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Abstract

The area formulation of the light transport equation is frequently
employed for theoretical investigations in computer graphics, and in fact
it was this form that was first introduced by Kajiya. However, in the
literature currently only heuristic justifications for the necessary change
of variables from the more common angular formulation exist. In this
note, we will present a rigorous derivation of the change of variables to
the area formulation which also clarifies its intrinsic structure.

In the area formulation of the light transport equation, the solid angle
measure dω = sin θ dθ dφ1 is replaced by the surface area measure dA for a
surface subtending the solid angle dω, cf. Fig. 0.1. In classical notation, the
change of variables is given by

dω =
cos θ̄

‖x− x̄‖2
dA (1)

where we omitted momentarily the visibility term which will naturally arise
again later.

Currently, no rigorous derivation of the change of variables in Eq. 1 exists
in the computer graphics literature.2 In the following, we will fill this gap and
we will obtain the area formulation by studying the exterior 2-form

β(p) =
x dy ∧ dy + y dz ∧ dx+ z dx ∧ dy

(x2 + y2 + z2)3/2
∈ Ω2(R3\{0}) (2)

where p = (x, y, z) ∈ R3.3 Intuitively, one should think of the 2-form β as being
“centered” at the coordinate origin chosen to be x ∈ R3 with p = x̄, see again
Fig. 0.1.

∗christian.lessig@tu-berlin.de,lessig@dgp.toronto.edu
1We cannot refrain from re-iterating that, despite the common notation, dω is not an

exact 2-form.
2For discussions of the area formulation in the computer graphics literature see for

example (Dutré, Bala, and Bekaert, Advanced Global Illumination, p. 24) or (Pharr and
Humphreys, Physically Based Rendering: From Theory to Implementation, Chapter 5.5.3).

3For the necessary background on differential forms see for example (Frankel, The Geom-
etry of Physics).
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Figure 0.1: Geometry of the area formulation.

We will begin our derivation by establishing that the 2-form β in Eq. 2 is
closed, then will study its pullback onto an arbitrary surface M ⊂ R3, and
using these results we will finally show that the integral of β ∈ Ω2(R3 \ {0})
over M equals the solid angle subtended by the surface M, providing the
desired result.4 Although the following calculations are rather lengthy, these
are standard operations of exterior calculus in R3 and much of their length
results from the verbosity we have chosen to provide.

The 2-form β is closed. Computing the exterior derivative dβ ∈ Ω3(R3\{0}),
we obtain for the first term that

d

(
x

(x2 + y2 + z2)3/2

)
dy ∧ dz =

∂

∂x

(
x

(x2 + y2 + z2)3/2

)
dx ∧ dy ∧ dz (3a)

where the remaining partial derivatives vanish by the anti-symmetry of the
wedge product that implies dy ∧ dy = 0 and dz ∧ dz = 0. Using the product
rule we obtain

d

(
x

(x2 + y2 + z2)3/2

)
dy ∧ dz (3b)

=
(x2 + y2 + z2)3/2 − 3

2x (x2 + y2 + z2)1/2 2x

(x2 + y2 + z2)6/2
dx ∧ dy ∧ dz (3c)

4Our treatment was inspired and motivated by (Spivak, Calculus on Manifolds: A Modern
Approach to Classical Theorems of Advanced Calculus, Exercise 5-31).
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=
(x2 + y2 + z2)1/2

(
(x2 + y2 + z2)− 3x2

)
(x2 + y2 + z2)6/2

dx ∧ dy ∧ dz (3d)

and hence we have

d

(
x

(x2 + y2 + z2)3/2

)
dy ∧ dz =

−2x2 + y2 + z2

(x2 + y2 + z2)5/2
dx ∧ dy ∧ dz. (3e)

Analogously, for the other two terms arising in dβ we have

d

(
y

(x2 + y2 + z2)3/2

)
dz ∧ dx =

x2 − 2y2 + z2

(x2 + y2 + z2)5/2
dx ∧ dy ∧ dz (3f)

and

d

(
z

(x2 + y2 + z2)3/2

)
dx ∧ dy =

x2 + y2 − 2z2

(x2 + y2 + z2)5/2
dx ∧ dy ∧ dz. (3g)

The exterior derivative dβ ∈ Ω3(R3 \ {0}) is hence given by

d

(
x dy ∧ dz + y dz ∧ dz + z dx ∧ dy

(x2 + y2 + z2)3/2

)
(4a)

=
−2x2 + y2 + z2 + x2 − 2y2 + z2 + x2 + y2 − 2z2

(x2 + y2 + z2)5/2
dx ∧ dy ∧ dz (4b)

=
0

(x2 + y2 + z2)5/2
dx ∧ dy ∧ dz (4c)

which shows that β is closed, that is dβ = 0.

The pullback of β onto an arbitrary surface. The 2-form β obtains
physical significance when it is integrated over a surface M ⊂ R3, which
requires to pull it back onto M and then into an appropriate chart for the
surface. This is conveniently computed as

(ϕ∗βp)(u, v) = βp

(
∂

∂u
,
∂

∂v

)
du dv (5)

where ∂/∂u and ∂/∂v are the tangent vectors in TpM induced from a chart for
M with coordinates (u, v). Writing for convenience ‖p‖3 = (x2 + y2 + z2)3/2

and since (α ∧ β)(v, w) = α(v)β(w)− α(w)β(v) for arbitrary 1-forms α, β and
vectors v, w, we obtain for the first term of the above pullback(

x

‖~p‖3
dy ∧ dz

)(
∂

∂u
,
∂

∂v

)
=

x

‖~p‖3
(dy ∧ dz)

(
∂

∂u
,
∂

∂v

)
(6a)

=
x

‖~p‖3
dy

(
∂

∂u

)
dz

(
∂

∂v

)
−dy

(
∂

∂v

)
dz

(
∂

∂u

)
(6b)
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and by the biorthogonality of the basis functions this is equivalent to(
x

‖~p‖3
dy ∧ dz

)(
∂

∂u
,
∂

∂v

)
=

x

‖~p‖3
∂y

∂u

∂z

∂v
− ∂y

∂v

∂z

∂u
. (6c)

Analogously, we obtain for the other two terms arising from the pullback that(
y

‖~p‖3
dz ∧ dx

)(
∂

∂u
,
∂

∂v

)
=

y

‖~p‖3
∂z

∂u

∂x

∂v
− ∂z

∂v

∂x

∂u
(6d)

and (
z

‖~p‖3
dx ∧ dy

)(
∂

∂u
,
∂

∂v

)
=

z

‖~p‖3
∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u
. (6e)

The partial derivatives in Eqs. 6c–6e are the component form of the cross
product, and hence, for an appropriately chosen orientation, the pullback in
Eq. 5 can be written as

(ϕ∗βp)(u, v) =
~p · ~n(p)

‖~p‖3
du dv (7a)

where ~n(p) is the local surface normal forM at p. Writing ~n(p) as ~n(p) = ‖~n‖n̄,
where n̄ is a unit vector, this is equivalent to

(ϕ∗βp)(u, v) =
~p · n̄(p)

‖~p‖3
‖~n‖ du dv (7b)

=
~p · n̄(p)

‖~p‖3
dA (7c)

where we also used that, by definition, dA = ‖~n‖ du dv. With an analogous
decomposition of ~p as ~p = ‖p‖p̄ we obtain

(ϕ∗βp)(u, v) =
‖~p‖
‖~p‖3

p̄ · n̄(p) dA (7d)

=
cos θ̄

‖~p‖2
dA (7e)

where cos θ̄ = p̄ · n̄(p). The last equations recovers the right hand side of Eq. 1.

The area formulation With the foregoing results, the left hand side of Eq. 1
is obtained by considering a volume N as shown in Fig. 0.2 where ∂N1 ⊂ S2

is the unique image of ∂N3 under the inverse time evolution diffeomorphism
of light transport η−t : R× T ∗Q→ T ∗Q,5 and ∂N3 is the visible part ofM as

5Cf. (Lessig, “Modern Foundations of Light Transport Simulation”, Chapter 3). Note that
the uniqueness of the image under time evolution is in general not guaranteed.
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Figure 0.2: The solid angle ∂N1 subtended by M is given by the surface integral of
the 2-form in Eq. 2 over the visible part of the surface.

seen from the origin, which in the computer graphics literature is commonly
expressed using the binary visibility function. Since β is closed we have

0 =

∫
N

dβ (8a)

and by Stoke’s theorem this is equivalent to

0 =

∫
∂N

β. (8b)

The boundary ∂N consists of three parts and hence we have for the surface
integral

0 =

∫
∂N1

β +

∫
∂N2

β +

∫
∂N3

β. (8c)

The integral over ∂N2 vanishes since there the cosine term vanishes. Hence, we
obtain ∫

∂N1

β = −
∫
∂N3

β (8d)
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which shows that the surface integral of β over an arbitrary manifold equals the
solid angle subtended by the manifold, and since N is arbitrary the equality
also holds infinitesimally. Together with Eq. 7e this justifies Eq. 1.
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