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Abstract. We present confocal stereo, a new method for computing 3D
shape by controlling the focus and aperture of a lens. The method is
specifically designed for reconstructing scenes with high geometric com-
plexity or fine-scale texture. To achieve this, we introduce the confocal

constancy property, which states that as the lens aperture varies, the
pixel intensity of a visible in-focus scene point will vary in a scene-
independent way, that can be predicted by prior radiometric lens cali-
bration. The only requirement is that incoming radiance within the cone
subtended by the largest aperture is nearly constant. First, we develop
a detailed lens model that factors out the distortions in high resolution
SLR cameras (12MP or more) with large-aperture lenses (e.g., f1.2). This
allows us to assemble an A×F aperture-focus image (AFI) for each pixel,
that collects the undistorted measurements over all A apertures and F
focus settings. In the AFI representation, confocal constancy reduces to
color comparisons within regions of the AFI, and leads to focus metrics
that can be evaluated separately for each pixel. We propose two such
metrics and present initial reconstruction results for complex scenes.

1 Introduction

Recent years have seen many advances in the problem of reconstructing complex
3D scenes from multiple photographs [1–3]. Despite this progress, however, there
are many common scenes for which obtaining detailed 3D models is beyond the
state of the art. One such class includes scenes that contain very high levels of
geometric detail, such as hair, fur, feathers, miniature flowers, etc. These scenes
are difficult to reconstruct for a number of reasons—they create complex 3D
arrangements not directly representable as a single surface; their images contain
fine detail beyond the resolution of common video cameras; and they create
complex self-occlusion relationships. As a result, many approaches either side-
step the reconstruction problem [2], require a strong prior model for the scene
[4], or rely on techniques that approximate shape at a coarse level.

Despite these difficulties, the high-resolution sensors in today’s digital cam-
eras open the possibility of imaging complex scenes at a very high level of detail.
With resolutions surpassing 12Mpixels, even individual strands of hair may be
one or more pixels wide (Fig. 1a,b). In this paper, we explore the possibility
of reconstructing such scenes with a new method called confocal stereo, which
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Fig. 1. (a) Wide-aperture image of a complex scene. (b) Left: Successive close-ups of a
region in (a), showing a single in-focus strand of hair. Right: Narrow-aperture image of
the same region, with everything in focus. Confocal constancy tells us that the intensity
of in-focus pixels (e.g., on the strand) changes predictably between these two views.
(c) The aperture-focus image (AFI) of a pixel near the middle of the strand. A column
of the AFI collects the intensities of that pixel as the aperture varies with focus fixed.

aims to compute depth maps at sensor resolution. The method is designed to
exploit the capabilities of high-end digital SLR cameras and requires no special
equipment besides the camera and a laptop. The only key requirement is the
ability to actively control both the aperture and focus setting of the lens.

At the heart of our approach is a property we call confocal constancy, which
states that as the lens aperture varies, the pixel intensity of a visible in-focus
scene point will vary in a scene-independent way, that can be predicted by prior
radiometric lens calibration. To exploit confocal constancy for reconstruction,
we develop a detailed lens model that factors out the geometric and radiometric
distortions observable in high resolution SLR cameras with large-aperture lenses
(e.g., f1.2). This allows us to assemble an A× F aperture-focus image (AFI) for
each pixel, that collects the undistorted measurements over all A apertures and
F focus settings (Fig 1c). In the AFI representation, confocal constancy reduces
to color comparisons within regions of the AFI and leads to focus metrics that
can be evaluated separately for each pixel.

Our work is closely related to depth-from-focus methods [5–8], with the im-
portant difference that rather than defining our focus criterion over a spatial
window, we consider pixels individually and manipulate a second, independent
camera parameter (i.e., aperture). To our knowledge, aperture control has been
considered only in the context of depth-from-defocus methods [9–12], but these
methods also rely on spatial windows and, hence, are unsuitable for reconstruct-
ing scenes at the resolutions we consider. Our work is also related to recent ap-
proaches employing finite or synthetic apertures for image-based rendering [13]
and for 3D reconstruction [14, 15]. Unlike these methods, our approach requires
only a single camera, and requires no special illumination or scene model.
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Our work has five main contributions. First, unlike existing depth-from-focus
or depth-from-defocus methods, our confocal constancy formulation shows that
we can assess focus without modeling a pixel’s spatial neighborhood or the blur-
ring properties of a lens. Second, we show that depth-from-focus computations
can be reduced to a pixel-matching problem, in the spirit of traditional stereo
techniques. Third, we develop a method for the precise geometric and radiometric
alignment of images taken at multiple focus and aperture settings, particularly
suited for the case where the standard thin-lens model breaks down. Fourth, we
introduce the aperture-focus-image representation as a basic tool for focus- and
defocus-based 3D reconstruction. Fifth, we show that together, confocal con-
stancy and accurate image alignment lead to a reconstruction algorithm that
can compute depth maps at resolutions not attainable with existing techniques.

2 Confocal Constancy

Consider a camera whose lens contains multiple elements and has a range of
known focus and aperture settings. We assume that no information is available
about the internal components of this lens (e.g., the spacing of its elements). We
therefore model the lens as a “black box” that redirects incoming light toward
a fixed sensor plane, with the following idealized properties:

– Negligible absorption: light that enters the lens in a given direction is either
blocked from exiting or is transmitted with no absorption.

– Perfect focus: for every 3D point in front of the lens there is a unique focus
setting that causes rays through the point to converge to a single pixel on the
sensor plane.

– Aperture-focus independence: the aperture setting controls only which rays
are blocked from entering the lens; it does not affect the way that light is redirected.

These properties are well approximated by lenses used in professional photogra-
phy applications, and we use such a lens to collect images of a 3D scene for A

aperture settings, {α1, . . . , αA}, and F focal settings, {f1, . . . , fF }. This acquisi-
tion produces a 4D set of pixel data, Iαf (x, y), where Iαf is the image captured
with aperture α and focal setting f .

Suppose that a 3D point p on an opaque surface is in perfect focus in image
Iαf and suppose that it projects to pixel (x, y). In this case, the light reaching
the pixel is restricted to a cone from p determined by the aperture setting
(Fig. 2). For a sensor with a linear response, the intensity Iαf (x, y) at the pixel
is proportional to the integral of outgoing radiance over the cone, i.e.,

Iαf (x, y) = κ

∫

ω∈Cxy(α,f)

L(p, ω) dω , (1)

where ω measures solid angle, L(p, ω) is the radiance for rays passing through
p, κ is a constant that depends only on the sensor’s response function [16], and
Cxy(α, f) is the cone of rays that reach (x, y). In practice, the apertures on a real
lens correspond to a nested sequence of cones, Cxy(α1, f) ⊂ . . . ⊂ Cxy(αA, f),
leading to a monotonically-increasing intensity at the pixel.
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Fig. 2. Generic lens model. (a) At the ideal focus setting of pixel (x, y), the lens collects
outgoing radiance from a scene point p and directs it toward the pixel. The 3D position
of point p is uniquely determined by pixel (x, y) and its ideal focus setting. The shaded
cone of rays, Cxy(α, f), determines the radiance reaching the pixel. This cone is a subset
of the cone subtended by p and the front aperture because some rays may be blocked
by internal components of the lens, or by its back aperture. (b) For non-ideal focus
settings, the lens integrates outgoing radiance from a region of the scene.

If the outgoing radiance at the in-focus point p remains constant within
the cone of the largest aperture, and if this cone does not intersect the scene
elsewhere, the relation between intensity and aperture becomes especially simple.
In particular, the integral of Eq. (1) disappears and the intensity for aperture α

is proportional to the solid angle subtended by the associated cone, i.e.,

Iαf (x, y) = κ ‖ Cxy(α, f) ‖ L(p) , (2)

where ‖ Cxy(α, f) ‖ =
∫

Cxy(α,f) dω. As a result, the ratio of intensities at an

in-focus point for two different apertures becomes independent of the scene:

Confocal Constancy Property

Iαf (x, y)

Iα1f (x, y)
=

‖ Cxy(α, f) ‖

‖ Cxy(α1, f) ‖

def
= Exy(α, f) . (3)

Intuitively, the constant of proportionality, Exy(α, f), describes the relative am-
ount of light received from an in-focus scene point for a given aperture. This
constant, which we call the relative exitance of the lens, depends on lens internal
design (front and back apertures, internal elements, etc.) and varies in general
with aperture, focus setting, and pixel on the sensor plane.

Confocal constancy is an important property for evaluating focus for four
reasons. First, it holds for a very general lens model that covers the lenses com-
monly used with high-quality SLR cameras. Second, it requires no assumptions
about the appearance of out-of-focus points. Third, it holds for scenes with gen-
eral reflectance properties, provided that radiance is nearly constant over the
cone subtended by the largest aperture.1 Fourth, and most important, it can be
evaluated at pixel resolution because it imposes no requirements on the spatial
layout (i.e., depths) of points in the neighborhood of p.

1 For example, a 70mm diameter aperture located 1.2m from the scene corresponds
to 0.5% of the hemisphere, or a cone whose rays are less than 3.4◦ apart.
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3 The Confocal Stereo Procedure

Confocal constancy allows us to decide whether or not the point projecting to a
pixel (x, y) is in focus by comparing the intensities Iαf (x, y) for different values
of aperture α and focus f . This leads to the following reconstruction procedure:

1. (Relative exitance estimation) Compute the relative exitance of the lens for
the A apertures and F focus settings (Sect. 4).

2. (Image acquisition) For each of the F focus settings, capture an image of the
scene for each of the A apertures.

3. (Image alignment) Warp the captured images to ensure that a scene point
projects to the same pixel in all images (Sect. 5).

4. (AFI construction) Build an A × F aperture-focus image for each pixel, that
collects the pixel’s measurements across all apertures and focus settings.

5. (Confocal constancy evaluation) For each pixel, process its AFI to find the
focus setting that best satisfies the confocal constancy property (Sect. 6).

4 Relative Exitance Estimation

In order to use confocal constancy for reconstruction, we must be able to predict
how changing the lens aperture affects the appearance of scene points that are
in focus. Our approach is motivated by three basic observations. First, the aper-
tures on real lenses are non-circular and the f-stop values describing them only
approximate their true area (Fig. 3a,b). Second, when the aperture diameter is
a relatively large fraction of the camera-to-object distance, the solid angles sub-
tended by different 3D points in the workspace can differ significantly.2 Third,
vignetting and off-axis illumination effects cause additional variations in the light
gathered from different in-focus points [17] (Fig. 3b).

To deal with these issues, we explicitly compute the relative exitance of the
lens, Exy(α, f), for all apertures α and for a sparse set of focal settings f . This
can be thought of as a radiometric lens calibration step that must be performed
just once for each lens. In practice, this allows us to predict aperture-induced
intensity changes to within the sensor’s noise level (i.e., within 1–2 gray levels).

To compute relative exitance for a focus setting f , we place a diffuse white
plane at the in-focus position and capture one image for each aperture, α1, . . . , αA.
We then apply Eq. (3) to each pixel (x, y) to recover Exy(αi, f). To obtain
Exy(αi, f) for focus settings that span the entire workspace, we repeat the pro-
cess for multiple values of f and use interpolation to compute the in-between
values. Since Eq. (3) assumes that pixel intensity is a linear function of radiance,
we linearize the images using the inverse of the sensor response function [16].

5 High-Resolution Image Alignment

The intensity comparisons needed to evaluate confocal constancy are only possi-
ble if we can locate the projection of the same 3D point in multiple images taken

2 For a 70mm diameter aperture, the solid angle subtended by scene points 1.1–1.2m
away can vary up to 10%.
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Fig. 3. (a) Images of an SLR lens showing variation in aperture shape with corre-
sponding images of a diffuse plane. (b) Top: comparison of relative exitances for the
central pixel indicated in (a), as measured using Eq. (3) (solid graph), and as approx-
imated using the f-stop values (dotted) according to Exy(α, f) = α2

1/α2 [16]. Bottom:

comparison of the central pixel (solid) with the corner pixel (dotted) indicated in (a).
The agreement is good for narrow apertures (i.e., high f-stop values), but for wider
apertures, spatially-varying effects are significant. (c–g) To evaluate non-deterministic
lens distortions, we computed centroids of dot features for images of a static calibration
pattern. (c–f) Successive close-ups of a centroid’s trajectory for three cycles (red, green,
blue) of the 23 aperture settings. In (c–d) the trajectories are magnified by a factor of
100. As shown in (f), the trajectory, while stochastic, correlates with aperture setting.
(g) Trajectory for the centroid of (e) over 50 images with the same lens settings.

with different settings. The main difficulty is that real lenses map in-focus 3D
points onto the image plane in a non-linear fashion that cannot be predicted by
ordinary perspective projection. To enable cross-image comparisons, we develop
an alignment procedure that reverses these non-linearities and warps the input
images to make them consistent with a reference image.

Since our emphasis is on reconstructing scenes at the maximum possible
spatial resolution, we aim to model real lenses with enough precision to ensure
sub-pixel alignment accuracy. This task is especially challenging because at reso-
lutions of 12MP or more, we begin to approach the optical and mechanical limits
of the camera. In this domain, the commonly-used thin lens (i.e., magnification)
model [6–8, 15, 18] is insufficient to account for observed distortions.

Deterministic second-order radial distortion model To model geometric
distortions caused by the lens optics, we use a model with F + 5 parameters for
a lens with F focal settings. The model expresses deviations from an image with
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reference focus setting f1 as an additive image warp consisting of two terms—a
pure magnification term mf that is specific to focus setting f , and a quadratic
distortion term that amplifies the magnification:

wD
f (x, y) =

[

mf + mf (f − f1)(k0 + k1r + k2r
2) − 1

]

·
[

(x, y) − (xc, yc)
]

, (4)

where k0, k1, k2 are the quadratic distortion parameters, (xc, yc) is the estimated
image center, and r = ‖(x, y) − (xc, yc)‖ is the radial displacement. Note that
when the quadratic distortion parameters are zero, the model reduces to pure
magnification. Also note that the quadratic distortion term depends linearly on
the focus setting as well. Empirically, we have found that the model of Eq. (4)
is necessary to obtain sub-pixel registration at high resolutions.

Non-deterministic first-order distortion model We were surprised to find
that significant misalignments can occur even when the camera is controlled re-
motely without any change in settings, and is mounted securely on an optical
table (Fig. 3g). While these motions are clearly stochastic, we also observed a
reproducible, aperture-dependent misalignment of about the same magnitude
(Fig. 3c–f). In order to achieve sub-pixel alignment, we approximate these mo-
tions by a global 2D translation, estimated independently for every image:

wND
αf (x, y) = tαf . (5)

Offline geometric lens calibration We recover the full distortion model of
Eqs. (4–5) in a single optimization step, using images of a calibration pattern
taken over all F focus settings at the narrowest aperture, α1. This optimization
simultaneously estimates the F + 5 parameters of the deterministic model and
the 2F parameters of the non-deterministic model. To do this, we solve a non-
linear least squares problem that minimizes the squared reprojection error over
a set of features detected on the calibration pattern:

E(xc, yc,m,k,T) =
∑

(x,y)

∑

f ||wD
f (x, y) + wND

α1f (x, y) − ∆α1f (x, y) ||2 , (6)

where m and k are the vectors of magnification and quadratic parameters, re-
spectively; T collects non-deterministic translations; and ∆α1f (x, y) is the dis-
placement between a feature location at focus setting f and its location at the
reference focus setting, f1. To increase robustness, we fit the model iteratively,
removing features whose reprojection error is more than 3.0 times the median.

Online alignment While the deterministic warp parameters need only be com-
puted once for a given lens, we cannot apply the non-deterministic translations
computed during calibration to a different sequence. Thus, for a new capture we
identify (potentially different) features in the scene and redo the optimization of
Eq. (6), with all parameters except T fixed to the values computed offline.

6 Confocal Constancy Evaluation

Together, image alignment and relative exitance estimation allow us to establish
a pixel-wise geometric and radiometric correspondence across all input images,
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i.e., for all aperture and focus settings. Given a pixel (x, y), we use this cor-
respondence to assemble an A × F aperture-focus image, describing the pixel’s
intensity variations as a function of aperture and focus (Fig. 4a):

Aperture-Focus Image (AFI)

AFIxy(α, f) =
1

Exy(α, f)
Îαf (x, y) , (7)

where Îαf denotes the images after geometric image alignment.
AFIs are a rich source of information about whether or not a pixel is in focus

at a particular focus setting f . We make this intuition concrete by developing
two functionals that measure how well a pixel’s AFI conforms to the confocal
constancy property at f . Since we analyze the AFI of each pixel (x, y) separately,
we drop subscripts and use AFI (α, f) to denote its AFI.

Direct Evaluation of Confocal Constancy Confocal constancy tells us that
when a pixel is in focus, its relative intensities across aperture should match the
variation predicted by the relative exitance of the lens. Since Eq. (7) already
corrects for these variations, confocal constancy at f implies constant intensity
within column f of the AFI (Fig. 4b). Hence, to find the ideal focus setting we
can simply find the column with minimum variance:

f∗ = argmin
f

Var { AFI (1, f), . . . , AFI (A, f) } . (8)

The reason why the variance is higher at non-ideal focus settings is that defo-
cused pixels integrate regions of the scene surrounding the true surface point
(Fig. 2b), which generally contain “texture” in the form of varying geometric
structure or surface albedo. Hence, for confocal constancy to be discriminative
as a focus measure, such texture must be present in the scene.

Evaluation by AFI Model-Fitting A disadvantage of the previous method
is that most of the AFI is ignored when testing a given focus hypothesis f , since
only one column participates in the calculation of Eq. (8). In reality, the 3D
location of a scene point determines both the column of the AFI where confocal
constancy holds as well as the degree of blur that occurs in the AFI’s remaining,
“out-of-focus” regions.3 By taking these regions into account, we can create a
focus detector with more resistance to noise and higher discriminative power.

In order to take into account both in- and out-of-focus regions of a pixel’s
AFI, we develop an idealized, parametric AFI model that generalizes confocal
constancy. This model is controlled by a single parameter—the focus hypothesis
f—and is fit directly to a pixel’s AFI measurements. The ideal focus setting is
chosen to be the hypothesis that maximizes agreement with these measurements.

Our AFI model is based on two key observations. First, the AFI can be
decomposed into a set of F disjoint equi-blur regions that are completely deter-
mined by the focus hypothesis f (Fig. 4c). Second, under mild assumptions on

3 While not analyzed in the context of confocal constancy or the AFI, this is a key
observation exploited by depth-from-defocus approaches [9–12].
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Fig. 4. (a) The A×F measurements for the pixel shown in Fig. 1. Left: prior to image
alignment. Middle: after image alignment. Right: after accounting for relative exitance
(Eq. (7)). Note that the AFI’s smooth structure is discernible only after both cor-
rections. (b) Direct evaluation of confocal constancy for three focus hypotheses. (c)
Boundaries of the equi-blur regions, superimposed over the AFI (for readability, only
a third are shown). (d) Results of AFI model fitting, with constant intensity in each
equi-blur region, from the mean of the corresponding region in the AFI. Observe that
for f = 39 the model is in good agreement with the measured AFI ((a), rightmost).

scene radiance, the intensity within each equi-blur region will be constant when
f is the correct hypothesis. These observations suggest that we can model the
AFI as a set of F constant-intensity regions whose spatial layout is determined
by the focus hypothesis f . Fitting this model to a pixel’s AFI leads to a focus
criterion that minimizes intensity variance in every equi-blur region (Fig. 4d):

f∗ = argmin
f

F
∑

i=1

(

w
f
i Var

{

AFI (α, φ) | (α, φ) ∈ Rf
i

} )

, (9)

where Rf
i is the i-th equi-blur region for hypothesis f , and w

f
i weighs the con-

tribution of region Rf
i (wf

i = area(Rf
i ) in our experiments).

To implement Eq. (9) we must compute the equi-blur regions for a given
focus hypothesis f . Suppose that the hypothesis f is correct, and suppose that
the current aperture and focus of the lens are α and f , respectively, i.e., a scene
point p is in perfect focus for this setting. Now consider “defocusing” the lens by
changing its focus to f ′ (Fig. 5a). We represent the blur associated with the pair
(α, f ′) by a circular disc centered on point p and parallel to the sensor plane.
From similar triangles, the radius of this disc is equal to

bαf ′ =
λ

2α

|dist(f) − dist(f ′)|

dist(f ′)
, (10)

where λ is the focal length of the lens and dist(·) converts focus settings to
distances from the front aperture.
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Fig. 5. (a) Quantifying the blur due to aperture α at a non-ideal focus setting f ′. The
aperture’s diameter can be expressed in terms of its f-stop value α and the focal length
λ. (b) A second aperture-focus combination with the same blur radius. In our AFI
model, (α, f ′) and (α′, f ′′) belong to the same equi-blur region.

Given a focus hypothesis f , Eq. (10) assigns a “blur radius” to each point
(α, f ′) in the AFI and induces a set of nested, wedge-shaped curves of equal
blur radius (Figs. 4c and 5b). We quantize the possible blur radii into F bins
associated with the widest-aperture settings, i.e., (αA, f1), . . . , (αA, fF ), which
partitions the AFI into F equi-blur regions, one per bin.

While Eq. (10) fully specifies our parametric AFI model, it is important to
note that this model is approximate. We have implicitly assumed that once rela-
tive exitance and geometric distortion have been factored out (Sects. 4–5), defo-
cusing is well-approximated by the thin-lens model [17]. Moreover, the intensity
at two equi-blur positions in an AFI will be constant only if two conditions hold:
(i) outgoing radiance remains constant within the cone of the largest aperture for
all scene points contributing intensity to the pixel (i.e., the shaded region of the
scene in Fig. 2b), and (ii) depth variations within this region do not significantly
affect the defocus integral. In practice, we have found that this model matches
the observed pixel variations quite well (Fig. 4d).

7 Experimental Results

To test our approach, we used a Canon EOS-1Ds digital SLR camera with a
wide-aperture, fixed focal length lens (Canon EF85mm 1.2L). The lens aperture
was under computer control and its focal setting was adjusted manually using
a printed ruler on the body of the lens. We operated the camera at its highest
resolution, capturing 4604×2704-pixel images in RAW 12-bit mode. Each image
was demosaiced using Canon software and linearized using the algorithm in
[16]. We used A = 13 apertures ranging from f1.2 to f16, and F = 61 focal
settings spanning a workspace that was 17cm in depth and 1.2m away from the
camera. Successive focal settings therefore corresponded to a depth difference of
approximately 2.8mm. We mounted the camera on an optical table in order to
allow precise ground-truth measurements and to minimize external vibrations.

To enable the construction of aperture-focus images, we first computed the
relative exitance of the lens (Sect. 4) and then performed offline geometric cal-
ibration (Sect. 5). Our geometric distortion model was able to align the cali-
bration images with an accuracy of approximately 0.15 pixels, estimated from
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Fig. 6. Top: Behavior of focus criteria for a specific pixel (highlighted square) in three
test datasets. The dotted graph is for 3×3 variance (DFF), dashed is for direct confocal
constancy (Eq. (8)) and the solid graph is for AFI model-fitting (Eq. (9)). While all
three criteria often have corresponding local minima near the ideal focus setting, AFI
model-fitting varies much more smoothly and exhibits no spurious local minima in these
examples. For the middle example, which considers the same pixel shown in Fig. 1, the
global minimum for variance is at an incorrect focus setting. This is because the pixel
lies on a strand of hair only 1–2 pixels wide, beyond the resolving power of variance
calculations. Bottom: AFI model fitting error and inlier fraction as a function of A
(“box” dataset, inlier threshold = 11mm).

centroids of dot features (Fig. 3e). The accuracy of online alignment was about
0.5 pixels, i.e., higher than during offline calibration but well below one pixel.
This penalty is expected since far fewer features are used for online alignment.

Quantitative evaluation: “Box” dataset To quantify reconstruction accu-
racy, we used a tilted planar scene consisting of a box wrapped in newsprint
(Fig. 6). The plane of the box was measured with a FaroArm Gold 3D touch
probe whose single-point accuracy was ±0.05mm in the camera’s workspace. To
relate probe coordinates to coordinates in the camera’s reference frame we used
the Matlab Camera Calibration Toolbox along with further correspondences
between image features and 3D coordinates measured by the probe. A similar
procedure was used to estimate the mapping between focal settings and the
depth of in-focus points, i.e., the dist(·) function in Eq. (10).

We computed a depth map of the scene for three focus criteria: direct confocal
constancy (Eq. (8)), AFI model-fitting (Eq. (9)), and a depth-from-focus (DFF)
method, applied to the widest-aperture images, that chooses the focus setting
with the highest variance in a 3 × 3 window centered at each pixel. The planar
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shape of the scene and its detailed texture can be thought of as a best-case
scenario for such window-based approaches. The plane’s footprint contained 2.8
million pixels, yielding an equal number of 3D measurements. As Table 1 shows,
all three methods performed quite well, with accuracies of 0.37–0.45% of the
object-to-camera distance. This performance is on par with previous quantitative
studies (e.g., [12]) although few results with real images have been reported in
the passive depth-from-focus literature. Significantly, AFI model-fitting slightly
outperforms spatial variance (DFF) in both accuracy and number of outliers
even though its focus computations are performed entirely at the pixel level and,
hence, are of much higher resolution. Qualitatively, this behavior is confirmed
by considering all three criteria for specific pixels (Fig. 6, top).

As a final experiment with this dataset, we investigated how AFI model
fitting degrades when a reduced number of apertures is used (i.e., for AFIs of
size A′ × F with A′ < A). Our results suggest that reducing the apertures to
five or six causes little reduction in reconstruction quality (Fig. 6, bottom).

“Hair” dataset Our second test scene was a wig with a messy hairstyle, ap-
proximately 25cm tall, surrounded by several artificial plants (Figs. 1 and 6).4

Reconstruction results for this scene (Fig. 7) show that our confocal constancy
criteria lead to very detailed depth maps, at the resolution of individual strands
of hair, despite the scene’s complex geometry and despite the fact that depths
can vary greatly within small image neighborhoods (e.g., toward the silhouette
of the hair). By comparison, the 3×3 variance operator produces uniformly-lower
resolution results, and generates smooth “halos” around narrow geometric struc-
tures like individual strands of hair. In many cases, these “halos” are larger than
the width of the spatial operator, as blurring causes distant points to influence
the results.

In low-texture regions, such as the cloth flower petals and leaves, fitting
a model to the entire AFI allows us to exploit defocused texture from nearby
scene points. Window-based methods like variance, however, generally yield even
better results in such regions, because they propagate focus information from
nearby texture more directly. Like all focus measures, those based on confocal
constancy are uninformative in extremely untextured regions, i.e., when the AFI
is constant. Such pixels may be detected using a “confidence” measure (e.g.,
assessing the steepness of the minimum) or by processing the AFI further.

4 For additional results, see http://www.cs.toronto.edu/∼hasinoff/confocal.

Table 1. Ground-truth accuracy results. The inlier threshold was set to 11mm. All
distances were measured relative to the ground-truth plane.

median ABS inlier RMS % RMS % dist.
dist. (mm) dist. (mm) inliers to camera

confocal constancy evaluation 3.18 4.61 66 0.454
AFI model fitting 2.13 3.78 84 0.373
3 × 3 spatial variance (DFF) 2.16 3.79 80 0.374
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3x3 variance

3x3 variance AFI model fitting

AFI model fitting

3x3 variance direct confocal constancy AFI model fitting

Fig. 7. Center: Depth map for the “hair” dataset using AFI model fitting. Top: Several
distinctive foreground strands of hair are resolved in the AFI-based depth map. Di-
rect evaluation of confocal constancy is also sharp but much noisier, making structure
difficult to discern. By contrast, 3×3 variance (DFF) exhibits thick “halo” artifacts
and fails to detect most of the foreground strands (see also Fig. 6, top). Bottom right:

DFF yields smoother and more accurate depths for the low-texture leaves. Bottom left:

Unlike DFF, AFI model fitting resolves structure amid significant depth discontinuities.

8 Concluding Remarks

The extreme locality of shape computations derived from aperture-focus images
is both a key advantage and a major limitation of the current approach. While we
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have shown that processing a pixel’s AFI leads to highly detailed reconstructions,
this locality does not yet provide the means to handle large untextured regions or
to reason about global scene geometry and occlusion [15, 18, 19]. To handle low
texture, we are exploring the possibility of analyzing AFIs at multiple levels of
detail and for multiple pixels simultaneously. We are also investigating a space-
sweep approach to analyze occlusions, analogous to voxel-based stereo.
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