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Overview

» physically-based illumination models for computer graphics are
maturing.

« tutorial on concepts of physically-based models.
* introduction to light transport (rendering equation).

» overview of radiosity-based approach.
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Solid Angle

Differential surface elementdA on sphete of radiusr:
dA = (longitudinal arc length¥ (latitudinal arc length)

= (rdo)(r sinédy)

= r?singdeode.
Differential solid angle @ (on sphere of radius 1):
dA
dw = T2 = sin@dgde.

Solid angle (in steradians) requires (messy) contour integral.
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| don’t think this is very clear

The longitudinal arc is on a circle of radughat slices through the
sphere and includes the origin.

So, whats the arc length of part of a circldZet’'s suppose that this
circle is parameterised by

X(6) = r sing,

Y(6) = r cosé.

The arc length of a part of the circle described by afglis
6+ A6

J' VX2 + Y2 do.
But look at the integrand:
VXZ+Y® = YrZ(snZd ¥ €os0)
= r.

So, the length of the longitidinal arc is just
r do.

Remember the parametric definition of a sphere:
X(8,p) = r sing sing,

y(6,9¢) = r sind cosgy,
z(6) = r cosé.

Holding 6 constant gies us a htitudinal circle of radius sing in
thez =r cosd plane. Sdhe length of the latititudinal arc is

r sing de.
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Solid Angle Properties

Surface area of unit hemisphere 2 steradians (sr).
Surface area of unit sphere 4 steradians (sr).

Just do the integral:
S 2r

I I Sinpdeds,
0 0

whereS = 71/2 for the hemisphere andfor the sphere.

Practical Solid Angle Computation

polygon P with
area A

Solid angle oP: projected area of P onto sphere in direction of O.

Approximation: ifr < R so that projection of P on sphere is
almost planarthen approximate solid angle def-

Inition by

A cosé
W = .
RZ
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Geometry of Basic Projection

Suppose we ha a leam of thickness L projecting onto a locally
planar region with normal N. Assume the beam enlas an inci-
dence angle of with the plane.

cosO =L/M
. L =M cos
ffffffffffffffffffffffffffffffffffff M=L/co®

Then we hae the aboe relations.
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Physical Lighting Terminology

What is this ‘intensity” stuff anyway? They are all measures of
power densityv.r.t. solid angles and area (and power is a measure
of energy density.r.t. time).

Radiant power (®): Rate at which light engy is transmitted
(enegy/unit time, or Watts, W).Physical
term: flux.

Radiant Intensity (1):
Flux radiated onto a unit solid angle in a
given direction (W/sr). E.g., "intensity" of
a point light source.

Radiance (L): Radiantintensity per unit projected sade
area (W/(Misr)). E.g., "intensity" of
reflection of a surface.

Irradiance (E): Incident flux density on a locally planar
area, in units of flux per unit surface area
(W/m?). This is a direction-independent
guantity.

Radiosity (B): Exitant flux density from a locally planar
area, in units of flux per unit surface area
(W/m?).

These aregadiometric quantities, i.e., physical measurements of
electromagnetic engy. There are comparabgghotometricquanti-
ties corresponding to psychovisual measurement.
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Relationships Between Radiometric Quantities
Radiant power: ®.

Irradiance/Radiosity:

do
E,.B = A’

where

do = (KJ; Lcosedw) dA,

Q is the visible hemisphere, and
L is incoming or outgoingadiance

Radiant Intensity:

d
| (w) = %

Radiance: the quantity from which we construct the othe@all
it

L(X, w),
which is power per unit area radiated to paiaiong directionw.

Useradianceto denote light carried by @y in a ray tracer (NO
Inverse square & in non-participating media.)

Use radiant intensity to denote energy distributions of light
sources. (Bllows inverse square &)
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Incident Irradiance

Suppose incoming radiance from differential solid anghealong
directionw, is L.

Thenincident irradiances
Ei = Li COS@i dwi

Bidirectional Reflectance Distribution Function

To cdharacterise arbitrary reflection functions, writewdo an
expression that relates incident irradiance to outgoaajancein
directionw; :

or

Li(ewy) = fiii(6,0,6,9%)E,
so bidirectional reflectance distrtion function (BRDF)f;_, is
proportion of incident irradiance that is reflected in directipn
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BRDF and Reflectance

Units of BRDF are st, and gives density of flux per steradian.

BRDF is aWays positve, and is in fact a true distribution (and
really should only be used under an integral).

But it is possible for a BRDF to be an "impulse"”, meaning perfect
specular reflection in one direction.

Reflectivityor theReflectance

Reflectance acts l&ka BRDF, but is instead a unitless proper frac-
tion in [0,1]. Itis defined as

reflected flux _  dd,
incoming flux ~ d®,

p =

The region of integration ges dfferent kinds of canonical
reflectances.

Of particular interest to us is this fact: if the surfackambertian
or diffuse meaning that incoming light is equally likely to be scat-
tered in all directions, then tlinemispheric reflectands

pg = iy,
or
Pd
fi—»f - —.
T
Another nice fact:
_ B
Pd — E"
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Physically-Plausible Reflectance Models

The use of BRDF allows specification of

 anisotropic reflection models: fixingandr but rotating the
surface will change directional reflectance.

 fully plausible, enagy-conserving, empirically validated illu-
mination models.

* models that are really really expereio compute. Really!

How does this sit with traditional illumination models?
In fact, it's not that hard to makaurrent models more plausible.
Traditionally, local illumination models ha keen defined as

intensity at a point= ambient+ diffuse+ + specular.

That is,
|p = kala + kdld + kSIS'

As a first step, to translate toyscal models, use radiance, and
define BRDF as

p = Kgpg + Ksps, Kyt Ks=1,

where py is Lambertian reflector angds is your favaurite specular
reflection function this weekLeave anbient componenad hoc.
So,

L,

Kala + (Kgpg + Ksps)E;
= kala + (kgpg + Ksps) Li cos6; dw

Sum or integrate as appropriatezoal light sources.
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Rendering Equation (Kajiya and Hanrahan)

Characterise all interactions of light fromyapoint x on ary sur-
face s with a pointx’ on a surface.

The result is an outgoing radiance value.

The rendering equationdescribes awo-point (i.e., one-bounce)
light transport.

Multi-point transport is got by cascading the equation to get full
ray transport problem.

Based on radiance.

L(X,w) = LX w) + If(x’;x)L(x’,w’)G(x,x’)V(x,x’)dA’,
S

where

Sis all surfaces, andAd is a differential element &,
Lo(X', ') is self-emission,

V(x,x")is 1if x is visible tox’, and is O otherwise,
G(x, x") is a geometric scale factor,

f(x'; x) is BRDF (actually depends on all angles): light reflected
aboutx from x'.

Notice that radiance to be computed appears on LHS and under
integral.

Kajiya proposed some (theoretically) nice ways to compute the

equation (including Monte Carlo path tracing and a seripare
sion).
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Radiosity Equation

Under Lambertian assumption, the BRDF is independent of incom-
ing, outgoing directions, and can be taken out of the integral.

Furthermore, outgoing radiance is direction independent, so we can
work with irradiance/radiosity instead.

In fact,

B(X)
]

LX, @) = (*)

S0 we can rewrite the rendering equation esl#osity equation

Pd

B(X) = E(X) + 7(TX)J-B(X') G(x, X') V (X, X') dA’
S

Notes:

» This reformulation in terms of radiosity/irradiance can be eas-
ily got by multiplying rendering equation by and changing
units.

» Notice the change from BRDFto reflectancepy.

So far, so good, but notice agn that radiosity appears on LHS and
under integral.

From nav on, we will kury the visibility termV and ¥ into geo-
metric termG. G will resurface as the integrand for a form factor.
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Discretisation of the Radiosity Equation

Even the radiosity equation is intractable (let alone the rendering
equation), so work with that first.

Break all surfaces up infpatchesor elementsand mak assump-
tions about the nature of radiositi et there ben patchesA;, i =
1,---,n. (By corvention, areas of the patches will ieasame
name— — ouch!)
The easiest assumption is that radiosity is constant across a sur
face. Ifwe can sole for radiosities, then, each elementill have
constant radiositys;.
In that case, we get
n
Bi = Ei + ,O,ZBJ F”

j=1

To make the dervation clearer multiply through by A;, which is
allowed becausé, >0:

n
BiA = EiA+ 2B A
J:
Physically what this does is turn an equation in flux density to an

equation in flux.

We'll see wly this is useful on the méslide, when we talk about
F;j, theform factor
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Form Factors

The termF; is aform factorand denotes the fraction of eggr
leaving A; and arriving atA;

_ 1 COSHi COSHJ'
Fy = K_|'J’ oV dA dA,.
A A

That means that
ARy = AjFy,

so that

Fji = F” ﬁ .
Aj
This is calledorm-factorreciprocity.
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The Radiosity System of Equations

Foding form factors back into the radiosity equation, we see that
since

BA = EiA + 0 2BFA
j=1

n
J:

Dividing through byA, again gves us

n AJ
Bi = Ei + p2BjF;
j=1 A
n
- Ei + p,ZBJF”

j=1

This expression states that the radiosity (i.e., outgoing flux density)
of elementi is an accumulation from the emitted flux density of
this element, and of contributions of flux radiated onto element
from all other elements.

Now, the E; (initial emissions) are the knowns, so rewrite equation
in terms of knowns and unknowns in matrix form:

E1 0O M- p1F11 O 0O =-piFin OB O
EEzm U - p2Fo1 O 0O -pFy D[BZD

) D : D TR TR "= om TR DD- . D
00O [] o0 O
[(E, O O = onFma O 0O 1-phFy OB, O
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Mor e problems than solutions

matrix is Of?) in size, wheren, the number of patches, is usu-
ally much larger than number of polygons.

restricted to closed polyhedral environments.
no refraction, specularifytransluceng.

form-factor computation is very costhand must be redone
wheneer a sngle object maes (but not in principle when the
camera maes).

how ae patches chosen?
how to scale up geometric complexity?
extension to curved surfaces?

how to reconstruct continuous tone images from constant-radios-
ity patches.

costly visibility computations.
vast amounts of aliasing.

fast shadows?

But solution is viev independent (?), and independent of initial
emissionss;.
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Partial Solutions

Matrix Size

1.

18

Useiterative methods to sokr s/stem row-wise (i.e., for each
B;). Correspondso gatheringradiosity from other patches.

Still costly, so bok at system in another way.

Think instead about distributing radiosity froB, out to
other patches in proportion to form factor.

In fact, this turns out to sadvhe system column-wise (incre-
mentally), because for each iterations fixed, correspond-
Ing to a column of the radiosity matrix.

Corresponds tehootingradiosity.

After each iteration, a valid (though incomplete) image can
be rendered, so this technique is calprdgressive efine-
ment

A full radiosity matrix is not needed (only the current col-
umn, assuming form factors are cheap to compute).

HierarchicalApproaches. Obseevthat not all patches (via
form factors and radiosity matrix) fatt each other at the
same scale.

Create a hierargh of interactions by grouping together
patches with respect to a scale-preserving distance criterion.

Related to clustering algorithms fam-body systems in
applied physics.

Can hae O(n) convergence.
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Form Factor Computations

1. Usea pojection technique called thBusselt analgue
Use it to discretise the hemisphere inttheanicube Can
have substantial approximation error.

2. Analytic form factor techniques for simple polygons.
Mathematically very nice, especially for a reference model,
but the functions imolved are quite »@ensve © compute
(comple dilogarithm).

3. Raytracing approaches: usedfdrential form factor com-
putations (area/point to point) to approximate area-area
form factors.

4. Hierarchicalradiosity techniques reduce the number of
form-factors to compute at atime.

Optical Phenomena Beyond Diffuse Reflection

1. Somework on participating media: light interacts with
environment (e.g., dust, smekmist) producing scattering
effects.

2. MultipassAlgorithms: Do a first-pass radiosity step and use

the result like an environment map in a subsequent specular
(ray-tracing) pass.
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Decomposition into PatchesMeshing

extremely difficult problem.
« originally, meshing was done by hand and not talked about.

» trade-of between vier-dependence and the creation of
meshes that were far to fine.

» current approaches woinvdve tracking discontinuitiesin
radiance function due to shadoboundaries and polygon
edges.Veay actve research area. (See video).

» adaptve meshing, mesh filtering to reduce mesh size.

Aliasing and Approximation Error
« constant radiosity syndronte&s nav been cured.

« patch elements are wono longer assumed to carry constant
radiosity In finite element terminologyconstant radiosity
assumption means that order 1 elements are used.

« now, patches are assumed to carmgriable radiosity A
polynomial basis (usually degree 1 or 2 lagrange basis) is
imposed wer patch, permitting subsampling of radiosity
over patch.

 improves the approximation, \@ids ad hocreconstruction
techniques, andvaids some aliasing error.
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Shadov Computations for Area Light Sources

possibly the hardest problem of them all.
» needed for discontinuity meshing.
« extensve geometric computations.

» use ofaspect gaphsto accelerate computation. An aspect
graph characterises the parts of a scene tatthpologically
similar “view’’ of an area light source.

e can exploit this structure to “scan oamt” a penumbral
shadaov.

» most substantial progress in this area is by U of Toronto!
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Most Recent Work at U of Toronto

» accelerated shagocomputations (tw papers alSIGGRAPH
'94).

» structured sampling techniques for occluded and unoccluded
environments (a&ard winning paper aEurographics '93.

« nonuniform radiant intensity distubions for area light
sourcesCVGIP GMIP '93.

 illumination in the presence of participating mediBlG-
GRAPH '93,95.

 discontinuity meshingGraphics Interface ‘86, TVCG 1997
* incremental visibility.

Cast of researchers on illumination at UofT includes:

Eugene Fiume

Sherif Ghali

Marc Ouellette
Michiel van de Panne
James Steart

Jef Tupper
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Discussion/Open Questions

* |s the radiosity-based technique worth the trouble?

« What does a physically-plausible illumination model add to
my animated toothpaste commercial?

» Do shadows really need to be computed precisely?
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