling of a hanging scarf and a bow. Possible extensions and interesting areas of

further research are discussed.
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Chapter 1

Introduction

Smooth surfaces must be generated in many computer graphics applications. Many
real-world objects are inherently smooth, and much of computer graphics involves
modelling the real world. The need to represent surfaces arises in two cases: in
modelling existing objects (cars, faces, mountains) and in modelling virtual objects,
where no preexisting physical object is being represented.

In the first case, a mathematical description of the object may be unavailable.
Mathematically, one could use the infinitely-large set of points making up the object
as a model, but this is not feasible for a computer with finite storage. More often, we
merely approximate the object with pieces of planes, spheres, or other shapes that
are easy to describe mathematically, and we require that points on our model be close
to corresponding points on the object.

In the second case, when there is no preexisting object to model, the user cre-
ates the object in the modelling process; hence the object matches its representation
exactly, because it is defined through the representation. To create the object, the
user may sculpt the object interactively, describe it mathematically, or give an ap-
proximate description to be “filled in” by some program. In CAD, the computer
representation is used later to generate physical realizations of the designed object.

A largely unexplored area in Computer Graphics consists of modelling area-
constrained surfaces. For instance, when a flag is moving in the wind, the surface

area of the flag should remain constant. To the author’s knowledge, no one has con-
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structed a modelling system which directly addresses such constraints. Previous work
exists for curves which satisfy arc-length constraints [5] and objects which satisfy vol-
ume constraints, but there has been relatively little work on modelling surfaces which

satisfy area constraints.

This thesis surveys the different approaches developed to design and model devel-

opable surfaces, which is an important subclass of area-constrained surfaces.

1.1 Why Developable Surfaces?

In order to construct a shape using a computer, it is necessary to produce a computer-
compatible description of that shape. The exploration of the use of parametric
curves and surfaces can be viewed as the origin of Computer Aided Geometric Design
(CAGD). The major breakthroughs in CAGD are the theory of Bézier surfaces and

Coons patches, later combined with B—spline methods.

Because real paper is approximately unstretchable, the surfaces obtained by bend-
ing a sheet of paper can be rolled out onto a plane without stretching or tearing. More
precisely, such a rolling out maps the surface onto the plane, after which the length of
any curve drawn on the surface remains the same. The surface is thus called isometric
to the plane — “applicable” for short. Such surfaces, when sufficiently regular, are

well known to mathematicians as developable surfaces.

As will be seen in chapter 2, a developable surface is the envelope of a one-
parameter family of planes. While planar surfaces and completely general surfaces
have a zero-parameter and a two-parameter family of tangent planes, developable
surfaces have a one-parameter family of tangent planes [11]. A developable surface
thus offers a complexity that is midway between that of a completely general surface
and that of a plane surface. Modelling developable surfaces is important because it

is a logical precursor to modelling area-constrained general surfaces.
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1.2 Thesis Overview

This thesis begins by introducing the basic concepts and properties of developable
surfaces. Since Bézier curves and surfaces are used in our modelling tool, related
definitions and concepts are presented in chapter 3. In the past, three different types
of approaches have been proposed to design and model developable surfaces. The
mathematical reasoning and the algorithms will be discussed in detail in chapter 4. We
will discuss the relationship between these existing approaches and our new technique.
We subsequently present our new technique. Chapter 5 is devoted to explaining the
new approach. An implementation of the new modelling tool is presented. Modelling
issues such as local and global control are discussed. In chapter 6, examples of
developable surfaces produced by this tool are used to demonstrate the capabilities
and advantages of the new modelling system. The concluding chapter evaluates the

new approach and the compromises it makes.

1.3 About the New Technique

In this thesis, we formulate a new technique of designing and modelling developable
surfaces. Our goal is to give users good local and global control over the shape of the
resulting surfaces. Our contribution is a design and implementation of such a system.

The new technique takes advantage of the geometric characteristics of the surface
to be modelled. First, the surface to be modelled is divided into several pieces. Then
the shape of each surface piece is defined by a generalized cone, where the shape of
the cone is defined by its cross section together with its apex. The cross section of the
cone can be designed interactively using piecewise continuous curves. Each surface
piece is constructed separately in 3D. Then surface pieces are stitched together to
construct the desired developable surface.

To obtain a better approximation of the desired developable surface, it is not
necessary to subdivide each surface piece into smaller and smaller surface patches.

To change the shape of one surface piece, the user can adjust control points of the
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cross section curve of the cone associated to this surface piece. Also, by editing a
few controls points, the user can also alter the orientation of the tangent plane at a
shared boundary of two adjacent surface pieces. Therefore, this approach gives the
user a great deal of control over the shape of the resulting developable surface, both

locally and globally. We will discuss this in detail in chapter 5.



Chapter 2

Developable Surfaces

2.1 Definitions

The definitions of ruled surfaces and developable surfaces are given in [2] as follows.
A (differentiable) one-parameter family of (straight) lines {«(t), 5(t)} is a correspon-
dence that assigns to each ¢ € I a point «(t) € R® and a vector §(t) € R?, 3(t) # 0,
where both «(t) and §(t) are differentiable with respect to ¢, where I is the domain,
la,b], of t, and a,b € R. For each t € I, the line L; which passes through «(t) and is
parallel to §(t) is called the line of the family at t. Given a one-parameter family of
lines {a(t), B(t)}, the surface

X(t,v) = at) +vB(t),t € I,v € R, (2.1)

is called the ruled surface generated by the family {«(t), 8(¢)}. The lines L; are called

the rulings, and the curve « is called a directriz of the surface X.
A ruled surface is said to be developable if

d5 do (2.2)

<ﬂXE,E>:

i.e., B, dB/dt and da/dt are coplanar, for all points on the surface, where < (3 x

%, 42 > denotes the inner product of vector 8 x % and 92 ¢ R The simplest

5



6 CHAPTER 2. DEVELOPABLE SURFACES
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Figure 2.1: Simple examples of developable surfaces.
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Figure 2.2: An example of a non-developable surface.

examples of developable surfaces are the cylinders and the cones. A generalized
cylinder is a ruled surface generated by a one-parameter family of lines {«/(t), 3(¢)},t €
I, where «([) is contained in a plane P and §(¢) is parallel to a fixed direction in R3
(Figure 2.1(a)). For generalized cylinders, dB(t)/dt = 0. Note that the curve «(t)
does not have to be a closed curve. A generalized cone is a ruled surface generated
by a family {«(t), 3(t)}, t € I, where a(I) C P and the ruling L, all pass through a
point p ¢ P (Figure 2.1(b)). Note that da/dt = 0 is a sufficient condition for such
a family of curves to generate a generalized, but it is not a necessary condition. An

example of a non-developable surface is a sphere (Figure 2.2). A wrinkled T-shirt is
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an example of an area-constrained surface which is not developable.

2.2 Properties of Developable Surfaces

In chapter 5, we will introduce our developable surface representation technique. This
new technique takes advantage of properties of developable surfaces. Before describing
these properties, we will introduce a number of terminologies which will be used later
in this section: (1) the intrinsic equation of a curve in 2D, (2) the osculating plane,
normal plane and rectifying plane of a space curve in 3D, (3) the spherical image. We

will use these concepts to give an intuitive explanation of developable surfaces.

2.2.1 Intrinsic Equations of a Curve in ®r?

Once an initial point of a curve has been defined, the variation with the arc length
s of the angle 9 subtended by its tangent on the z-axis is sufficient to define the

curve in 2D, as shown in Figure 2.3. A relation between s and % is called an intrinsic

Figure 2.3: Define a 2D curve using s and .

equation of the curve. Many intrinsic equations have the form s = s(v).
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The curvature k is obtained from the intrinsic equation by the formula

_W

K= (2.3)

Alternatively, the curve may be described parametrically in terms of the arc length
by the equations x = z(s) and y = y(s). The functions z(s) and y(s) are then related
to ¢ by the equations

il cos ¢ (2.4)
and
% = sin 1. (2.5)

If we differentiate these equations with respect to s, and substitute x for %, ‘é—”s”

for cos v and % for sin ¢, we obtain the simultaneous differential equations

d’x dy
g5z T =0
d?y dx
_ = =0. 2.
ds? () ds 0 (2:6)

These two second order equations can in principle be solved to determine z(s)
and y(s) for any given curvature function «(s). Effective numerical procedures have

been described by Nutbourne (1972) [10] and Adams (1975).

2.2.2 Osculating Plane, Normal Plane and Rectifying Plane

Nonplanar curves in space are often referred to as twisted curves. Consider a small
piece ¢ of a general space curve over which the curve does not intersect itself and at
each point of which the curve is smooth and well behaved, as shown in Figure 2.4. As
in the case of a plane curve in R?, the tangent to ¢ at point P on c is defined as the
limiting position of the secant PQ) as () approaches P along the curve. Let T denote
the unit tangent vector of ¢ at P. Assume the twisted curve is parametrized in terms
of t, t € R. The unit vector N in the direction of T = dT/dt is known as the principal

normal vector. The vector product T x N defines a third unit vector perpendicular
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osculating plane .

rectifying plane

normal plane

Figure 2.4: Osculating plane, normal plane and rectifying plane.

to T and N, known as the binormal vector B. The three vectors T, N and B form a
right-handed set of mutually orthogonal unit vectors, so that B=T xN, T =N x B
and N = B x T. The planes through a given point on the curve which contain the
vector T and N, N and B, and B and T respectively are known as the osculating
plane, the normal plane and the rectifying plane. The interested reader is referred to

[4] for a detailed explanation.

2.2.3 Spherical Image and Gaussian Curvature

The osculating planes of a curve may enveloped a developable surface. Developable
surfaces can also be defined using the spherical image and the gaussian curvature of
a surface.

Through the centre of a unit sphere we draw the diameters that are parallel to
the various normals of the surface we are studying. At one point of the surface we

choose one of the two directions on the normal arbitrarily and then extend this choice
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of a normal direction continuously to all the neighbouring points of the surface, thus
obtaining a definite sense on all the normals. By choosing the same sense on the
corresponding diameter of the sphere, we assign a definite point on the sphere—the
end—point of the directed diameter—to every point of our surface. Thus we have a
mapping of the surface onto the sphere. This process, due to Gauss, is called the
spherical representation of the surface. The image of a surface or of a curve drawn
on the sphere is referred to as the spherical or Gaussian indicatriz of the surface or

of the curve. An example is shown in Figure 2.5.

The spherical
indicatrix of
§ 0 the cone
acircular cone aunit sphere

Figure 2.5: The spherical indicatrix of a cone.

Any closed curve k on the original surface is represented by a closed curve &' on
the sphere. We divide the area G enclosed by &’ on the sphere by the area F' enclosed
by k on the surface and then shrink the curve k£ down to a point p of the surface.
As the area F' approaches zero, so does the area G, and their quotient approaches a
definite limit K:

G

Im 5 =K

The number K defined in this way is called the Gaussian curvature of the surface at
-

The Gaussian curvature has the important property of remaining invariant if the
surface is subjected to an arbitrary bending [7]. A bending is defined as any deforma-
tion for which the arc lengths and angles of all curves drawn on the surface are left
invariant.

Two surfaces that can be transformed into each other by bending are called “ap-

plicable” (they can be “applied”) to each other.
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2.2.4 Intuitive Definition of Developable Surfaces

There is a general theorem that states that a surface of constant Gaussian curvature
can be transformed, by bending, into any other surface of the same constant Gaussian
curvature, as Hilbert points out in [7]. It follows from this theorem that every surface
whose curvature vanishes at every point can be constructed by bending a planar

region. These surfaces are called developable surfaces.

—
agenerator

Figure 2.6: Generators of a developable surface.

Other than bending a planar region, there are two other ways of obtaining devel-
opable surfaces. Every surface enveloped by a one—parameter family of planes is a
developable surface. The variable plane is tangent to such a surface along an entire
straight line that is obtained as the limiting position of the line in which two neigh-
bouring planes intersect. Since the totality of these straight lines covers the entire
surface as shown in Figure 2.6, we call them generators of the surface [7].

Because three planes always have a point of intersection, (provided that parallel
planes are regarded as planes that have an intersection at infinity,) it is plausible that
any two neighbouring generators of a developable surface should have a common point.
This fact leads us to third method of constructing the developable surfaces. The
points of intersection of consecutive straight lines describe a curve. The generators
meet the space curve tangentially. Thus, we might also define a developable surface
as the surface swept out by the tangents of an arbitrary twisted curve. Such a surface

can be represented using Equation 2.1 in the ruled surface definition. In this case,
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the twisted curve is «(t), and the generators are 3(t) = da(t)/dt. Since

dp do da df do da  do d

<ﬂxd_f’ﬁ>:<ﬁxd_f’ﬁ>:<axE’d_f>:0’
by Equation 2.2, the resulting surface is developable. Considered in this light, the
resulting developable surface is known as the tangential developable surface of the
curve. At the same time, the surface is also enveloped by the osculating planes of
the curve. Note that for most cones and cylinders, one can not find a space curve
whose tangents sweep out the cone or cylinder. Only for the cones and cylinders does
this representation fail, whereas the preceding method of generation obviously applies
to them as well as to the other developable surfaces. In some cases, the generators
envelop a space curve at which the developable surface has a sharp edge called edge of

regression or cuspidal edge, as shown in Figure 2.7. The interested reader is referred

to [7] for a detailed explanation.

Figure 2.7: An edge of regression of a developable surface.

From the above methods of representation, one can find the spherical images of
all the developable surfaces with the exception of the plane. The enveloping planes
constitute the totality of planes tangent to the surfaces. Hence, all the tangent planes,

and likewise all the normals, constitute a family depending on only one variable
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parameter. Therefore, the spherical indicatrix of a developable surface is always a
curve. The spherical image of a surface of vanishing Gaussian curvature degenerates
into a curve. It implies that the spherical image of every region of such a surface has
zero area. This is to be expected from the definition of Gaussian curvature.

By the definition and intrinsic properties of developable surfaces, a developable
surface can be rolled out onto a plane without stretching or tearing. In theory, the
length of any curve drawn on the surface remains the same, and the area of the

developable surface also remains the same [7].

2.2.5 Summary

In [9], Kergosien, Gotoda and Kunii construct developable surfaces using the fact that
every surface enveloped by a one—parameter family of planes is a developable surface.
They simulate the bending of a developable surface over time ¢ by applying external
forces and internal forces to the developable surface. Their system let the user specify
the external forces at any time ¢. We will describe [9] in detail in Section 4.4.

Given a twisted curve, it is easy to compute the developable surface swept out
by the tangents of the curve. However, when a user is presented with a developable
surface, determining the twisted curve whose tangents sweeps out this surface is not
easy.

We will make use of the properties of developable surfaces in our new developable
surface representation technique, and this new technique will be presented in chapter
5. In the next chapter, we will introduce Bézier curves and surfaces in the next

chapter, and they will be used in an implementation of our new technique.
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Chapter 3

Bézier Curves and Bézier Surfaces

In 1962, parametric curves was developed by Bézier, an engineer at Régie Renault,
for use in approximation. These techniques became the mathematical foundation
of UNISURF, a design system for curves and free-form surfaces, which has been

established at Renault in 1972.

We choose to use Bézier curves in our developable surfaces modelling tool. In
our new modelling system, tensor product Bézier surfaces are used to approximate
a particular class of developable surfaces. So in this chapter, we will briefly review
the definitions and basic concepts related to Bézier curves and tensor-product Bézier
surfaces. In chapter 5 and 6, we will describe how they are used in our new modelling

system.

3.1 Bézier Curves

In this section, we will give a brief overview of Bézier Curves. The interested reader

is referred to [6] for a detailed discussion on Bézier curves.

15
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3.1.1 Basic Definitions

The parametric form of an n'* degree Bézier curve with control points P; = (x;, y;, 2;),1 =

0,1,...,n, is given by

Pu(t) =2 P n (1 —t)" (3.1)

n
1=0 7

where

n
= 2 _ when 0<i<n.

i i{(n—2)!?

An example of a 6" degree Bézier curve is shown in Figure 3.1.

Figure 3.1: A 6" degree Bézier curve.
with control points (2,0), (-3,5), (7,-2), (0,5), (-7,-2), (3,5), (-2,0).

3.1.2 Cubic Bézier Curves

The Bézier form of the cubic polynomial curve segment indirectly specifies the end-
point tangent vector by specifying two intermediate points that are not on the curve.
Consider a cubic Bézier curve p(t), ¢t € [0,1]. An sample cubic Bézier curve is shown

in Figure 3.2. The starting and ending tangent vectors are determined by the vectors
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Figure 3.2: A cubic Bézier curve.

PngandP3P4:

dp dp
—(0)=3(P = P1), —(1) =3(Pi - P).

The Bézier curve interpolates the two end control points and approximates the other

two.

We can specify cubic or any fixed-degree Bézier polynomials in matrix form. The

Bézier geometry vector G g, consisting of four points for a cubic, is

P
Py
Ps
Py

Observe that G p is shortland for n column vectors, if P, € R”. In other words, Gp is
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a 4 x n matrix. The Bézier basis matrix Mp is

-1 3 -3 1
3 6 30
MB:
-3 3 00
1 0 0 0|
With T = [t> ¢* ¢ 1], we have

p(t) = TMpGp (3.2)
= (1-t)>*P +3t(1 —t)’P, + 3t*(1 — t) 3 + t* Py, (3.3)

The four basis functions given by T'Mp are the weights in the equation above, and

are called the Bernstein polynomials of degree 3, and namely
3 3 . 3—i -
Bz(t): t(l_t) ’ 2207172:37

as a subcase of Eq 3.1. Note that for any degree n, the sum of the basis functions is

unity, i.e.,

n n . )
> tl=—t)""=t+(1-t)" =1
i=0 \ 1
by the binomial theorem, and each polynomial is nonnegative for 0 < ¢ < 1. Thus,
p(t) is just a moving average of the four control points. This means that each curve

segment, which is just the sum of the four control points weighted by the polynomials,

is completely constrained to lie in the convezr hull of the four control points.

3.2 Tensor-product Bézier Surfaces

In this section, we will introduce tensor-product Bézier surfaces. Intuitively, a surface
is the locus of a curve that is moving through space and thereby changing its shape.

We can formalize this intuitive concept in order to arrive at a mathematical descrip-
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tion of a surface. First, we assume that the moving curve is a Bézier curve of constant
degree m. At any time, the moving curve is determined by a set of control points.
Each original control point moves through space on a curve. Our next assumption is
that this curve is also a Bézier curve, and that the curves on which the control points

move are all of the same degree n.

We can parametrize the surface using the Bernstein polynomials B*(u) and By*(v)

as separable basis functions to represent surfaces. The parametric equation
n m
X(u,v) =) PuB} (u) B (v) (3.4)
i=0 k=0
defines the tensor-product Bézier surfaces of degree (n,m), where without loss of

generality the points u,v € [0,1] x [0,1]. The coefficients Py, are called the Bézier

points, and the set of Bézier points is referred to as the Bézier net. Figure 3.3 shows

Figure 3.3: Bézier surface of degree (3,3) and its Bézier net.

a Bézier surface of degree (3,3) and its associated Bézier net. Along the parametric

line u = wug, the surface reduces to a isoparametric Bézier curve with Bézier points

1=0
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Then with respect to the variable v, equation 3.4 reduces to
X(Uo, ?)) = 2 PkB]:n(U)
k=0

The interested reader is referred to [8] for a detailed description of tensor-product

Bézier surfaces.

3.3 Summary

In this chapter, Bézier curves and tensor-product Bézier surfaces are introduced.
These curves and surfaces will be used in the implementation of our new technique
in chapter 5. In the next chapter, we will review a number of existing algorithms for
constructing developable surfaces and discuss the relationship of our new technique
to these existing approaches. The concepts presented in the previous chapter will be

used in the next chapter to describe some of the exisiting algorithms.



Chapter 4

Previous Work on Developable

Surfaces

In this chapter, we will survey a number of interesting problems and existing al-
gorithms for constructing developable surfaces. The four sections in this chapter
introduce four main types of approaches. In the first section, a classic problem is
discussed: given two distinct space curves, how to construct a continuous developable
surface which connects them. In the second section, a practical problem is presented:
how to build a smooth developable surface which interpolates a given set of data
points. In the third section, a different problem is reviewed: given two distinct line
segments z,y; and oy, in R? and a number of constraints, how to determine a devel-
opable surface whose four boundaries are x1y1, Toy2, a Bézier curve with end points
1 and x5, and another Bézier curve with end points y; and s, provided that the
constraints are satisfied. In the fourth section, a simulation problem is presented:
given a developable surface, how to similate the bending of that surface under exter-
nal and internal forces. In the last section, we will discuss the relationship of our new

technique to these existing approaches.

21
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4.1 A Classic Problem and Its Solution

Developable surfaces are often associated with metal sheet workers. They practically
solve the problem of forming a connection between two tubes of different shapes by
using planar segments of metal sheets, as shown in Figure 4.1. At trade-schools and
through experience, they learn how to construct such connecting developable surfaces

(CDSs).

CDS

Figure 4.1: Connecting two tubes with a developable surface.

The tinsmith’s job, which is to connect tube 1 and 2 by a CDS, splits into two
constructive problems: First to find the CDS in 3D space, and second to bend the
CDS out into the plane sheet of metal. If the boundary curve p of tube 1 and the
boundary curve q of tube 2 are space-curves, the conservative designer who wants to
construct the CDS on his drawing—board might find it difficult. This problem seems

better adapted to computers than to classic drawing-boards.

4.1.1 Analysis

The first problem can be described as follows. Given two space curves, join the
corresponding points of the two curves of forming a curved developable surface. Then
flatten out the curved surface, and determine the correspondence between points on

the curved surface and points on the plane sheet.
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Now we will take a close look at a solution to the problem. The development is
based on the fact that the curvature at point p of a curve on a developed surface is
equal to the curvature of the projection of the curve onto its tangent plane of the

surface at p, known as the geodesic curvature k.

The geodesic curvature of a curve r = r(u) is shown by Willmore (1959) to be
gy = XD, (4.1)

where n is the unit normal to the surface, n, r and s are parametrized in terms of u.

Suppose the surface is generated by the tangent planes of two curves r = r;(u) and
r = ry(u). Then for any point P with parameter v on the primary curve r = ry(u),
the corresponding generator meets the secondary curve at a point () with parameter
u' where [rq(u) — ro(u')] - [F1(u) X To(u')] = 0, i.e., vectors [ri(u) — ra(u')], T1(u) and

Io(u') are all co-planar. The equation of the surface is then given by
r = (1 —v)ri(u) + vry(u').

For example, if the curves are parametric cubics, we have
= a;u’® + b;u? d
r;(u) = a;u’ + bu® + c;u + d;,

#;(u) = 3a;u* + 2bju + c, (4.2)

where i = 1,2. The condition [r;(u) — ro(u')] - [F1(u) X 2(u’)] = 0 gives a quintic

equation for u' for any given u.

We first solve this equation for u', and compute the direction and length of the
generator. We are then able to calculate the surface normal n, which enables us to
obtain k, from equation 4.1. We would then know the curvature of the developed
curve, and may obtain the curve itself by integrating equation 2.6, rewritten in terms
of parameter u. Since we also know the length and direction of the generator at each

point P, we may obtain the development of point () by noting that the angle between
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the primary curve tangent and the generator is unchanged during the development.
In a similar manner, we may locate intermediate points along the generators,
so that points defined by v and v on the curved surface may be located on the

development.

4.1.2 Computer Aided Construction and Development

Figure 4.2: Finding the correspondence between points of two space curves.

As the surface’s development in any case is based on approximative processes, it seems
natural to use numerical differentiation to construct the developable surface ¢ from
two given space curves. In [15], Weiss and Furtner described an algorithm which is
used to find the correspondence between points of the given curves p and q, as shown

in 4.2:

Step 1: Parametrize the curves p on t, and q on ¢, where ¢, € [0,1] and
tq € [0,1]. Initialize £; = 0 and ¢; = 0.

Step 2: Take point P on p and its left and right neighbour P, P, on p, where
P =p(t;), P =p(t;, + Aty), P, = p(t; — Aty), and At, is some small
displacement.

Step 3: Do so on q, i.e., pick out points @, Q; and @, on q, where @ = q(t;),
Qi = q(t;+At,), Qr = q(t; —Aty), and At, is some small displacement.

Step 4: Test. If @, Q,, P, and P, are coplanar to within some tolerance € (i.e.,
span a plane), then go to step 6. Otherwise, go to step 5.
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Step 5: Pick out the next triple Q-new, Q-new and @Q-new on g, adjust ,
and go to step 4. Note that if we have the right ) to a certain P,
the determinant D of the vector P,P,, ();Q), and P,(Q, would vanish.
We can discretize q. If for two consecutive parameter values t,-old and
t;-new the determinants D-old and D-new have different signs, the
right () would correspond to a value of ¢, that is between t,-old and
ty-new [15].

Step 6: Store the Coordinates of P and () and the counting index of the gen-
erator PQ).

Step 7: t; := t;+ some step size. Go on with the next P on p, repeat step 1-7,
and so on until finished.

Given two space curves, one can use this algorithm to join the corresponding

points of the two curves to form a curved developable surface.

4.2 Developable Surface Synthesis Using (Geodesics

In this section, we will consider a different problem. Assume that the indicatrix N of
a developable surface D is approximated by n + 1 points on the unit sphere and that
those points are the spherical image of corresponding points of the geodesic X, as
shown in Figure 4.3. As we shall see later, the geodesic X will be used to construct the
developable surface. Also, assume that the orientations of the tangent plane and the
arc-length along the geodesic X at those discrete points are known. In [11], Redont
describes an algorithm which produces a discrete representation for a developable
surface based on the above information. Since n + 1 points on the indicatrix N are
known, the algorithm approximates the indicatrix /N by a piecewise continuous curve
C which interpolates the n + 1 points. Then the arc-length information is used to
construct a family of circular cones, each with a geodesic segment which corresponds
to one segment of the original geodesic. The desired developable surface is constructed
using patches of the circular cones. Next, the techniques used in this algorithm will

be presented.
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first data n+1st data

indicatrix N
of the developable surface D
(TO BE DETERMINED)

generators

Developable surface D
geodesic line X

first data
n+1st data
point

Figure 4.3: Developable surface D, its geodesic X and its spherical indicatrix N.

4.2.1 Approximating the Spherical Indicatrix

First, we consider n + 1 points My, M, ..., My, ! on the unit sphere together with
tangent vectors tg, to, ..., ton, which are meant to build a discretized spherical indicatrix
of developable surface D. If the tangent ¢9; is not part of the original data they can
be estimated in various ways from points My;. Redont shows in [11] that one can find
an arc-of-circle interpolation of points My; on the sphere which respects tangents to;

using the stereographic projection.

1Only for convenience are the indices of the points supposed to be even. We will add an interme-
diate point Ma;11 between points Msy; and Ma; o, for i =0,...,n — 1, to approximate the spherical
indicatrix.
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north pole of the sphere

projection plane

Figure 4.4: The stereographic projection.

Consider a sphere and the horizontal plane tangent to its south pole, as shown in
Figure 4.4. The stereographic projection maps the sphere, deprived of its north pole,
onto the plane. The image of a point on the sphere is the intersection between the
plane and the straight line defined by the point and the north pole. The stereographic

projection possesses the interesting quality of preserving angles and circles [7].

D2i+1

u
2i+2

I:)2i+2

D2i+2

Figure 4.5: Interpolating points P»; and P15 using two arcs of circles.

The interpolation problem on the sphere can be reduced to the same problem
in the plane. Let P,; and uy; be the stereographic images of My; and ty;. Given
two points Pp; and Py, o with tangents ug; and ug;.9, points Py and Py 1o can be
connected with two arcs of circles Dy; 1 and Dy; 2 meeting tangentially at, say, point
Py; 1 such that Dy; ;1 is tangent to ug; at point Pp; and Dy o is tangent to ug; o

at point Py 5. Then let points My; 1 and arcs C; be the images under the inverse
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stereographic projection of points P;,; and of arcs D; as shown in Figure 4.5. The
curve C formed by arcs of circles C; interpolates the initial points My; and tangents

ty; on the unit sphere.

4.2.2 Approximating the Spherical Mapping

From the previous step, we have built a curve C' that approximates the spherical
indicatrix N. The spherical mapping assigns some point N, on the spherical indicatrix
to point X (s) on the geodesic, where o is the arc length of N and s is the arc-
length of X. An approximation to the spherical mapping as a function of arc-length
s is required, such that the image of X is curve C. This is achieved by defining
the arc-length 7 of C' as a function of s in such a way that point C(7) lies near
point N (o). Here, 7 is defined piecewise on each arc C; as a function of the form
7; —cot(1);) arctan(k;s+1;), where 7;, k; and [; are unknown constants, and cos v; is the
radius of arc of circle C;. We can construct cones K; using arcs of circles C;, and let
1; be the angle between the axis of cone K; and any of its generators. The constants
Ti, k; and [; can be determined by some formulae. That gives us 7 as a function
of s. Thus C together with its parametrization by 7(s) defines an approximation
to the spherical mapping. Then the aim is to assemble cones K; and K;;; along
a common generator to build a smooth surface K with one particular geodesic =
consisting of segments =; which is drawn on cone Kj;. It is expected that curve = will
be differentiable at the joint between K; and K;,, so it is the angles of =; and =Z; 1

with the generator common to K; and K;,; are equal

arccotan(k;s; + ;) = arccotan(kiy18; + liv1),i =1,...,2n — 1. (4.3)

Given that the angle between geodesic X of surface D and the generator crossing X
at the point of arc-length sq is a(sg) = ag, we can use k; and 7(s) along with 4.3
to determine how the geodesic =; is drawn on cone K;. Thus 2n patches of circular
cones K; are defined, and they are bounded by generators and with a segment of one

particular geodesic =; is drawn on cone Kj;. The interested reader is referred to [11]
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for a detailed explanation.

4.2.3 Representing the Developable Surfaces

At the end of the previous steps, a family of circular cones K;, i = 1, ..., 2n, has been
constructed, each with a distinguished geodesic segment =;. Each cone, however, is
defined up to a translation. If the apex of cone K; coincides with the origin, the
geodesic segment =; is given by

Zi(s) = kl,(l + (kis + 1)*)*T(7(s)),

where s; 1 < s < s; and I'(7) is the unit geodesic normal to curve C. Let each cone
K1 be translated so that points =;(s;) and Z;,1(s;) coincide. Then two consecutive
cones K; and K;,; have the same generator through point Z;(s;), the direction of
which is given by the geodesic normal Z(7(s;)) to curve C at point M; = C(7(s;)).
Cones K; and K;,; have the same tangent plane along their common generator, the
direction of which is given by the plane tangent to the unit sphere at point M;. A

smooth discrete representation for our initial developable surface D has been obtained.

4.3 Interpolation with Developable Bézier Patches

In this section, we will outline the idea of a unique approach which is discussed in [1].
Though it is not closely related to the new technique which we present in this thesis,
which also uses Bézier patches.

The problem is defined as follows. Given the end points of an m!* degree Bézier
curve parametrized by x4(¢) and the end points of an n** degree Bézier curve param-
eterized by xp(t), t € [0,1], the family of lines defined by x4 (t)xp(¢) for all ¢t € [0, 1]
forms a surface. We would like to know how the control points of x4(¢) and xp(?)
should be related, so that the resulting surface is a developable surface, provided that

some constraints are satisfied.
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H 2
line X°=c,

line line
1 1= y1
Xl:Xl X X2

rectangular

Figure 4.6: The rectangular grid.

4.3.1 Basic Concepts

Note that we will use the same notation as in [1]. Denote the coordinates of a point a
by a’, i =1,2,3, so that a = (a', a?, a®). Let xq (21, ¢z, 23), X2(23, ¢z, 23), y1(21|cy|v3),
y2(z3]cy|y3) be four points (over a rectangle in the ground plane z® = 0), as shown

in Figure 4.6. Further, let
Ca:xa(t)=> aB(t), te[0,1],
i=0

and

Cgp:xg(t) = ibiB;‘(t), t €10,1],

be parametric Bézier curves of degree m and n (n > m) in the planes 22 = ¢, and

z? = ¢, respectively, with
ap = X1, am =Xz, bo=Yy1, by=y2,

ag, ay, ..., am lie in plane 22 = ¢;, and bg, by, ..., b, lie in plane 22 = Cy,

and where
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planex?=c,
plane x?=¢c_

C Do =
curve .

A\S\'\/—i\ \~~
_ | '

8,=X1 ! amE X,

! o i 2_
R line x2= cy
,,,,,,,, AN "~ _________line x%2=¢

rectangular

Figure 4.7: The parallel planes.

The configuration is as shown in Figure 4.7. Then we call a developable Bézier patch

¢: X(t,u)=(1—u)xal(t) +uxs(t), (t,u)e]|0,1]x[0,1]

an interpolating developable m,n-patch or an id-patch with the design curve c4. The
curve C'g will be determined from the curve Cy using the properties of developable

surfaces. The id-patch is called admissible iff ® does not contain singular points.

In [1], Aumann deals with interpolating developable 3,4-patches. Let curve c4 be

a Bézier curve of degree three with control points

X; =4ag, 4ai, Aaz, ag = Xy,

where

1 1 1 1 2 2 _
ay < ay, ay<as, G =0a;=Cqg.

Let the fourth degree Bézier curve cg have control points
Y1 = bOa bla b25 b3a b4 =Y

where
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An example id-patch is shown in Figure 4.8.

planex?=c,

plane x*=c_

curve Cg

rectangular

Figure 4.8: An ID-patch.

Since the tangent plane, at a point of the ruling ¢ = ¢y, contains the direction
of the ruling, the patch ® is developable iff for all ¢ € [0, 1], x4(t) — xp5(t), Xa(?),
xa(t) — xp(t) and xg(t) are coplanar. Since the projection of the id-patch on the
xlz2-plane is rectangular by the definition of id-patches, this condition is equivalent
to

x4(t)||xp(t), Vtel

or

xp(t) = p(t)%a(2),

for a suitable p. Since c, is a 3"¢ degree Bézier curve and cp is a 4" degree Bézier

curve, the function p(t) can be written as
p(t)=kt+h, tel0,1].

The objective of the analysis is to determine possible coefficients £ and h of p(t) which
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lead to developable id-patches that satisfy given constraints [1].

4.3.2 Results
In [1], theorems are given which answer the following questions:
e How do the Bézier points by, by, by depend on the design curve c4?
e How can the Bézier points a;, a; be chosen to get an admissible patch?

e How can the id-patches be connected so that it satisfies continuity constraints

under given conditions?

At present, researchers can draw conclusions about the design criteria of a small
subclass of developable surfaces. For instance, in [1] Aumann deals with the subclass
of developable Bézier patches whose projections on the x'z?-plane are rectangular
according to the basic condition in his initial definition of ¢d —patches. Not very many
developable surfaces which we see in everyday life can be represented by id-patches.

Hence, it is difficult to construct general developable surfaces using this approach.

4.4 Simulating the Bending of Developable Sur-
faces

The approaches which we have presented so far do not deal with the bending of
the developable surface under external and internal forces. In this section, we will
introduce a mathematical model for simulating the bending of developable surfaces
under those forces. This model appears in [9].

The technique deals with C? continuous developable surfaces. Such surfaces do
not have edges of regression. The developable surface is a plane, or it can be generated
as the envelope of a single regular one-parameter family of planes. The system let
the user specify the forces exerted on a developable surface. Then the system let
the surface respond to the external and internal forces and produce a bending which

preserves the surface metrics.



34 CHAPTER 4. PREVIOUS WORK ON DEVELOPABLE SURFACES

We will present the model in two parts: the representation of developable surfaces

and the model for bending.

4.4.1 Representing Developable Surfaces

a(e(s))
=a(s;)

a(sy)

Figure 4.9: The correspondence function ¢(s).

Let Sy be a convex plane region and let S; be a nonplanar developable surface isometric
to Sy at time t. Assume that the boundaries of Sy and S; are piecewise differentiable
curves o and a4, respectively, parametrized by arc-length s. S; is swept by its family
of generators, and each generator crosses the boundary of S; at two points, except at
the two ends [9]. Each point a4(s;) on the boundary can be mapped onto the point at
the other extremity of its generator, say f(cy(s1)). There is some unique sy for which

ay(s2)) = f(as(s1)), so we can define the map ¢(s1) = sq, as shown in Figure 4.9.

Let g;(s) be the generator of S; passing through a4(s), and let go(s) be the image

of g(s) when S; is developed onto Sy, as shown in Figure 4.10, namely,

9:(8) = au(de(s)) — a(s)

and

9o(8) = ap(de(s)) — aw(s).
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&, S

(@

(b)

Figure 4.10: Applying the developable surface S; to the planar surface Sy.

Since surface Sy and S; have the smae metric, they are related by

< y(s), du(s) >=< dp(s), ap(s) >=1
< y(8), gi(s) > — < cw(s),go(s) >=0 (4.4)

< 91(8),9:(8) > — < go(s), go(s) >=0

where < z,y > denotes the inner product of vectors z and y in R® and & = da/ds.
We represent S; by the pair of functions (a(s), ¢:(s)). By Equation 4.4, the surface
has the same tangent plane at a(s) and a(¢(s)), for any s. The developable surface
is the envelope of that family of common tangent planes. In the next subsection, we

will use this developable surface representation to describe a model for bending.

4.4.2 Modelling the Bending of Developable Surfaces

We discretize o (s) by n nodes, each of which is connected to its neighbouring nodes by

line segments as shown in Figure 4.10(a). The bending of a developable surface will be
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simulated over time £. At any time ¢, external forces can be specified by the user, and
internal forces are computed by the modelling system using simple formulas [9]. Let
F;(t) € R® be the net force exerted on node 7 at time ¢. The forces which are applied
to the nodes will attempt to displace the nodes, and only few of the displacement
combinations would preserve the surface metrics. In other words, we want to look for
the small displacement (day(s), dg;(s)) due to forces F;(t), i =0, ...,n — 1, where the
resulting surface represented by the pair of functions (ay(s) + day(s), ¢s(s) + dgs(s))
preserves the surface metrics.

Let X be the function space consisting of all pairs of functions («(s), ¢(s)). Let Y’
be its subspace where each element of Y satisfies the constraints in Equation 4.4. The
surface S; at time t is represented by a point y; in Y and the evolution of S; under

bending is represented by a curve in Y passing through y; as shown in Figure 4.11. If

Figure 4.11: Projection method.
The surface represents the function space Y.
The displacement dz is projected onto the tangent vector dy.

we add an infinitesimally small doy(s) to au(s), y: moves in the direction (doy(s), 0).
If this dx is contained in the linear space T'Y tangent to Y at y;, then y; + dz will still
be in Y, and we get true bending. If dz is not in the tangent linear space, the surface
represented by the pair of functions (au(s) + dou(s), ¢+(s)) violates the constraints in
Equation 4.4. We thus project dx onto the tangent linear space tangent to the space
of constrained positions. It is a classical fact that the projected component dy is also
the permitted displacement that best approximates dz in TY [9].

The equation of the tangent linear space at y; can be derived from Equation 4.4.

Note that if dv and dw represent small variations of vector v and w, respectively, the
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variation of an inner product < v,w > is < dv,w > 4+ < v,dw >. From Equation 4.4,
we know that any variation dy; = (doy(s), d¢i(s)) in the tangent linear space should

satisfy the system of linear equations

< déy(s), &(s) >=0
< ddy(s), g1(s) > + < du(s), dge(s) > — < ép(s),dgo(s) >=0 (4.5)
< dgi(s), gi(s) > — < dgo(s), go(s) >=0

where

dgi(s) = doy(4(s)) + e (9e(s))ddi(s) — da(s)

and

dgo(s) = cu(d:(s))dgq(s).

The bending of a developable surface can be calculated using Equations 4.4 and 4.5.

In [9], finite bendings are computed by numerically integrating the field of the
projected vectors using a Runge-Kutta method, and the constraints are restored pe-
riodically using a Newton’s method.

Such an approach or a similar approach might be used in an extension of our new
system to animate the movement of a developable surface under some forces, but this
is beyond the scope of this thesis. The focus of this thesis is the representation of
developable surfaces.

The examples presented in [9] deal with the creasing of applicable surfaces as well
as bending of developable surfaces. The metric constraint is slightly relaxed, and
the surfaces are allowed to be stretched slightly. Since we are not concerned with
applicable surface in this thesis, we will not present algorithms for simulating the

creasing of applicable surfaces.

4.5 Discussion

In this section, we will briefly describe our new approach and discuss the relationship

between the new approach and the existing techniques.
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Our new technique takes advantage of the geometric characteristics of the surface
to be modelled. First, the surface to be modelled is divided into several pieces. Then
the shape of each surface piece is defined by a generalized cone, where the shape of
the generalized cone is defined by its cross section together with its apex. The cross
section of the cone can be designed interactively using piecewise continuous curves.
Each 3D surface piece is constructed separately. Then surface pieces are stitched
together to construct the desired developable surface.

The idea of dividing the surface into pieces and approximating each piece sep-
arately is also used in the approach discussed in Section 4.2. In that approach, a
circular cone is used to approximate the shape of each surface piece. In our approach,
a generalized cone is used to define the shape of each surface piece.

To define the shape of a generalized cone, we allow a user to specify the apex
position and a planar cross section of the cone. This is a special case of the classic
problem we talked about in Section 1 of this chapter. In the classic problem, given
two space curves, we join the corresponding points of the two curves to form a curved
developable surface. To define a generalized cone, we let one of the curves be a point
and let the other curve be a planar curve.

Our new technique combined a number of ideas from the existing techniques men-
tioned in Section 1 and 2. However, it is very different from those approaches. For in-
stance, in the Geodesic approach in Section 4.2, the surface is subdivided into patches
based on the locations of input sampling points along the geodesic. To get a better
approximation of the desired shape, the user has to input more sampling data points,
therefore the surface is subdivided into smaller patches. In our new technique, we
divide the surface into several pieces based on its appearance and geometric features.
We can adjust the shape of each surface piece locally to obtain a better approximation
of the desired developable surface. It is not necessary to subdivide each surface piece
into smaller and smaller surface patches.

In the next chapter, we will describe our developable surface modelling technique

in details.



Chapter 5

A New Modelling Primitive

In this chapter, we present a new modelling system that can be used to create de-
velopable surfaces from scratch. In the first section, we discuss the main idea. In
the second section, we describe the structure of the system. We will show how the
modelling of a developable surface is broken into sub-tasks of modelling surface pieces
individually. In the third section, we explain how the sub-tasks and the main task

are accomplished.

5.1 Main Idea

We divide the surface into several pieces based on the geometry of the surface as
shown in Figure 5.1(a). Note that currently our modelling tool is set up to deal with
sequential developable surface pieces only, and it handles sheets of polygonal shape.
We approximate each piece by a generalized cone as shown in Figure 5.1(b). To define
a generalized cone, we specify a cross section and the position of the apex in relation

to this cross section as shown in Figure 5.1(c).

5.2 Data Structure

The data structure of the model has four levels as shown in Figure 5.2(a). To obtain

the desired developable surface, we do the construction from bottom-up.
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A developable surface

surface piece number

(a) Divide the surface into a number of pieces.

generalized cones

(b) Define the shape of each surface piece
by a generalized cone.

cross section editor
control
/ =~ points
X X /
X

= Cross
section

curve

(c) Use piecewise continuous Bezier curves
to define a cross section of a generalized cone.

Figure 5.1: Dividing the developable surface into pieces
and define each surface piece by a generalized cone.



5.3. IMPLEMENTATION ISSUES 41

adevelopable surface (level 4)
rface rface rface
;S)lijece 0 Slijece 1°°° Slijece n-1 (I evel 3)
conep  cones cone f (level 2)
cross sectionb  cross section w cross section k (| evel 1)
apex b apex w apex k

Figure 5.2: Data structure.

On level—-4, a developable surface is desired.
On level-3, the developable surface is divided into n surface pieces.

On level-2, each surface piece is associated with a generalized cone. The
shape of a surface piece can be determined by the shape of the
corresponding cone and some simple initial conditions. Several
surface pieces can be associated with the same generalized cone,
possibly, with different initial conditions. For instance, if the
shapes of two ribbon pieces are approximately the same, then

they may use the same generalized cone to define their shapes.

On level-1, each cone is defined by a cross section and an apex.

5.3 Implementation Issues

As shown in Figure 5.2, the main task is broken into smaller tasks from the top

(level-4) to the bottom (level-1).



42 CHAPTER 5. A NEW MODELLING PRIMITIVE

5.3.1 Step 1: Cross Section — Cone

User input occurs only on the lowest level, namely level 1. On this level, users have
already decided upon the subdivision of the surface. For each surface piece, the user
specifies a cross section, an apex and a few initial conditions.! The initial conditions
will determine the relative position of the apex and the cross section and the region
that needs to be trimmed from the generalized cone to obtain the surface block. Each

cone is defined in its own 3D local coordinate system.

5.3.2 Step 2: Mapping Between Cones and Surface Pieces in
2D

0
IN2D
, flatten out the cone o
. . \
C

o

A general conein 3D

| - representsthe generator |
Surface Piecein 2D of the developable surface |

Figure 5.3: Mapping between a cone and a surface piece in 2D.

As shown in Figure 5.3, when a cone is flattened out, for a given point on the surface
piece, we can easily locate the generator passing through it. Clearly, when the cone

is flattened out, the user-specified cross section corresponds to a plane curve. When

!The cross section can be interactively designed as shown in Figure 5.1(c), or its control points
can be specified in a script file.
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we are dealing with a generalized cone, it is difficult to write down a closed form
formula for this plane curve. However, we may use a system of differential equations
and solve the problem numerically. We can calculate the surface profile by making

the following observations.

e Observation 1: The curvature (t), the angular velocity ¥(t) and the speed

5(t) of this plane curve are connected by the simple relation

Proof: By equation 2.3 _
_dy_dpdt _ ¢

K_ds_ads_é'

O

e Observation 2: The velocity at a point (x(¢),y(¢)) on the plane curve is de-
scribed by the equation

x(t) = $(t) cos ¥(t)
y(t) = 3(t) sin (1),

Proof: By 2.4 and 2.5,

d—i = CoS
and
d—i{ — sin .

ds

Multiplying both sides of each equation by £,

assuming % # (0, we obtain

dr ds

Frialn cos Y
and

dy ds .

% = % Sin Q)b
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Therefore, we can determine the profile of this plane curve using the system of

differential equations

along with the initial values

¥(0) Yo
z(0) | = | zo
y(0) Yo

Note that k(t) can be obtained using equation 4.1 and x(t) = k,. As mentioned
earlier, the curvature at point p of a curve on the developed surface is equal to the
curvature of the projection of the original curve onto the tangent plane of the surface

at p.

5.3.3 Step 3: Construct the 3D Developable Surface

Using the 2D mapping shown in Figure 5.3, we can find, for each point on the surface
piece, its counterpart on the cone. Since each cone is defined in its own 3D coordinate
system, we can represent the ribbon piece in this 3D local coordinate system as well.

Next, we need to position the surface piece in the 3D world coordinate system.
Currently, the system is set up to deal with sequential developable surface pieces.
Let the developable surface pieces be numbered 0,1, 2,...,n — 1, and the last surface
generator of the i" surface piece is the first surface generator of the (i 4+ 1)* surface
piece.

To properly connect the two adjacent surface pieces, we want the shared sur-
face generator to be correctly aligned and the surface normals of each piece at that
boundary to be parallel. A unique linear transformation matrix can be determined
using these constraints, so that the surface piece 7 + 1 is transformed from its local

coordinate system into the world coordinate system. The output of this step is the
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resulting developable surface as a whole in 3D.
This step is automatically carried out by the system, and no user input is required

at this step.?

5.3.4 G' Continuity of the Developable Surface

Since we use piecewise C! continuous cubic Bézier curves to design the cross section
of a cone associated to a surface piece, clearly, each surface piece is C' continuous.
By the surface construction process described above, two adjacent surface pieces join
each other at a common generator, and the surface normals of the two surface pieces
along this generator are the parallel. In other words, the adjacent surface pieces
have the same tangent plane along their shared generator. Hence, the surface normal
along this boundary is G' continuous. That implies that the developable surface is
also G' continuous across the boundary of two adjacent surface piece. Therefore, the

developable surface constructed using our method is G continuous.

5.3.5 Discussion

The above steps are used for generalized cones. In some simple cases, we will be able
to write down the explicit equation of the edge of the developable surface.

Now we consider a polygon in 2D with vertices ABCD as shown in Figure 5.4.
Note that AB||C'D and /ADC = /BCD = «. In the configuration in 3D, the polygon
wraps around the circular cone in such a way that the AB and DC coincide along
the straight line OC'. Clearly, OC is a generator of the cone. The circular cone is
specified by the apex O and the circular cross section centred at O' with radius 7,
where OO’ is perpendicular to the circular cross section at O' and the distance from
O to any point on the boundary of that circle is (.

We can parametrize the position of the point P along the edge AB in 3D with
respect to the angle 6, where 6 is the angle between OP and the OG in 2D, OG 1L AB

2Users do have control over the relative position and relative orientation of surface pieces. The
issue of global control will be discussed at the end of this chapter.
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,,,,,,

Figure 5.4: A simple developable surface.

in 2D. In the 2D configuration, h is the perpendicular distance from the apex O to
the edge AB. As one can see in Figure 5.4,

h
oP| =
0P| cosf’

a=10.
Consider the angle v = /GO'Q in the 3D configuration,

a_l027r_27r0

where 3 = /AOB = m — 2« in 2D. Let (zp,yp,2p) be the position of P and
(zq,Yq, #qg) be the position of ) in 3D. Clearly,

zp _ |[OP| _ h
a;Q_ I lcosh
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Hence,

h
= L cos HxQ
= h T COS
"~ lcos# Y

ho1g ot
lcosH?wCOS I}

hp cos 276
27 cos 0 I5]

Similarly, we can show that

_ e 2mf
"~ 2mcosf 8

zZp

Finally, we can determine yp,
yp _ |OP|

yo  10QI

Therefore,

yp = [ cos HyQ

= lcos&lcosa

—h VITT =P

cosf 2

We can represent any point P on the developable surface by making h a parameter,
where h € [hag, hpc|, hap is the distance from O to AB, and hpc is the distance
from O to DC in 2D. Now we have constructed a parametrization of the developable

surface in terms of € and h.

As we can see, this developable surface we considered above is a simple one.
However, its analytic representation quickly becomes non-trivial. We can foresee
how difficult it is to obtain the formulae for a more complex developable surfaces.
It appears to be more prudent to obtain the discrete representation of the surface

numerically.
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5.4 Discussion

5.4.1 Local Shape Control

To change the shape of one surface piece, it is not necessary to subdivide the surface
piece into smaller and smaller pieces. The user can adjust control points of the cross
section curve of the cone associated to this surface piece. Since users can interactively
change the piecewise continuous cross section curve of the generalized cone which
defines the shape of associated surface piece, users have control over the local shape
of each surface piece. Since developable surfaces are not stretchable, the adjustment
of the shape of a surface piece might effect the relative orientation of this surface

piece and its adjacent piece in the 3D space.

5.4.2 Global Control

The global control can also be achieved through adjustments of control points of cross
section curves. For instance, we have two adjacent surface pieces A and B as shown
in Figure 5.5(a). To control the relative orientation of surface pieces A and B, we can
change the orientation of the tangent plane at their common generator. That can be
done by adjusting a few Bézier control points of the user defined cross section curve of
cone A, where cone A is associated to surface piece A. An example of such adjustment
and its global effect is as shown in Figure 5.5(b). The boundary curve V4 of A and
the boundary curve Vg of B join each other at point J. The cross section of cone A
is as shown in the left column of Figure 5.5(b). Point K is the intersection point of
generator JO,4 and the cross section of cone A. Recall that the cross section curve
is defined by piecewise cubic Bézier curves in our modelling system. Assume that
point K is on the cubic Bézier defined by control points p;, ps, ps and p,. When p, is
adjusted, the tangent direction of the cross section curve at K might be changed as
shown in the figure. As a consequence, the orientation of the tangent plane along the
common generator 04Op is changed as shown in the right column of Figure 5.5(b).

Therefore, the relative orientation of surface piece A and B are changed as one can
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tell from the profile of the boundary curves V4 and Vg at the neighbourhood of point
J.

Notice that the local shape of each surface is not largely affected by this adjust-
ment. Since the cross section curve of cone A is defined using piecewise continuous
Bézier curve segments, moving control point p, affects the shape of only the last seg-
ment of the cross section curve. An user can choose to make this segment relatively
small so that it can be used for global control, and he/she can still have local control

over the shape of the resulting developable surface.
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Oa
cross section of
cone A intersects
JO,a K
surface piece A
dary curve Vg
boundary curveV
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€
the profile of boundary
[cros section of coneA] curvesVpand Vgat J
p4 (]
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|
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R/
-
I32 p3

Figure 5.5: Adjusting one control point of a cross section curve
to change the relative orientation of two surface piece A and B.



Chapter 6

Applications of the Model

In this chapter, we will demonstrate the feasibility of our approach. We will use our
developable surface representation technique to model a hanging scarf and a looping

structure.

6.1 Modelling a Hanging Scarf

6.1.1 Observed Properties of a Hanging Scarf

By a hanging scarf, we mean a scarf that is suspended in the air by one of its corners.
If one lifts a silky scarf by a single corner, leaving the scarf hanging naturally in the
air, such a hanging scarf is approximately a developable surface. Given a point on
the scarf’s surface, one can easily estimate roughly where the generator lies.

We can image an “invisible” generalized cone of a similar shape suspended in the
air by its apex and the cross section of the cone as is shown in Figure 6.1(a). The
corner of the scarf which the scarf is suspended by is close to the apex of the cone,
and the scarf itself follows the contour of the cone.

The folds produced by the cross section, as shown in Figure 6.1(a), are expected
to be very close to each other. In order to give the reader a better idea what the folds
look like we will use the cross section in Figure 6.1(b) to demonstrate the design and

modelling process in the following sections.

51
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Figure 6.1: Two possible cross section designs (Hanging Scarf).

6.1.2 Approximating a Single Cross Section

By looking at a scarf, an intuition can be obtained for the folding of the hanging
scarf. The point of departure for our system is an estimate what the horizontal cross
section of the scarf looks like. The user designs the cross section in an interactive
Cross Section Editor using cubic Bézier curves. The user may add or move Bézier
control points. a neighbouring point might be adjusted automatically by the system,

if necessary, to make sure that the resulting piecewise curve is C* continuous.

The approximated horizontal cross section of the scarf is used as the cross section
of the “invisible” cone. The apex position of the cone in 3D is specified in a script

file.
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6.1.3 Defining Surface Pieces in 2D

4
3

surface piece 1 3

has vertices

1,4,2,1 :
surface piece 2
has vertices

1 4,3,3, 2

2

Figure 6.2: Surface piece partition (Hanging Scarf).

Since the developable surface can always be flattened out, we can define the scarf
to-be-developed in 2D. The user defines the scarf by giving the coordinates of its
vertices. Then the scarf is divided into two surface pieces, as shown in Figure 6.2.
Here, we will explain how the modelling system handles the surface piece in 2D.
Without loss of generality, our system requires each surface piece to be defined by four
vertices vy, v1, v9 and v, where the line vgvs is the first generator and the line vvy is
the last generator of the surface piece. By the surface construction process described
in chapter 5, the shape of each surface piece should be defined by one generalized
cone. Surface pieces are treated differently depending on their shapes. Four general

cases are considered:

CASE I: As shown in Figure 6.3, vgvs||v1ve in the plane embedding the flattened
surface. In this case, the shape of the developable surface in 3D should be de-
fined by a generalized cylinder instead of a generalized cone. After development
we should still have vyvs||v1v, in 3D. We can show that this is true by way of

contradiction.

Proof: Suppose that the shape of such a surface piece can be defined in 3D by
a generalized cone. Since line vyvs is the first generator and line v,v5 is the last

generator of the surface piece, the two generators must intersect at the apex
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Figure 6.3: Surface piece type: Case 1.

of the generalized cone. When the generalized cone and the surface piece are
flattened out in a 2D plane, the one-to-one correspondence between points on
the surface piece and points on the cone remains the same. Thus lines vyvs
and vivy intersect in the 2D plane. But this contradicts our assumption that
vovs||v1v2 in a 2D plane when the surface piece is flattened out. Therefore, the

shape of the developable surface in 3D can not be defined by a generalized cone.

O

The shape of the developable surface in 3D can be defined by a generalized
cylinder instead, in which case after development we have vouz||v1ve in 3D. In
our system, this case is not implemented. To incorporate generalized cylinder
into the model is easy, and it follows similar principles as those of generalized
cones, i.e., flattening the cylinder out in 2D, finding the correspondence between
points on a surface piece and points on the cylinder, and constructing the surface

piece in 3D using this information.

CASE II: As shown in Figure 6.4, vovs and vvy intersect at a point p. Since the

developed surface piece in 3D follows the contour of a cone, there should be a
one-to-one correspondence between generators of the surface piece and gener-
ators of the associated cone patch. So point p should correspond to the apex
of the cone in 2D after the cone is flattened out. The user can specify a spe-

cial generator of the cone which corresponds to either vyvz or v;vy. Then the



6.1. MODELLING A HANGING SCARF 95

first
last
generator generator
VoVs ViV,
! CASE I

first generator of the cone

t=0 Note: The cross section of the cone

can be parametrized in terms of t,
\l/ wheretisin[0,d].

first generator of the cone o
t=0 and

Figure 6.4: Surface piece type: Case II.

relation between the cone and the surface piece is determined as shown in the

figure below. We will see this scenario in the looping structure example.

CASE III: As shown in Figure 6.5, vy, v; and vy are distinct vertices, and vz coincides
with vy. Since vyvy is a generator, the apex of the cone has to be on the line
defined by viv9. The user provides the distance from the apex to one of the
vertices of the surface piece, in order to determine the relation between the

surface piece and the cone.

CASE 1V: The case where vy, v; and vz are distinct vertices, and vy coincides with

vy 1S symmetric to case III.

The situations described in case III and case IV occur in our hanging scarf example.
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last
v, generator
A vy,

CASE 11

last

Special generator
of the cone

Figure 6.6: 2D mapping of the surface pieces and the cone (hanging scarf).

Figure 6.6 shows the 2D mapping of the two surface pieces and the cone, it also shows
their relation in 2D. Note that the hanging scarf does not have to be a square. In

this example run, an arbitrary quadrilateral is used.

6.1.4 Constructing Two Surface Pieces in 3D

We have discussed the method of constructing the developable surface in 3D in the
previous chapter. The resulting surface is as shown in Figure 6.7. The configurations

are: (a) the top view of the scarf, (b) the front view of it, (c) the view from an angle.
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Figure 6.7: A hanging scarf: (a) top view; (b) front view; (c) view from an angle.

6.2 Modelling a Looping Structure

2D

Notethat Ay A isparalel to A2A;

Figure 6.8: A long ribbon.

The looping structure example used in this section is a bow which resembles the type
of bow used to decorate a gift box. We will “fold” a long ribbon into a bow, and the

ribbon used here is as shown in Figure 6.8.

6.2.1 Observed Properties of a Looping Structure

There is a pattern in the structure of a bow. If we use an ellipse of roughly the same
size to replace a loop in a bow, the pattern becomes more obvious. Some example

patterns are shown in Figure 6.9. Therefore, it is sensible to define the shape of each
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il

Figure 6.9: Example bow patterns.

loop using a generalized cone, and to introduce an intermediate piece to connect two

adjacent loops if necessary.

6.2.2 Approximating the Cross Section

top of agift box

Figure 6.10: A cone used to define a loop.

To define a loop, one might use a cone which looks like the one shown in Figure 6.10.
Here, we make the portion which is flattened as it touches the top of a gift box flatly,

so that the resulting loop looks more realistic.

Figure 6.11: The cross section of the cone used for a loop.

We have constructed a cone cross section accordingly as shown in Figure 6.11.
The intermediate pieces are triangular in 3D in this example, so the cone that defines

their shape uses a straight line as its cross section.
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6.2.3 Constructing the 2D Layout

Figure 6.12: The 2D layout of the bow.

In this example, we will create three small loops and three big loops in our bow.
We take a long ribbon, divide it into ten segments — six loop segments and four
intermediate connecting segments. We draw the ribbon in the 2D layout window,
rotate the 2D mapping of a cone to match its corresponding ribbon piece. Figure
6.12(b) is an overall picture of the ribbon pieces and the associated cones in 2D.
Figure 6.12(a) shows some details of the 2D layout. The step by step construction of
the 2D layout is as shown in Figure 6.13.

6.2.4 Constructing the 3D Layout

The method for constructing the developable surface in 3D is as described in the
previous chapter. The surface pieces used in this example have a special form: we are
able to approximate the surface using tensor-product Bézier patches. We will discuss
this below. Note that this procedure may not be applied to surface pieces of arbitrary
shapes.

In our model, we first approximate one particular edge of the ribbon in 3D by cubic
Bézier curves. In chapter 3, we explained the advantage of using Bézier curves for
design purposes. Higher degree Bézier curves might be used here, and we choose cubic
Bézier curves for their simplicity. Then we use this information and take advantage

of the special property of the ribbon piece to construct the desired Bézier patches.
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Surface piece 1
matched with its cone

Align the common generator
of surface pieces 1 and 2.

Surface piece 2
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—
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Figure 6.13: Step by step construction of the 2D layout of the looping structure.

First, we will show one way of adaptively approximating a given space curve
using cubic Bézier curve segments. Then we will explain, knowing the cubic Bézier
approximation of a segment of an edge, how a Bézier patch is created to approximate
an original ribbon patch and why this procedure is valid for the example looping

structure.

6.2.4.1 Approximating a Space Curve by G' Continuous Cubic Bézier

Curve Segments

Given a space curve Q(t), t € [0,1], and an error limit ERR, we would like to
construct a piecewise continuous cubic Bézier curve which approximates the original

curve to within some error tolerance FRR.
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Procedure Approzimate_curve (Q, a, b, €)

/* Q(t) is the original curve, where ¢ € [0, 1].

/* We consider the segment of @ from ¢t = a to t = b.

/* The procedure returns a piecewise continuous cubic Bezier curve
/* which approximate this segment of () and the sum of square error
/* is bounded by the e.

T, = the tangent of the curve at Q(t = a).

T, = the tangent of the curve at Q(t = b).

Let ¢ be an unknown constant and ¢ > 0.

Construct a cubic Bezier curve B with the control points
Q(a), Q(a) + T, Q(b) — Ty, Q(b).

Compare B and the original curve segment, and
express the least of square error in terms of ¢, which gives
us a quadratic function in c.

Minimize this over err_min, by finding
the minimal of the quadratic function, provided that ¢ > 0.

If (err_min < €) then
we are done, return the cubic Bezier curve B.
else
Approzimate_curve (Q, a, “T“’, €/2)
Approzimate_curve (Q, “t, b, €/2)
end_if
end_Approximate_curve

Figure 6.14: Pseudocode for procedure Approzrimate_curve.

In our model, this is done using the recursive procedure shown in Figure 6.14.
Intuitively, if we can find a satisfactory cubic Bézier approximation of the given
curve segment, this cubic Bézier representation is returned. Otherwise, the given
curve segment is split into two halves and each half is approximated using the same
procedure. This recursive procedure (Procedure Approzimate_curve) is shown in

Figure 6.14.

To obtain the piecewise cubic Bézier approximation to the curve @), we simply call

Approzimate_curve (@, 0, 1, ERR).
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Recall that during the bow construction process, we divided the ribbon into a num-

@

(b)
Figure 6.15: Ribbon surface pieces.

ber of pieces as shown in Figure 6.15(a). Now, for each ribbon piece, we choose one
boundary curve, use the above procedure to find a reasonable cubic Bézier approxi-
mation to it. In the next subsection, we will explain how this edge is chosen and how

its Bézier approximation can be used to construct the desired Bézier patch.

6.2.4.2 Construct Tensor-product Bézier Patches

In this section, tensor-product Bézier patches will be constructed to approximate the
developable ribbon surface. Our ribbon pieces have some special properties. Asshown
in Figure 6.15(a), the top and the bottom edges of the ribbon are parallel. Assume
that we name the corner of each piece vyvv9v3 as shown in Figure 6.15(b), where O
is the apex of the associated cone, |v30| < |v190|, |v20| < V10|, vovs and vyve are

generators of the ribbon surface. Here, we have either vyv;||vsvs or vy coincides with

V3.
As one can see from Figure 6.15(b), if the triangle Owvyv; is scaled by a factor,
namely
b= |O’U3|’
|O?)0‘

the resulting triangle is congruent to the triangle Ovsv,. Similarly, in 3D, if the curved
ribbon piece boundary vyv; is scaled by k, then the resulting curve is congruent to
the piece boundary v3vs.

A similar relationship can be established between tangents of corresponding points
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Figure 6.16: Corresponding points py and p; .

of boundary curves vyv; and vsv,. Pick a generator of the cone which intersects the
ribbon piece boundary vsve at py and wvov; at p;, as shown in Figure 6.16. Let T
denote the tangent vector of the boundary v3vs at py and 77 denote the tangent vector
of the boundary vyv; at p;. If O is at the origin and the boundary curve vyv; in 3D
is scaled by a factor, k, then the resulting curve matches the boundary curve vzvo
exactly. In other words, if the parametric form of curve vyv; is By(t), ¢t € [a, b], then

curve v3ve can be parametrized by kBy(t), k£ > 0. If point
p1 = By(t"),
for an some t* € [a, b], then
po = kBi(t"), Ti=B(t"), Tp=kB,(t").

Therefore,
T
il _,
|77

We have
Tol _ [Opo| _ |Ovs _
Ty |Ops|  |Owol

k. (6.1)
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Figure 6.17: Sub-dividing a ribbon piece into n ribbon patches.

Now, consider the ribbon piece vyv;v2v3 shown in Figure 6.17. We pick the bound-
ary vov; and approximate it with n cubic Bézier curves using procedure Approz-
imate_curve. Note that although the cross section of the corresponding cone is a
piecewise continuous Bézier curve, the boundary of a ribbon piece is not defined as
a Bézier curve. So this boundary curve approximation step is necessary. The curves’
endpoints are

U1 = Wy, Wy, ..., Wp—1, Wy = Vg,

where w;_; and w; are the endpoints of the i** Bézier curve, i = 1,2, ..., n. Lines Ow;,
1=1,2,...,n, divide the ribbon piece into n ribbon patches.

Consider a single ribbon patch goqi7179, as shown in Figure 6.18.! Let B; denote
the cubic Bézier representation of the boundary curve ¢;7;. Let ¢, g1, h1 and r;
denote the control points of B;. We approximate the boundary curve gory by the

cubic Bézier curve B, defined by control points qq, g9, hg and 7y, where

Q@9 =k qug1 and horg =k hir;.

By the algorithm in procedure Approrimate_curve, the vector rih; is parallel to the

Tt is possible for the points gy and ry to coincide.
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3D 2D

Figure 6.18: One ribbon patch.

tangent of the boundary ri1q; at r;. Therefore, by equation 6.1, the vector rqohg is
parallel to the tangent of the boundary ryqq at ro. Similarly, the vector gyqo is parallel

to the tangent of the boundary rqqq at qq-

Assume the cubic Bézier curves are both parametrized in terms of . There is
a one-to-one correspondence between the point By(t) and the point Bi(t). The line
defined by By(t) and B;(t) is an approximate generator of the surface. So we can
define a tensor-product Bézier patch of degree (3,1) using the following set of control
points
9 9o ho To
@ g1 hiom '

We approximate each ribbon patch by a Bézier patch to obtain the Bézier repre-

sentation of the bow in 3D.
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6.2.5 Resulting Surface

The development of the bow in 3D.

The figure above shows the development of a surface in 3D. The ribbon consists
of 10 surface pieces. When the sum of square error limit is set to 0.0005, each surface
piece is approximated by 1 or 2 or 4 ribbon patches. For our loop structure, the

flatter a surface piece is, the fewer ribbon patches are needed for the approximation.
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6.3 Discussion

The two examples presented in this chapter have demonstrated the feasibility of the
technique. The design of the modelling tool can be flexible. For instance, the current
version of the modelling tool allows an user to interactively define the cross section of
a cone associated with a surface piece. We can add an option which allows the user
to define the cone using a space curve «(t) and an apex point O, because the family
of lines O« (t) spans a generalized cone as well. This feature might be useful for some
surface construction tasks. In the next chapter, we will discuss possible extensions of

the modelling tool.
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Chapter 7

Conclusion

7.1 Contributions of the Thesis

The main contribution of this thesis is to introduce a new approach to the design and
modelling of a class of developable surfaces. By dividing the surface into a number
of pieces and modelling each piece with a generalized cone, the user has a great deal
of control over the shape of the developable surface. Unlike the previous approaches
described in chapter 4, the user can specify the cone by the shape of its cross section
and the position of its apex, so it is easy to determine a set of input data which lead to
a good approximation of the desired surface. The concept is simple and easy to grasp,
but it does not reduce the power of our modelling system. The user can interactively
change the input to the system. The feasibility of our model is demonstrated by
applying to it to the modelling of a hanging scarf and a bow, as shown in Figures 6.7
and 6.2.5.

To obtain a better approximation of the desired developable surface, it is not
usually necessary to subdivide each surface piece into smaller and smaller surface
patches. To change the shape of one surface piece, the user can adjust control points
of the cross section curve of the cone associated to this surface piece. Also, by editing
a few controls points, the user can also alter the orientation of the tangent plane at
a shared boundary of two adjacent surface pieces. Therefore, this approach gives the

user a great deal of control over the shape of the resulting developable surface, both
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locally and globally. This is discussed at the end of chapter 5.

7.2 Extensions to the System

Our modelling system can be extended to handle developable surfaces whose surface
pieces can be defined using generalized cylinders as well as generalized cones. By
improving the user interface and the overall design of our system, our modelling tool
should be able to handle a variety of developable surfaces. For instance, if a sheet is
not polygonal, i.e., its boundaries can not be defined by straight line segments, we
might need to use curves to describe its boundaries. Another extension to the system
is to approximate applicable surfaces, such as crumpled paper or paper with sharp
folds and cusps, by gluing a number of developable surface pieces together. Also, we
might allow the user to specify a space curve, and let the edge of a developable surface
follow the space curve as closely as possible without tearing or wrinkle. Such a feature
might enable us to create many interesting developable surface animations. An im-
portant extension would be collision detection can be added to the system to prevent
surface inter-penetration. Volino, Courchesne and Thalmann [13] presented inter-
esting collision detection techniques for cloth, fabrics or, more generally, deformable
surfaces. This technique might be useful in an extension of our developable surface

modelling system.

7.3 Areas of Further Research

An interesting area of further research might be to incorporate physical constraints
into the model. For instance, we might want to simulate the movement of a scarf.
Imagine that the scartf is suspended in the air by its corner C' and we hold the corners
of the scarf adjacent to C', so that all four edges are straight in the air as shown in
Figure 7.1. Then we release corners adjacent to C, and let them fall. To simulate this,
we could use physical constraints to calculate the force and surface energy, so that

the system can generate the behaviour of the scarf automatically. Another example is
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corner C

Figure 7.1: An example initial configuration of a scarf in the air.

that of placing a bow on a table and pressing down on it. If we remove the pressure,
the loops of the bow should spring back and relax to its original configuration. Notice
that the behaviour of the developable surface under physical constraints are dependent
on the material. Also, the realistic simulation of non-rigid objects such as the ones
mentioned here needs to be formalized in a rigorous mathematical framework. By
taking the physical constraints into consideration, our modelling system would be

more interesting and complete.
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