
Approximate Safety Enforcement Using
Computed Viability Envelopes
Maciej Kalisiak

Dept. of Computer Science
University of Toronto
mac@dgp.toronto.edu

Michiel van de Panne
Dept. of Computer Science

University of British Columbia
van@cs.ubc.ca

Abstract— A numerical method is proposed for the constraint
of the state of a dynamical system such that it cannot enter
a predefined failure region. The proposed approach to this
viability problem involves an explicit numerical approximation
of a viability envelope, coupled with a practical strategy for
enforcing containment that is based upon a predictive look-ahead
strategy. The approach can be applied to achieve automated “in-
tervention when necessary” to enforce system safety at interactive
rates. Applications are shown to several low-dimensional systems,
including steering control of a vehicle constrained to a given
environment geometry.

I. INTRODUCTION

Controlling dynamical systems near the limits of their
performance can often be a challenging task, as is evidenced
by the skill required of a pilot flying near stall-speed during
a landing flare, or the finesse of a race-car driver in safely
executing a high-speed turn. Much of the requisite skill
involves an accurate perception of where the limits of the
system are at any point in time, and how these limits project
themselves onto the control inputs.

The above observations naturally motivate the need for a
mechanism for “enforced safety,” namely ensuring that the
applied controls for a system always result in the avoidance
of predefined failure regions. This entails over-riding a user’s
desired control input in situations that are deemed sufficiently
critical. For situations where the system is slower in approach-
ing the limits of safe operation, a similar mechanism can
provide suggestive guidance. These ideas are formalized and
elaborated throughout the remainder of this paper.

The starting point of our approach is a known model of the
system dynamics and a defined failure region. The definition of
what constitutes a failure is necessarily application-dependent;
for flight control it could encompass the onset of a stall, while
for a driving scenario it might include the wheels of the car
leaving the road or beginning to lose traction. The viability
envelope consists of all “points of no return,” past which the
system will inevitably succumb to failure. It may be immediate
or may come much later, but it is no longer possible to return
to normal operation. Our method begins by building an explicit
model of the viability envelope in a preprocessing step.

Given a model of the viability envelope, the online portion
of the algorithm predicts a state trajectory assuming con-
stant control input. When this predicted trajectory crosses,
or breaches the viability envelope, a containment-preserving
correction is applied. The temporal buffer effect of the look-

ahead allows choice in how the correction may be applied.
One option is to simply override the user’s control input
with a non-infringing one. Alternatively, one could employ
haptic feedback to negotiate with the user, initially providing
a guiding force which hints at better courses of action when
a breach is distant, and then increasing the corrective forces
as the breach draws near. Such “shared control” has been
explored in [1].

Viability Theory [2]–[4] provides a theoretical framework
for the class of problems being addressed here. Our work
builds on this framework by developing algorithms for ex-
plicit approximations of the viability region and the online
enforcement of it. In viability theory terms, our work provides
a concrete class of viability kernels. Potential field methods
can do well at solving some types of viability problems using
empirically-defined buffer zones and enforcing local viability
[5]. The use of virtual potential fields has also been explored
for implementing a lane-keeping aid for car steering [6], [7]
and can in some cases be shown to provide analytic guarantees
with regard to system containment in the absence of human
input. Our work addresses the problem of controllability in a
more direct manner by using an explicit representation of the
viability envelope.

Another related approach applies machine learning tech-
niques to model the controllable regions of a set of given
controllers [8]. However, this work only models whether the
given control policy is capable of controlling the system from
a given state, and not the more general question of the viability
of a state with respect to the set of all feasible control policies,
nor does it deal with the issue of when and how to apply
corrective actions. More distantly related problems are those
of computing reachable sets [9], and solutions to kinodynamic
motion planning [10], [11].

II. FRAMEWORK

Consider a rocket that is constrained to fly vertically, with a
user controlling the applied thrust. Wanting to reuse the rocket,
the user would like to bring it down safely by performing
a soft landing. This is complicated by the rocket having a
limited amount of thrust and thereby requiring strict control of
the downward velocity to ensure sufficient time to decelerate.
The problem can be recast into control-theoretic terms: the
task is to bring the rocket to the goal state, (z, dz

dt) = (0, 0),
while staying within the controllable region of state-space. We

zβv βr

Xf

βf

dz
dt

nominal
operationfailure

inevitable

Xop

Xfi Xur

unreachable

failed (crashed)

Fig. 1. Taxonomy of X , the rocket’s state-space; z represents altitude. A
safe landing requires bringing the system’s state to the origin while staying
within Xop, or at least within (i.e., above) the viability envelope βv .

now look at how analytically-defined viability envelopes can
be used to enforce safety in this example task.

The state-space for this problem, X , can be partitioned into
four regions using three boundaries, as shown in Fig. 1. βf

delimits Xf , the failure region of state-space (i.e., where the
rocket has crashed), while βv and βr mark the bounds of
controllable (i.e., viable) and reachable space, respectively. βv

and βr split X − Xf into: Xfi, the set of states for which
failure is absent but inevitable, Xur, the set of controllable but
unreachable states, and Xop, the desired region of operation.
In this example, the viability envelope βv is defined by the
“switching” curve for the corresponding bang-bang control
problem. Similar partitions of X can be made for any other
dynamical system. Lastly, since we frequently refer to the
controllable and uncontrollable regions, we assign them the
symbols Xin and Xout, respectively (i.e., “in-” and “out-”side
the βv envelope). Thus Xin = Xop∪Xur, and Xout = Xf∪Xfi.
The task at hand then is to bring the system’s state to (0, 0)
while staying within Xin.1

A. Single-step containment

The simplest strategy for ensuring that the state stays within
the envelope is to prevent an exit the instant it is about to
occur. This can be achieved by giving the user full reign until
such time, and then simply overriding the unsafe control input
with a safe one. Within a discrete time framework, the control
strategy can be formalized as

uk =
{

vk if xk+1 = F (xk, vk) ∈ Xin

N(xk, vk) otherwise (1)

where uk is the control input applied at time step k, vk is
the control input the user requested, xk ∈ X is the system’s
state, F is a function that embodies the system dynamics in
a discrete time setting, so that xk+1 = F (xk, uk), and N
is a function that returns an appropriate, safe control input.
It should be noted that since xk ∈ Xin, at least one such
safe control is guaranteed to exist. Also, since it is desirable

1We constrain ourselves to Xin rather than the more exclusive Xop since
later approximations and trade-offs will cause parts of Xur near βr to, in
fact, become reachable.

T 2
h

T 1
h

Fig. 2. A larger time horizon allows milder corrections. Above, the driver
on the left has more space and time to maneuver to avoid the obstacle, and
so is able to use a gentler turn. In general, using a larger horizon does not
preclude the use of the shorter control policy, hence it is guaranteed, at the
very least, to do no worse.

to limit the system’s intrusiveness, N should return the safe
control input nearest to vk.

B. Multi-step containment

The above method has one undesirable property: it produces
severe corrections. For a user controlling the system, the
experience of having control abruptly torn from the their
hands is likely to be disorienting and frustrating. This can
be mitigated by responding earlier to upcoming breaches, by
testing multiple subsequent time steps for a breach, instead of
just one. As Fig. 2 illustrates, using a larger time horizon (Th)
generally leads to milder corrections. The desired magnitude of
the horizon is clearly task- and system-dependent, but practical
considerations impose an upper bound. For example, a car
need not consider a turn in the road ahead if it is very far
away. It is worth noting that, for the most part, the time
horizon’s magnitude is driven by human response times and
mental acuity, rather than by the complexity or particulars of
the physical system being controlled.

In the multi-step approach, the user is given free reign
until their control input leads to a breach within the time
horizon, at which time the input is automatically supplanted by
a safe alternative. The latter is chosen by extrapolating state
trajectories for all constant-valued2 control inputs available,
up to Th into the future, and selecting the best candidate.
Although control is still usurped from the user, the effect is
significantly milder. A bonus benefit of the multi-step approach
is that the information on temporal breach proximity can be
fortuitously used elsewhere, for example in haptic guidance,
in mapping control inputs to meaningful feedback levels.

The concept of temporal proximity of a breach figures
prominently in our work, so it is helpful to introduce a concise
notation for it. Thus, let Teb(x, u) denote the time to envelope
breach for a control input u, if the system is initially in state
x. If u causes a breach within the time horizon, then 0 ≤
Teb(x, u) ≤ Th; if not, it is convenient to let Teb(x, u) = +∞.

Using Teb we can now fully characterize our online algo-
rithm as follows. The method runs in one of four modes of

2This assumption embodies the generalized inertia principle from viability
theory. In our method it serves as the best guess of user’s future input, a guess
inherent in computing Teb(x, u).

operation, based on the assessed meta-state of the system:

L1: Teb(xk, vk) > Th

L2: Teb(xk, vk) <= Th,
and ∃u ∈ U : Teb(xk, u) > Th

L3: ∀u ∈ U : Teb(xk, u) <= Th,
and xk ∈ Xin

L4: xk ∈ Xout

The corresponding applied (corrected) control input is then
given by

uk =

vk if L1

B(xk, vk) if L2
arg max

u∈Ubf

Teb(xk, u) if L3

N/A if L4

(2)

where Ubf is a set-valued function which describes the set
of constant-valued control inputs which are breach-free for a
given state (i.e., Ubf (xk) ⊆ U), and B is a function that picks
an appropriate, safe control, biased in some way by the user’s
control input, vk. It should be noted that whenever we refer to
any control or trajectory as “breach-free”, we implicitly mean
“. . . within Th”.

In brief, the four modes represent progressive levels of
severity of the system meta-state. L1 and L2 constitute normal
operation, while L3 and L4 correspond to crisis handling
modes. In particular, L1 corresponds to the most benign case,
where the user’s control input vk does not breach the envelope
within Th, and hence is applied as is. In L2 the user’s input
does lead to a breach, but other values exist that do not; an
appropriate input is chosen from among these. In L3 all the
control inputs lead to a breach. Since xk ∈ Xin, an achievable
breach-free control policy is guaranteed to exist, but in this
case it will involve time-varying control inputs. Choosing the
control with the largest Teb is likely to maximize the chances
that the system will track, at least initially, one of these desired
non-constant inputs, although this is not guaranteed. Finally,
in L4, the system state is already outside the envelope. No
control law is provided for this case as it does not occur with
analytic envelopes; it is listed here for completeness, and plays
a greater role in further sections.

III. PRACTICAL APPROXIMATIONS

The framework, as outlined above, is difficult to implement,
especially in an interactive setting. This section presents the
approximations which make this goal achievable.

A. Discretization of U
A recurring problem throughout the framework is the need

to search all of U for some desired control input, or performing
a computation on each of its members. A simple remedy is to
discretize U . We thus define Û as the set of controls uniformly
sampled from U , and use this subset wherever U is called
for. This then, for example, allows direct computation of the
“nearest safe input” function N , which can now be formally
defined as

N(xk, vk) = arg min
u∈bUbf

|u− vk| (3)

where Ûbf (xk) ⊆ Û is the discretized equivalent of Ubf (xk).
One can now also easily establish the system’s mode (i.e.,
∈ {L1, L2, L3, L4}), since Teb has to be computed only for a
finite set of control inputs.

The size of Û is chosen to be as small as possible to
reduce computational load, but large enough so that under
most circumstances it captures at least one breach-free input.
For simple systems (e.g., those amenable to bang-bang control)
the discretization can be very sparse, since either the minimal
or maximal input is frequently breach-free. For complex
systems, on the other hand, even very dense discretizations
can sometimes fail to produce a suitable candidate, especially
if the controllable subset of U is small and inconveniently
distributed. This carries important repercussions, most princi-
pally that the L3 policy of setting uk to the control with the
largest Teb, as shown in (2), likely becomes ineffective then,
and admits breaches. The best one can do in this case is to
treat the situation more severely, applying the L4 control law
instead, which we discuss in the next subsection.

B. Approximate envelopes

Analytic descriptions of the viability envelopes can usually
only be obtained for the simplest of systems. For more com-
plex systems the envelope may be approximated through some
form of empirical sampling of the state space, and the use
of classification methods from machine learning to infer the
controllability of the system for arbitrary query states. We have
explored the use of both, Support Vector Machines and Nearest
Neighbor techniques, and found the latter to be preferable
for reasons of speed and algorithmic “transparency”, which
make it amenable to application-specific customization and
extension.

In general then, the envelope approximation is captured
using a NN classifier

NN (x) =

 1 if min
z∈ bXin

|x− z| ≤ min
z∈ bXout

|x− z|

0 otherwise
(4)

where X̂in and X̂out are sets of samples which are known to
be inside and outside the envelope, respectively. These sets
are obtained in an offline pre-computation step, as detailed in
the following section. Fig. 3 shows an example of a part of
a viability envelope that was computed for a 2D dynamical
system.

By virtue of being approximations, these envelopes will
under- and over-approximate at various points bordering the
true envelope, leading to false negatives (NN (x) = 0 when
x ∈ Xin) and false positives (NN (x) = 1 when x ∈ Xout).
The former is less of a problem than the latter since marking
extra regions of state-space as uncontrollable merely results
in a more conservative envelope. The key problem is the
presence of the false positives, which can deceive the system
into unknowingly entering Xout. That is, the L4 mode now
becomes a practical possibility.

If confronted with L4 and the unavoidability of failure, we
choose to minimize a metric of the failure’s severity. This is

xk

Xout

Xin

dz
dt

z

Fig. 3. A rocket’s 2D NN envelope; the set of trajectories originating at
xk show the computation of Teb(xk, u) ∀u ∈ bU , with Tgr = 1. The user’s
zero-thrust input (leftmost, not emphasized) is being overridden by the one
shown in bold. Also shown are the band of samples adjoining the envelope,
and the resultant Voronoi tessellation. (cf. the true envelope βv in Fig. 1)

done by selecting the “least detrimental” control input, one
which causes the system to spend the least amount of time in
Xout. Because the time spent in Xout for any input may be
arbitrarily large, the search for envelope re-entries needs to be
bounded using a suitable criterion.

A complementary measure one may take is to use a con-
servative envelope, one which errs on the side of safety when
placing the boundary. We have not yet explored any methods
for doing this, but a straight-forward one would be to shrink
the original envelope by a small percentage. The benefit of
this is that any shallow breach of this envelope, such as given
by the least-detrimental criterion above, will likely not incur
a breach of the true envelope, thus maintaining system safety.

Finally, we employ a grace period when identifying enve-
lope crossings, primarily to combat the error-induced noisy
nature of NN envelopes. We define Tgr, the grace period,
as the maximum amount of time that a trajectory may enter
the alternate region without being labeled as a transition.
Conversely, a transition is only pronounced if the trajectory
excursion into the latter region lasts longer than Tgr. The
rationale for this is that, as trajectories τ1 and τ2 of Fig. 4
suggest, the longer a trajectory stays within the latter region,
the more likely it is that the perceived transition did in fact
occur, and was not an artifact of the envelope representation.
A trajectory such as τ3 in Fig. 4 thus does not qualify as a
transition according to this criterion.

IV. IMPLEMENTATION

A. Computation of Teb(x, u)

We define Teb(x, u) in the discrete case as the time period
to the first state that is classified as being in Xout. Although
measuring Teb in seconds may seem natural, it is more

Xout

Xin

βv

τ1
τ2

τ3

Fig. 4. Using a grace period to combat envelope (approximation) noise; for
Tgr = 2, τ1 forms a definite breach, τ2 a definite re-entry, and τ3 merely a
“brushing” of the envelope (i.e., not a transition).

practical to express it as an integer number of fixed time steps
∆t, with Th and Tgr measured likewise. In computing Teb

there is usually no need to search for a breach past Th; it is
always sufficient to know that Teb > Th instead of the actual
value (and thus our earlier use of Teb = +∞ in this case).

When searching for re-entries, we search up to an additional
Th into the future. If a re-entry is not found within that span,
the next best thing is to select the control input whose state-
space trajectory comes the closest. The relative proximity of
the various trajectory endpoints can be effectively approxi-
mated as the average distance to the k nearest NN samples
from Xin, with k = 3 usually being sufficient; k = 1 tends to
be unreliable.

B. Blending function

There are a number of ways to implement B(xk, vk) that
appears in (2). We have used a conservative approach, namely
B(xk, vk) = N(xk, vk). A more flexible and general approach
is to implement it as a blending function

Bf (xk, vk) = αvk + (1− α)N(xk, vk) (5)

where
α = min

[
Teb(xk, vk)− 1

Th
, 1

]
(6)

This modulates the strength of the correction based on the
immediacy of a breach, and thus allows the user more freedom
at longer lead times. The approach gives corrections whose
magnitudes vary between those of single-step containment and
the B = N case above.

C. Envelope construction

As mentioned earlier, we employ NN methods to classify
query points based upon samples that are known to be viable
or unviable. Algorithm 1 describes how the classified sample
points are obtained, while (4) describes their application in the
classifier.

The oracle(~x) is a function that authoritatively answers
the question of whether the given state is controllable. It may
obtain its knowledge by analytic, empirical, or heuristic means.
The reason we do not consult the oracle directly during online
simulation is that frequently these are extremely slow. The NN
classifier essentially serves to embody the oracle’s knowledge
in a form that is optimized for query speed, and serves as
a universal encoding to which all other representations may
be easily translated. Although the use of empirical data or
heuristics can render the oracle’s accuracy to be imperfect,

Algorithm 1 Computation of X̂in, X̂out for the NN classifierbXin, bXout ← {∅}
for i = 1 to n do

~x← rand uniform(X)
if oracle(~x) = 1 thenbXin ← bXin + ~x
elsebXout ← bXout + ~xbXin, bXout ← scale samples(bXin, bXout)bXin, bXout ← dump redundant(bXin, bXout)

we have found that it is not a problem, as long as none of the
errors are particularly egregious.

As with most learning methods, it is necessary to scale
or normalize the training data prior to use, given that the
NN classifier uses an L2 norm distance metric in state-space.
At present we select appropriate scaling factors manually,
based on some understanding of the shape of the controllable
region. The parameters should be chosen so that the significant
features of the envelope surface (i.e., bumps, valleys, ridges,
etc.) are of similar magnitude in all the state-space dimensions
in which they lie, to avoid being trivialized and hidden in the
noise or error inherent in the classifier’s representation of the
surface.

A final measure taken to reduce unnecessary load is to
discard redundant samples, ones which do not contribute to the
NN decision surface, and consequently ones whose removal
does not change it. Although a number of methods exist to do
this [12], [13], we employ a simpler technique which trades-
off thoroughness (i.e., does not drop every redundant sample)
for large gains in speed. We make use of the fact that the
samples are uniformly distributed, and compute the average
inter-sample distance δs. We then discard all samples which
are further than k δs from the decision surface3. The value
of k is chosen by trying a number of possibilities, typically
k ∈ {5, 10, 20, . . . }, and seek the first one that results in a
consistent subset, namely one that properly classifies every
sample from the original sets. This yields a well-structured
band of samples around the decision surface.

V. RESULTS

We have successfully applied the viability envelope method
to four systems: (1) the rocket, as discussed in section II;
(2) a dynamical model of bicycle balance having a 2D state
space (θ, dθ/dt), where θ represents the tilt of the bicycle; (3)
a steerable car restricted to an infinitely long straight road
of limited width, having a 2D state space (y, θ) where y
represents the distance of the car from one of the curbs, and
θ represents the car’s orientation with respect to the road; and
(4) a steerable car restricted to a terrain of arbitrary, bounded
geometry. The last example is the most complex in terms
of having a 3D state-space (x, y, θ) and no easily-modeled
analytic solution. Due to space limitations, we restrict our
results and discussions to this last example.

3This can be approximated by measuring instead the distance to the nearest
NN sample of opposite class.

Fig. 5. A car constrained to stay on the track; see Fig.7 for plot of
corresponding control inputs.

Fig. 6. Less conventional terrain for the car (perspective view).

Fig. 5 shows a trial run for a car on a track using a 3D
viability envelope. The user is able to interactively steer the
car at will but is prevented by the system from leaving the
track. Fig. 7 shows how the safety constraints project onto
the control input space for this problem. The user input vk

consists of a sequence of right and left turns of the steering
wheel, as represented by the smooth line on the graph. The
unviable control inputs are given by the shaded areas. The
applied control input, uk is computed as given by Equation 2
and is represented by the line taking discrete steps, reflecting
the discretization of the control input space. Lastly, Fig. 8
shows the set of viable and unviable steering directions for
various states of the car during a simulation.

Th
Teb

(a) (b)

Th
Teb

Û Û

Fig. 8. Teb behavior and viability of bU for a fixed-velocity car; the gray
trajectories correspond to breach-free controls, which appear checkmarked and
green in the Teb vs. bU bar graphs underneath. Case (b) is instructive: although
the car’s distance from the opposing curb suggests some leeway, the car is in
fact nearly upon the point of no return (i.e., envelope), as hinted by the many
Teb ≈ 0, and must immediately choose one of the breach-free inputs.

time

(rads)
Û

-0.7854

-0.58905

-0.3927

-0.19635

0

0.19635

0.3927

0.58905

0.7854
unviable

vk
uk

Fig. 7. Plot of vk, uk , and the viability of u ∈ bU for the simulation run shown in Fig.5. u is the deflection of the front wheels, in radians.

TABLE I
SYSTEM PARAMETERS PER SCENARIO

scenario # samples | bU | Th Tgr

rocket 1,218 9 15 1
bike 3,513 9 10 1

car (straight road) N/A 9 10 0
car (track) 42,117 31 10 1

car (4 obstacles) 176,545 15 10 1

Our method runs interactively on a 2.4GHz Pentium IV.
We target a 30Hz interactive simulation rate to give the user
reasonable responsiveness. Table I lists the various parameters
used for the scenarios: number of NN samples4, discretization
of control space, time horizon, and grace period. The latter
two are expressed in terms of number of simulation steps (i.e.,
1
30s). It should be also noted that the original number of NN
samples for each case is much larger; the reported number is
that of the remaining set when redundant samples have been
removed by dump redundant(X̂in,X̂out).

For the case of the car on the straight roadway we have also
implemented haptic feedback using a Phantom device through
which the user steers the car. Preliminary results are promising,
and we hope to investigate this extension further.

VI. DISCUSSION

There is a necessary compromise that must be struck
between control flexibility and smoothness. By giving the user
more flexibility in control when a breach is still relatively
distant (e.g., with the blending function), allowing him or her
to “push into the envelope”, the system potentially incurs a
larger correction later on when the envelope is approached
more aggressively as a result.

The worst-case time complexity of the online algorithm is
O(| Û |Th), where the system is applying least-detrimental
control selection in L3 or L4, and thus must simulate and
inspect | Û | trajectories, each consisting of 2 Th time steps
(search for re-entries). This worst case also holds for L2, where
all control inputs tested, other that vk, are breach-free. L1
time complexity is always O(1), the constant time it takes to
simulate xk+1 = F (xk, vk) and establish its presence in Xin.

Recent tests on higher dimensional systems suggest that
the NN representation becomes intractable due to exponential
growth in samples needed. Thus there is a need to explore
other, more scalable representations.

4In the case of a car on a straight road, which was the first we experimented
with, a hand-generated polygonal envelope was used instead of a NN classifier.

VII. CONCLUSION

In this paper we have presented a method of enforcing the
controllability of a user-steered system, using an explicitly
computed approximation of the viability envelope. We have
also detailed an implementation and applied it to the motion
of a number of simple vehicles.

In future work we intend to apply the method to more
complex systems, where complexity implies both more discon-
tinuous dynamics as well as systems with higher dimensional
state-spaces. In a related line of inquiry, we plan to look into
working with multi-dimensional control input spaces. A key
question to answer here is how to distribute any corrections
among the control parameters. We also hope to revisit our
original motivation for this work and further investigate how
haptic feedback can be applied to yield a more effective
system-user interaction by better communicating imminent
corrections to a user.

REFERENCES

[1] M. Steele and R. B. Gillespie, “Shared control between human and
machine: Using a haptic stering wheel to aid in land vehicle guidance,”
Human Factors and Ergonomics Society 45th Annual Meeting, October
2001.

[2] J.-P. Aubin and A. Cellina, Differential Inclusions. Springer-Verlag,
1984.

[3] J.-P. Aubin, Viability Theory, ser. Systems & Control: Foundations &
Applications, C. I. Byrnes, Ed. Birkhäuser, 1991.

[4] ——, “A survey of viability theory,” SIAM J. of control and optimization,
vol. 28, no. 4, pp. 749–788, July 1990.

[5] R. J. Spiteri, D. K. Pai, and U. M. Ascher, “Programming and control
of robots by means of differential algebraic inequalities,” IEEE Trans.
on Robotics and Automation, vol. 16, no. 2, pp. 135–145, April 2000.

[6] E. J. Rossetter, “A potential field framework for active vehicle lanekeep-
ing assisstance,” Ph.D. dissertation, Stanford University, August 2003.

[7] E. J. Rossetter, J. P. Switkes, and J. C. Gerdes, “A gentle nudge towards
safety: Experimental validation of the potential field driver assisstance
system,” in Proceedings of the American Control Conference, 2003.

[8] P. Faloutsos, M. van de Panne, and D. Terzopoulos, “Autonomous reac-
tive control for simulated humanoids,” in IEEE International Conference
on Robotics and Automation, 2003.

[9] I. Mitchell, “Application of level set methods to control and reachability
problems in continuous and hybrid systems,” Ph.D. dissertation, Stanford
University, 2002.

[10] E. Frazzoli, M. A. Dahleh, and E. Feron, “Real-time motion planning
for agile autonomous vehicles,” AIAA Journal of Guidance, Control, and
Dynamics, vol. 25, no. 1, pp. 116–129, 2002.

[11] B. Donald, P. Xavier, J. Canny, and J. Reif, “Kinodyamic motion
planning,” Journal of ACM, vol. 40, no. 5, pp. 1048–1066, Nov 1993.

[12] P.E.Hart, “The condensed nearest neighbor rule,” IEEE Trans. Inform.
Theory, vol. IT-14, no. 3, pp. 515–516, May 1968.

[13] B. V. Dasarathy, Nearest Neighbor(NN) norms: NN pattern classification
techniques. IEEE Computer Society Press, 1991.

