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Overview

• physically-based illumination models for computer graphics are
maturing.

• tutorial on concepts of physically-based models.

• introduction to light transport (rendering equation).

• overview of radiosity-based approach.
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Solid Angle
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Differential surface elementdA on sphere of radius r :

dA = (longitudinal arc length)× (latitudinal arc length)

= (r dθ ) (r sinθ dφ )

= r 2 sinθ dθ dφ .

Differential solid angle dω (on sphere of radius 1):

dω =
dA

r 2
= sinθ dθ dφ .

Solid angle (in steradians) requires (messy) contour integral.
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I don’t think this is very clear

The longitudinal arc is on a circle of radiusr that slices through the
sphere and includes the origin.

So, what’s the arc length of part of a circle?Let’s suppose that this
circle is parameterised by

X(θ ) = r sinθ ,

Y(θ ) = r cosθ .

The arc length of a part of the circle described by angle∆θ is
θ + ∆θ

θ
∫ √ Ẋ

2
+ Ẏ

2
dθ .

But look at the integrand:

√ Ẋ
2

+ Ẏ
2

= √ r 2( sin 2θ + cos2θ )

= r .

So, the length of the longitidinal arc is just

r dθ .

Remember the parametric definition of a sphere:

x(θ ,φ ) = r sinθ sinφ ,

y(θ ,φ ) = r sinθ cosφ ,

z(θ ) = r cosθ .

Holding θ constant gives us a latitudinal circle of radiusr sinθ in
thez = r cosθ plane. Sothe length of the latititudinal arc is

r sinθ dφ .
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Solid Angle Properties
Surface area of unit hemisphere= 2π steradians (sr).
Surface area of unit sphere= 4π steradians (sr).
Just do the integral:

S

0

∫
2π

0

∫ sinφ dφ dθ ,

whereS = π /2 for the hemisphere andπ for the sphere.

Practical Solid Angle Computation

N

R

polygon P  with
area A

θ

ω

1
O

r

Solid angle ofP: projected area of P onto sphere in direction of O.

Approximation: if r << R so that projection of P on sphere is
almost planar, then approximate solid angle def-
inition by

w =
A cosθ

R2
.
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Geometry of Basic Projection

Suppose we have a beam of thickness L projecting onto a locally
planar region with normal N. Assume the beam make has an inci-
dence angle ofθ with the plane.

θ
π/2−θ

θ

L
θ

θ
θ

N

M

cos    = L / M

L = M cos

M = L / cos

Then we have the above relations.
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Physical Lighting Terminology

What is this ‘‘intensity’’ stuff anyway? They are all measures of
power densityw.r.t. solid angles and area (and power is a measure
of energy densityw.r.t. time).

Radiant power (Φ): Rate at which light energy is transmitted
(energy/unit time, or Watts, W).Physical
term:flux.

Radiant Intensity (I ):
Flux radiated onto a unit solid angle in a
given direction (W/sr). E.g., "intensity" of
a point light source.

Radiance (L): Radiantintensity per unit projected surface
area (W/(m2 ⋅ sr )). E.g., "intensity" of
reflection of a surface.

Irradiance (E): Incident flux density on a locally planar
area, in units of flux per unit surface area
(W/m2). This is a direction-independent
quantity.

Radiosity (B): Exitant flux density from a locally planar
area, in units of flux per unit surface area
(W/m2).

These areradiometric quantities, i.e., physical measurements of
electromagnetic energy. There are comparablephotometricquanti-
ties corresponding to psychovisual measurement.
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Relationships Between Radiometric Quantities

Radiant power: Φ.

Irradiance/Radiosity:

E, B =
dΦ
dA

,

where

dΦ = (
Ω
∫ L cosθ dω ) dA,

Ω is the visible hemisphere, and

L is incoming or outgoingradiance.

Radiant Intensity:

I (ωω ) =
dΦ
dω

.

Radiance: the quantity from which we construct the others.Call
it

L(x,ωω ),

which is power per unit area radiated to pointx along directionωω .

Useradianceto denote light carried by aray in a ray tracer. (NO
inverse square law in non-participating media.)

Use radiant intensity to denote energy distributions of light
sources. (Follows inverse square law.)
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Incident Irradiance

Suppose incoming radiance from differential solid angle dω i along
directionωω i is Li .

φ

θ

N

r

L r

L i

θi

dωi

i
φ r

Thenincident irradianceis

Ei = L i cosθ i dω i

Bidirectional Reflectance Distribution Function
To characterise arbitrary reflection functions, write down an
expression that relates incident irradiance to outgoingradiancein
directionωω r :

fi→r =
Lr

Ei

or

Lr (ωω r ) = f i→r (θ i ,φ i ,θ r ,φ r ) Ei ,

so bidirectional reflectance distribution function (BRDF)fi→r is
proportion of incident irradiance that is reflected in directionωω r .
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BRDF and Reflectance

Units of BRDF are sr−1, and gives density of flux per steradian.

BRDF is always positive, and is in fact a true distribution (and
really should only be used under an integral).

But it is possible for a BRDF to be an "impulse", meaning perfect
specular reflection in one direction.

Reflectivityor theReflectance

Reflectance acts like a BRDF, but is instead a unitless proper frac-
tion in [0,1]. It is defined as

ρ =
reflected flux

incoming flux
=

dΦr

dΦi
.

The region of integration gives different kinds of canonical
reflectances.

Of particular interest to us is this fact: if the surface isLambertian
or diffuse, meaning that incoming light is equally likely to be scat-
tered in all directions, then thehemispheric reflectanceis

ρd = π fi→r ,

or

fi→r =
ρd

π
.

Another nice fact:

ρd =
B

E
.
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Physically-Plausible Reflectance Models

The use of BRDF allows specification of

• anisotropic reflection models: fixingi and r but rotating the
surface will change directional reflectance.

• fully plausible, energy-conserving, empirically validated illu-
mination models.

• models that are really really expensive to compute. Really!

How does this sit with traditional illumination models?
In fact, it’s not that hard to make current models more plausible.
Traditionally, local illumination models have been defined as

intensity at a point = ambient + diffuse+ + specular .

That is,

I P = ka I a + kdId + ksI s.

As a first step, to translate to physical models, use radiance, and
define BRDF as

ρ = kdρd + ksρ s, kd + ks = 1,

whereρd is Lambertian reflector andρ s is your favourite specular
reflection function this week.Leave ambient componentad hoc.
So,

Lr = kaLa + (kdρd + ksρ s)Ei

= kaLa + (kdρd + ksρ s) Li cosθ i dω i

Sum or integrate as appropriate over all light sources.
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Rendering Equation (Kajiya and Hanrahan)

Characterise all interactions of light from any point x on any sur-
faces with a pointx′ on a surface.

The result is an outgoing radiance value.

The rendering equationdescribes atwo-point (i.e., one-bounce)
light transport.

Multi-point transport is got by cascading the equation to get full
ray transport problem.

Based on radiance.

L(x,ωω ) = L e(x,ωω ) +
S

∫ f (x′; x) L(x′,ωω ′) G(x, x′) V(x, x′) dA′,

where

S is all surfaces, and dA′ is a differential element ofS ,

Le(x′,ωω ′) is self-emission,

V(x, x′) is 1 if x is visible tox′, and is 0 otherwise,

G(x, x′) is a geometric scale factor,

f (x′; x) is BRDF (actually depends on all angles): light reflected
aboutx from x′.

Notice that radiance to be computed appears on LHS and under
integral.

Kajiya proposed some (theoretically) nice ways to compute the
equation (including Monte Carlo path tracing and a series expan-
sion).
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Radiosity Equation

Under Lambertian assumption, the BRDF is independent of incom-
ing, outgoing directions, and can be taken out of the integral.

Furthermore, outgoing radiance is direction independent, so we can
work with irradiance/radiosity instead.

In fact,

L(x,ωω ) =
B(x)

π
, (*)

so we can rewrite the rendering equation as aradiosity equation:

B(x) = E (x) +
ρd(x)

π
S

∫ B(x′) G(x, x′) V(x, x′) dA′

Notes:

• This reformulation in terms of radiosity/irradiance can be eas-
ily got by multiplying rendering equation byπ and changing
units.

• Notice the change from BRDFf to reflectanceρd.

So far, so good, but notice again that radiosity appears on LHS and
under integral.

From now on, we will bury the visibility termV and 1/π into geo-
metric termG. G will resurface as the integrand for a form factor.
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Discretisation of the Radiosity Equation

Even the radiosity equation is intractable (let alone the rendering
equation), so work with that first.

Break all surfaces up intopatchesor elementsand make assump-
tions about the nature of radiosity. Let there ben patchesAi , i =
1,. . . , n. (By convention, areas of the patches will have same
name− − ouch!)

The easiest assumption is that radiosity is constant across a sur-
face. If we can solve for radiosities, then, each elementi will have
constant radiosityBi .

In that case, we get

Bi = E i + ρ i

n

j=1
Σ B j Fij .

To make the derivation clearer, multiply through by Ai , which is
allowed becauseAi > 0:

Bi Ai = E i Ai + ρ i

n

j=1
Σ B j Fij Ai .

Physically, what this does is turn an equation in flux density to an
equation in flux.

We’l l see why this is useful on the next slide, when we talk about
Fij , theform factor.

14 CSC2522Lecture Notes January, 2015



Form Factors

Pi

j

dA

dA i

j

A

V(x,x’)
θ

θ i

j
r

The termFij is a form factor and denotes the fraction of energy
leavingAi and arriving atA j :

Fij =
1

Ai Ai

∫
A j

∫ cosθ i cosθ j

π r 2
Vij dA j dAi .

That means that

Ai Fij = A j F ji ,

so that

F ji = F ij
Ai

A j
.

This is calledform-factorreciprocity.
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The Radiosity System of Equations

Folding form factors back into the radiosity equation, we see that
since

Bi Ai = E i Ai + ρ i

n

j=1
Σ B j Fij Ai .

= E i Ai + ρ i

n

j=1
Σ B j F ji A j .

Dividing through byAi again gives us

Bi = E i + ρ i

n

j=1
Σ B j F ji

A j

Ai

= E i + ρ i

n

j=1
Σ B j Fij .

This expression states that the radiosity (i.e., outgoing flux density)
of elementi is an accumulation from the emitted flux density of
this element, and of contributions of flux radiated onto elementi
from all other elements.

Now, the Ei (initial emissions) are the knowns, so rewrite equation
in terms of knowns and unknowns in matrix form:







E1

E2

. . .

En







=







1 − ρ1F11

− ρ2F21

. . .

− ρ nFn1

⋅
⋅

. . .

⋅

⋅
⋅

. . .

⋅

− ρ1F1n

− ρ2F2n

. . .

1 − ρ nFnn













B1

B2

. . .

Bn






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Mor e problems than solutions

• matrix is O(n2) in size, wheren, the number of patches, is usu-
ally much larger than number of polygons.

• restricted to closed polyhedral environments.

• no refraction, specularity, translucency.

• form-factor computation is very costly, and must be redone
whenever a single object moves (but not in principle when the
camera moves).

• how are patches chosen?

• how to scale up geometric complexity?

• extension to curved surfaces?

• how to reconstruct continuous tone images from constant-radios-
ity patches.

• costly visibility computations.

• vast amounts of aliasing.

• fast shadows?

But solution is view independent (?), and independent of initial
emissionsEi .
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Partial Solutions

Matrix Size

1. Useiterative methods to solve system row-wise (i.e., for each
Bi ). Correspondsto gatheringradiosity from other patches.

2. Still costly, so look at system in another way.

Think instead about distributing radiosity fromBi out to
other patches in proportion to form factor.

In fact, this turns out to solve the system column-wise (incre-
mentally), because for each iteration,i is fixed, correspond-
ing to a column of the radiosity matrix.

Corresponds toshootingradiosity.

After each iteration, a valid (though incomplete) image can
be rendered, so this technique is calledprogressive refine-
ment.

A full radiosity matrix is not needed (only the current col-
umn, assuming form factors are cheap to compute).

3. HierarchicalApproaches. Observe that not all patches (via
form factors and radiosity matrix) affect each other at the
same scale.

Create a hierarchy of interactions by grouping together
patches with respect to a scale-preserving distance criterion.

Related to clustering algorithms forn-body systems in
applied physics.

Can haveO(n) convergence.
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Form Factor Computations

1. Use a projection technique called theNusselt analogue.
Use it to discretise the hemisphere into ahemicube. Can
have substantial approximation error.

2. Analytic form factor techniques for simple polygons.
Mathematically very nice, especially for a reference model,
but the functions involved are quite expensive to compute
(complex dilogarithm).

3. Raytracing approaches: used differential form factor com-
putations (area/point to point) to approximate area-area
form factors.

4. Hierarchical radiosity techniques reduce the number of
form-factors to compute at any time.

Optical Phenomena Beyond Diffuse Reflection

1. Somework on participating media: light interacts with
environment (e.g., dust, smoke, mist) producing scattering
effects.

2. MultipassAlgorithms: Do a first-pass radiosity step and use
the result like an environment map in a subsequent specular
(ray-tracing) pass.
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Decomposition into Patches−Meshing

• extremely difficult problem.

• originally, meshing was done by hand and not talked about.

• trade-off between view-dependence and the creation of
meshes that were far to fine.

• current approaches now inv olve tracking discontinuities in
radiance function due to shadow boundaries and polygon
edges.Very active research area. (See video).

• adaptive meshing, mesh filtering to reduce mesh size.

Aliasing and Approximation Error

• constant radiosity syndromehas now been cured.

• patch elements are now no longer assumed to carry constant
radiosity. In finite element terminology, constant radiosity
assumption means that order 1 elements are used.

• now, patches are assumed to carry variable radiosity. A
polynomial basis (usually degree 1 or 2 lagrange basis) is
imposed over patch, permitting subsampling of radiosity
over patch.

• improves the approximation, avoids ad hoc reconstruction
techniques, and avoids some aliasing error.
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Shadow Computations for Area Light Sources

• possibly the hardest problem of them all.

• needed for discontinuity meshing.

• extensive geometric computations.

• use of aspect graphs to accelerate computation. An aspect
graph characterises the parts of a scene that have topologically
similar ‘‘view’’ of an area light source.

• can exploit this structure to ‘‘scan convert’’ a penumbral
shadow.

• most substantial progress in this area is by U of Toronto!
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Most Recent Work at U of Toronto

• accelerated shadow computations (two papers atSIGGRAPH
’94).

• structured sampling techniques for occluded and unoccluded
environments (award winning paper atEurographics ’93).

• nonuniform radiant intensity distributions for area light
sources (CVGIP GMIP ’93).

• illumination in the presence of participating media (SIG-
GRAPH ’93,95).

• discontinuity meshing (Graphics Interface ’86, TVCG 1997).

• incremental visibility.

Cast of researchers on illumination at UofT includes:

Eugene Fiume
Sherif Ghali
Marc Ouellette
Michiel van de Panne
James Stewart
Jeff Tupper
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Discussion/Open Questions

• Is the radiosity-based technique worth the trouble?

• What does a physically-plausible illumination model add to
my animated toothpaste commercial?

• Do shadows really need to be computed precisely?
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