
Hunter Gatherer: Interaction Support for the Creation
and Management of Within-Web-Page Collections

m.c. schraefel,1 Yuxiang Zhu,1David Modjeska,2 Daniel Wigdor,1 Shengdong Zhao1

1Dept. of Computer Science | 2Faculty of Information Systems
University of Toronto

Toronto, Canada
{mc |dwigdor |yuxiang|shengdong}@dgp.toronto.edu

modjeska@fis.toronto.edu�

Figure 1. Hunter Gatherer at work. A sample collection page is on the right. Below each component in the collection is the link to

the component’s source page. Each component has a default, editable title. Collections can contain any web page element:
shown here are images, forms and text. In the upper left is the List/Edit window to monitor the collection as it is being created. In

the lower left are the pages from which the collection was created. A video demonstration is available at
http://shaka.dgp.toronto.edu/hg/overview

�� � �

ABSTRACT
Hunter Gatherer is an interface that lets Web users carry out three
main tasks: (1) collect components from within Web pages; (2)
represent those components in a collection; (3) edit those
component collections. Our research shows that while the practice
of making collections of content from within Web pages is common,
it is not frequent, due in large part to poor interaction support in
existing tools. We engaged with users in task analysis as well as
iterative design reviews in order to understand the interaction issues
that are part of within-Web-page collection making and to design an
interaction that would support that process.

We report here on that design development, as well as on the

evaluations of the tool that evolved from that process, and the future
work stemming from these results, in which our critical question is:
what happens to users’ perceptions of web-based resources and their
web-based information management practices when they can treat
this information as harvestable, repurposeable data, rather than as
fixed pages?

Categories and Subject Descriptors
H5.4 Hypertext/Hypermedia–Architectures, Navigation, User
issues. H5.2 User Interfaces–Prototyping.

General Terms
Design, Experimentation, Human Factors.

Keywords
Web-based interaction design, information gathering and
management, attention, collections, transclusions

Copyright is held by the author/owner(s).
WWW2002, May 7–11, 2002, Honolulu, Hawaii, USA.
ACM 1-58113-449-5/02/0005.

172

1. INTRODUCTION
Studies of Web-based information interaction such as [2][5], have
generally dealt with a Web page as the smallest unit of
consideration. Task analysis carried out in a user study reported in
[13] indicates that users, however, regularly need to deal with
smaller units, that is, information components from within Web
pages. The study found two things: (1) that Web users want to be
able to make collections of information found from within Web
pages, but that (2) users only infrequently make such collections, in
large part because of poor interaction support for this activity. For
instance, bookmarks, referencing entire pages often capture more
than the desired data; this forces users first to load and then to sift
through multiple pages to attempt to find the desired material. Text
editors cause users to shift attention between the information
gathering task in the browser and the information management task
with the editor. With editors, users often forget or neglect to label
the collected component with a title or the URL of the source page,
making later access to the original material difficult, degrading the
value of the collection over time.

Despite these shortcomings, those surveyed still expressed a need to
create collections from material within Web pages. Scenarios for
such collections are easy to imagine: a journalist might want to build
a collection of different newspaper coverage of the same story. A
student might build a heterogenous collection to reflect her current
term, including courses, professors, gym hours and so on.

We developed Hunter Gatherer (HG) both to support this kind of
within-Web-page collection making and to investigate how this
novel interaction design might affect Web-based information
practices. Hunter Gatherer (Figure 1) blends the transparency of
bookmark capture for component selection, with the support of an
editor for revising collections. The tool also automates the inclusion
of a contextual, editable header/annotation for each component, and
grabs the URL of the source page for that component (Figure 1,
right), so that users can return to the source document at any time.
Our interaction goal for Hunter Gatherer’s design is to let users,
rather than the tool, determine which information activity they wish
to focus on: gathering, management or contemplation of the
collection. Our software goal has been to create a tool that
integrates with the browser and utilizes web-based protocols so that
the user does not require additional software to carry out these tasks.
Our larger research goal is to use this tool to help us investigate both
perceptions of and expectations of what might be called
information flexibility in an information space that has previously
defined the smallest unit of information to be the Web page. We
wish to investigate how this might change once users have tools
which can support information harvesting, in which they can replant
or repurpose information elements from one context into ones of
their own devising.

Hunter Gatherer is the result of an iterative process of user-based
design, surveys and evaluation. This paper describes the most recent
version of the artifact, the associated interaction design, and its
evaluations. We begin with a discussion of Web-based collection
management tools research and illustrate where this work does not
address the interaction problem most relevant to within-Web-page
collection making: shifting focus between information capture and

post-capture information management. We follow this with a
discussion of our prototype tool development. We present our
evaluation and consequent evolution of the tool over several
iterations. Finally, we report on lessons learned from these
evaluations, and describe how the results have helped to refine our
understanding of the tasks we hope to support, and the steps we
wish to pursue in future work.

2. RELATED WORK
Our research investigates the problems faced by Web users who
wish to carry out two related tasks: to gather information
components from a variety of Web sources and to manage that
gathered information. When we focus on information gathering on
the Web, we foreground the process that Marshall et al. [9] refer to
as “information triage,” the act of moving through a variety of
sources to determine quickly whether they are of potential worth.
The sticking point occurs when, on making such a determination,
we wish to capture the component identified for retrieval. When
users are engaged in information triage, they currently lack a method
for putting the identified components into a collection without
needing to make the collecting activity a foreground task. While
there has been much work done on the management of Web-based
document collections (which we discuss below), there has been less
work on the interaction activity of placing the identified information
from the source into the collection. Therefore, our work has focused
especially on the latter process.

2.1 Bookmarks and Visualization
Our design model for the kind of transparent interaction that we
wish to emulate has been bookmark-making. Bookmarking is well
integrated with most Web browsers. The user engages a simple
command key sequence, or makes a menu selection, and the current
page is added to a list of bookmarks. With slightly more
concentration on the bookmark task, users can shift focus to more
specific information management tasks: many bookmark tools, for
instance, support adding bookmarks directly to specific folders
within the bookmark list. Such interaction supports a gradient of
task focus, from peripheral attention to main focus. While
bookmarking supports this multiple attention level for interaction,
its failure to help users retrieve information effectively from
bookmarks has been well discussed in Abrams et al. [1]. To deal
with the shortcomings of bookmarks for retrieving information,
several research and commercial applications have been developed.
While not completely applicable to our research, there are related
findings from that web-based work which inform ours.

Card, Robertson and York’s WebBooks [2] is an early example of
an application for bookmark visualization. In this work, the entire
Web page is always available, eliminating the requirement for a user
to load each interesting bookmark iteratively. Collections of pages
are visualized as books, where pages in the collection can be quickly
“flipped through.” While the WebBook eliminates the need for users
to load pages, it still focuses on a complete Web page as the artifact
of value.

173

More recently, Robertson et al. developed the Data Mountain tool to
let users arrange bookmarks as page of thumbnails on an inclined
plane. Compared with Internet Explorer’s Favorites bookmark tool,
participants were able to retrieve pages more quickly and with fewer
errors [12]. Czerwinski et al. extended this work; they demonstrated
that the name and the location of a bookmark on the plane were the
two factors most important for successful retrieval; a page's
thumbnail image was less important [5].

Amento, Terveen, Hill and Hix’s TopicShop work [2][14] draws
particularly on the Data Mountain research for letting users manage
collections of sites on a given topic. In this case, an algorithm
developed for TopicShop captures candidate sites, which become
available to a user in a multi-paned window. In the site profile pane,
for instance, a list of sites shows miniature thumbnails of the page,
along with relevant site characteristics, such as name and number of
links in and out of the page. This information helps users decide if
they wish to visit the site. Users can then drag chosen sites into a
“work area.” The site is represented here as a thumbnail.
Thumbnails can be “piled” into groups; groups are in turn reflected
in the site profile window. Evaluation participants found this multi-
view approach to evaluating and organizing collections to be
TopicShop’s most effective feature.

Once again, the Web page is the entity of value. This makes sense in
the case of TopicShop, as the entire page or site is desired overall,
since, by design, the pages collected are themselves either all “on
topic” (e.g., a fan site) or are collections of links to such sites. It is
not clear if the TopicShop algorithm could be extended to capture,
for instance, a more heterogeneous notion of topic, as in the
preceding student scenario. There, “My Term” as a topic might
reflect an associative set of components such as courses and student
loan information, rather than clusters of similar information.

2.2 Editors
Some editors such as Microsoft Windows’ Front Page and Netscape
Navigator’s Communicator are better integrated for the within-Web-
page collection process than basic text editors or even some word
processors. Both applications let users open a blank, editable page
into which they can drag content, including images, from the
browser to the editor. Users can then edit the collected information
in any way they wish. Unlike bookmark managers, the editor page
makes all the collected components readily apparent to a user
looking at the file. The file can be saved to a server via the editor’s
integrated FTP support. Users can also access the URL of any
collected image. The same cannot be said, however, for any
collected text. Unless the URL is specifically grabbed, that
information is not captured. Similarly, the user must label the
content themselves, since no page information (such as page title)
travels with the copied content. Word processors such as Microsoft
Word support drag and drop of both text and images from Web
pages into files; plain text editors support text capture.

2.3 Hybrids: Spatial Hypertext
In Spatial Hypertext, which predates the emergence of the Web, the
notion of the page, per se, does not exist. Documents are always
already collections of data objects, like one’s own notes on a topic,
or references to other works. These data objects are manipulated in a

2D visualization space, so that the space in which a user creates a
hypertext is also the space in which that document is viewed. This is
a more elastic version of hypertext than what the Web currently
supports. By way of intermediary, Mark Bernstein’s Web Squirrel,1
is a tool that attempts to bring some of the data object vs. Web page
approach to Web practice, though its main use is for annotating
bookmarks rather than capturing components within pages. Web
Squirrel lets users create and copy information (such as URLs) into
a Web Squirrel file. The data is represented as squares to be directly
manipulated in a 2D space. The objects can then be arranged and
annotated. Agents sift through information in a collection (or “farm”
in Squirrel parlance) and suggest connections among collected
objects. Like bookmark lists, which only reveal a page title, not the
page content, the Web Squirrel boxes hide annotation/link
information attached to them. Also, only one box’s information can
be revealed at a time. As well, while users copy and paste text
information from a Web page into Web Squirrel, the source URL
for that text is lost unless the user also grabs the URL and drops that
into the application. This URL will then show up as a distinct box
from the text. Finally, Web Squirrel does not capture images or
other media.

2.4 Overview
With the exception of a hybrid tool like Web Squirrel and the
Spatial Hypertext work that informs it, Web-based research has
focused on managing whole Web pages and sites, rather than on the
discrete content within a Web page. Even in Spatial Hypertext with
its emphasis on capturing one’s own annotations, however, there is
little consideration of the interaction of getting content from one
context to another. We wish to expand the research to consider this
interaction aspect of the movement among information gathering,
capture and reflection, and how that can be supported in a web-
based approach.

3. Hunter Gatherer Design Process
Our main goal for Hunter Gatherer has been to support the
collection making interaction process for collecting within-Web-
page components. To determine how best to do this, we carried out
the task analysis, tool comparison and an initial prototype design
review [13].

3.1 Goals
From our tools and task analysis, and prototype design review, we
determined 3 requirements for Hunter Gatherer.

• First, the addition of components to collections must be as
transparent as highlighting text.

• Second, the interaction must support user-determined, not
tool-forced focus shift among component selection,
addition, monitoring, and management.

• Third, the collected components must automatically
capture enough contextual information for the collection
to be immediately valuable for the user.

In the following sections, we present an overview of the artifact to
support this process, and its evaluation in terms of these three goals.

1 http://www.eastgate.com/squirrel/FAQ.html

174

3.2 Description of the Tool and Architecture
Overview
3.2.1 Browser Integration
Hunter Gatherer is a browser-based, not a stand-alone application.
By integrating Hunter Gatherer within the browser in a manner
similar to browser support for bookmarking, we are able to
minimize the forced divided attention [15] introduced by shifting
between one application (the browser) and another (the editor);
between information triage and management. Our approach is also
proxy based. This means that the user does not have to download
additional software to access the tool. While not perfect, the proxy
approach also lets us support multiple operating systems and
browsers simultaneously. Further, our interest is in the potential
impact of supporting within-Web-page collection making on Web
information practices. Multiple OS support lets us deploy the tool
over a wide user space for this assessment.

3.2.2 Relation to Open Hypermedia
Hunter Gatherer collections are created by rendering references to a
collection of addresses for the components within the Web pages.
This means that there is no copying of content; only referencing of
content addresses. This strategy closely emulates the Open
Hypermedia concept of creating collections of smaller-than-page-
size elements for what [7] refers to as “pick-up” styled, or arbitrary
and user-determined, collections of components. By referencing
locations within documents, HG Collections may also be framed in
Open Hypermedia terms as user-defined (or user-authored)
composites of anchors, as recommended by Halasz, “constructed by
reference rather than by value” [8, p355]. We describe the benefits
of this approach following an overview of the tool’s architecture.

3.3 Basic Architecture
In the current system, once the client browser makes a request for a
page, that page is run through a server-side process to convert the
HTML to XML-compliant XHTML. Once the page is in XHTML,
we can use XML’s Document Object Model’s tree structure for the
document to determine the location of a particular component
selected by the user. We have 2 methods to identify components for
selection: one is by page element, such as a paragraph, indicated by
the XHTML tags like <p></p> or <td></td>. The second method is
to use XML’s associated XPath to identify entities within elements,
so that in <p>some text </p> a user can select, for instance, the last
“e” of “some” and the first “t” of text. This latter method emulates
the act of highlighting a portion of a Web page for copying. In the
current iteration of Hunter Gatherer, we have discovered a number
of incompatibilities across systems for within-element text selection,
so have temporarily taken this approach off line.

Once a user indicates a selected component is to be added to the
collection, the server process either (a) creates a new collection
Web-page if one is not already in use or (b) adds the component to
the active collection. The component has a default, editable title
assigned to it, consisting of the source page’s title and a few
keywords from the component. We also use the URL part of the
component address to create a URL for each component to take the
user back to the component’s source page. The collection can then
be represented as what we call an Aggregated URL. For instance,

http://[server]/examples/servlet/Collection_b?aurl=http%3a%2f%2fwww%2
eutoronto%2eca%2fphonebook%2f%23H1%231%234%23Find%20profs%
20with%20this...[UofT%20Phone%20Book%20Search]%7chttp%3a%2f%
2fwww%2eutoronto%2eca%2fphysical%2ffac%5fserv%2ffacilities%5fsub
%2fACentre%2ehtml%23P%234%231%23...[Gym%20Hours]&pagetitle=
U%20of%20T%20and%20related%20info

represents an AURL with 2 components, the title of each component
is in bold. The final attribute of the URL is the title for the collection
itself which will appear in the title for the Web page containing the
collection.

Portability. In emailing or otherwise sharing Collection AURLs,
each user can view and non-destructively edit the collection, since
editing only changes an AURL, and one user’s changes to an AURL
has no impact on another’s.

Dynamic Components. The referenced-based approach to
collections makes collections dynamic. If a user includes a
component for the local weather, each time the page is loaded, the
user will see the latest forecast; reference a bank account balance, it
will show up as the current balance. In some cases, it may be
necessary to construct methods to let users identify which
components are important to be set as static and which can remain
dynamic. For now, we are interested particularly in focusing on
better understanding the interaction between component selection,
capture and management rather than considering the long-term
archival properties of a collection. That said, dynamic versus static
raises interesting questions about location for static material with
respect to where the static material is stored. It is relatively simple to
save the collection as a local HTML file that will keep the HTML
attributes, like links, in the page alive, but that reintroduces a user-
side problem for future retrieval of the file. A server side solution
would likely require a network Web disk approach. We are looking
into the design of this extension.

Relative Addressing and Bumping. The Document Object Model
(DOM) of web pages lets us access locations within a Web page
relative to the root of the document. For instance, a page may have
two elements after the document root, paragraph A, <p>A</p>, and
paragraph B, <p>B</p>. If the user selects paragraph B, we initially
used the location of paragraph B in the document tree to create the
address for that component in the collection’s AURL. This approach
had one potential drawback: if an author adds a new paragraph
between A and B, the new paragraph becomes B, and the old B
becomes paragraph C. We call this effect “bumping.” If the user
previously collected paragraph B, they would now have the new
paragraph B in their collection. Our solution (implemented after our
initial field trials) came from the Annotation community [3]. In
annotation, one of the goals is to keep an annotation associated with
a particular component, even if that component is moved within a
document. We have recently adapted Phelps and Wilensky’s Robust
Intra-document Location algorithms for reattaching annotations to
altered components [11] to keep track of “bumped” components.
We have yet to formally quantify the success rate of this approach to
component tracking, but informally, the technique has proven highly
robust and will be part of our Prototype 2 evaluations.

175

It may be important to note, however, that such robustness is not a
key priority for interaction design evaluation. In our field trials,
losing components by being “bumped” in this way has not shown up
as a concern for users. We do not have enough data yet to know
whether or not this is because most collections reflect structurally
static pages, so bumping is an infrequent occurrence, or if the
collections themselves are being created for shorter term projects,
rather than archival purposes, so that if a page changes structurally,
users have not encountered this problem showing up in their
collections.

Transclusions. By referencing components with AURLs rather than
by copying the content, Hunter Gatherer embodies a version of
Nelson’s Transclusions [10]. Translusions propose creating and
publishing hypermedia documents by reference in part so that
authors can control both private and public organization and
publication of information resources. While the issues of intellectual
property raised by letting a user reference parts of a page outside its
own (potentially banner-added) context are outside the scope of this
paper, one could imagine a method of extending Hunter Gatherer to
support authorizing Web sites/pages/components for publication
within public or private collections with something like a robots.txt
file, or by implementing Nelson’s own Transcopyrigtht [10].

4. PROTOTYPES
We now turn to a description of our first alpha-distributed prototype
and the evaluation of its interaction.

4.1 First Alpha Prototype
After our initial task analysis, we created a first proof-of-concept
prototype to evaluate the concept in a design review with 26
participants [13]. The prototype allowed us to demonstrate the
concept of within-page capture as well as the AURL for rendering
component collections as new web pages. That prototype relied on
the authoring within web pages of specific anchors: if the author had
defined a <div></div> element within the web page and given that
ID or Title attribute, Hunter Gatherer could collect the div-wrapped

content as components. The results of the design review suggested
that we were on the right track with the tool and interaction, but that
supporting only author-defined components within web pages
would limit the viability of the tool. To address this problem we
developed our alpha prototype to support both author-defined and
user-determined component selection. We used this first alpha in
both lab evaluations and field studies.

4.2 Component Selection in the Alpha Prototype
There are three steps to collect a page component in Hunter
Gatherer: (1) select the component to be collected (Figure 3); (2)
with that component selected, press the “a” key; (3) a dialog box
appears (Figure 4) asking if the user wishes to add the component or
not. The user can click “ok” or press the return key to approve the
collection. We plan to make this last step part of a user’s tool
preferences, since in our design reviews, some users wish to be
asked to confirm a selection; others did not. The current default is to
ask. The user can continue to add components in this manner. Any
component that can be displayed in a Web page can be added to a
collection, from images to applets.

The selection and add process is relatively transparent. It does not
require the user, after selecting a component, to shift attention from
the browser to an editor application, paste content into that
application’s file, go back to the browser, copy the URL, go back to
the editor, paste the URL, add a note to contextualize the
component, save the file, go back to the browser and refocus on
hunting for the next component. The user simply identifies a
component to be added; the system automatically adds the
component to the collection; creates an editable title for component
that, by default, contains the title of the source page of the
component. The process also automatically adds the URL as a link
back to the source document. By automating these steps, users can
focus their main attention on their information gathering task until
they decide to shift that focus to a different task.

Prototype Selection Note. The visual feedback for selecting a part
or parts of a Web page is indicated by borders around elements (Fig.
3) rather than by highlighting. As users, we are used to interpreting

��������	�
���������
�����������
�����������������
�������
�����������
���������������������
������������
���������
���
�����������������
�����������	�
�����
�������������
���
���
���
���������������������������
�������	�

��������	� ���������!��������	�"���������������������
������������
�����
���������������#��������
��$�
#
��
����
�����������
��������
���������������
���
�����
������
����	�%����������������������
������������$��������
���������
�������������������	�

176

highlighting as something that can be edited to a fine-grained level.
Since the first prototype could not support this degree of selection
fully, we opted to use borders to indicate what is selectable, since
such bounding boxes are less likely to be interpreted as being as
refinable as highlighting. In our latest prototype, users can select
components down to the level of a character within a word. We will
evaluate whether we should keep both modes of selection indicators:
highlighting and bounding boxes, or simply use highlighting only.

4.3 Collection Interaction
When the user first selects a component to be added to a collection,
a small window, the List/Edit view, opens (Figure 5). This window
displays a list of the components in the collection which allows a
user to monitor the growth of that collection. As soon as a
component is added to a collection, the name of the component is
added to the List/Edit view. As a browser window, the List/Edit
view can be closed or partially occluded by moving any other
window over it, or it can be arranged to be peripherally available as
shown in Figure 1 above. Figure 1 shows the List/Edit view visible
beside the main browser window.

The List/Edit view as a separate window lets users determine the
degree to which they wish to monitor a collection: each time they
add a component after a collection has been initiated, the List/Edit
View window does not come to the front, but stays where placed.
Indeed, in the first design review of the initial prototype [9], the
ability to adjust the “focus” of the List/Edit View to monitor
collection state was seen to be an essential feature for the tool. If the
user wishes to move task focus from adding components, to the
collection, to dealing with the collection itself, they can do so via the
List/Edit View. This window for monitoring collection state also
acts as the editor palette for the collection. Users have several
editing options available: they can rename a component, sort
components in the list, delete components from the list, give the
collection a title and preview the collection in a browser window.

4.4 Collection View
When the user selects Preview from the List/Edit View, a new
browser window opens, displaying each of the components
represented by the list, in the order in which they are displayed in
that list. With both List/Edit View and Collection View open, as in
TopicShop, users have two ways to visualize the collection
simultaneously. As shown in Figure 1, right, each component
appears with an automatically generated header: the title of the
component’s source Web page. The component also appears in the
Collection with the source page URL as a link. At any time, the
user can click that link to open the source page for that component.
Likewise, any links within the captured component behave just as
they would in the component’s source page.

4.5 Gradations of Interaction: Focus
Throughout the collection making process with the prototype, the
user can move among hunting for sources, selecting components
from those sources, adding those components to a collection, editing
the content of a collection, previewing the collection, and saving a
version of the collection (by making a bookmark, for instance, of the
current collection AURL). If the user at a later point wishes to
return to a collection, they load its AURL, which may be done by
selecting a bookmark for a collection or by pasting the AURL from
an email message into the browser’s Location area. To edit the
collection further, the user clicks the “edit” link from the collection
page, and a List/Edit View window of that collection opens, listing
all its components. The user can continue to view or revise that
collection. By having all views as browser windows, the user
determines which part of the collection making activity they wish to
foreground, keep in the background or have peripherally available,
simply by arranging the browser’s windows.

5. EVALUATION
In order to asses how Hunter Gatherer meets the requirements for
collection, focus shift and continued value, we initiated 2
evaluations: an experiment to assess the tool’s efficiency and a field
study to gain insight into how a new way of working with Web-
based information may fit into daily practice. The experiment was
designed to assess tool efficiency and effectiveness compared with
current best practice: if the tool is not more effective/efficient than
existing methods, then there would be little reason for users to adopt
the tool. Because we want to deploy the tool widely, the tool must
be efficient and robust. The field study, on the other hand, was
designed to assess tool affect in the context of Web-based
information management practices. This largely self-reporting study
would be our starting point to understand how to quantify tool
use/impact on these information practices.

5.1 Alpha Prototype Experiment
5.1.1 Design and Methodology
We set up a 2x2, within-subjects study to test the efficiency of
Hunter Gatherer compared to an editor for creating collections. To
reduce learning curve noise in the data for the editor-based
collections, we choose Microsoft Word as the most familiar editor
among participants. The first factor in the experiment was tool
(Hunter Gatherer vs. Word); the second factor was data set (Web
pages on a Chemistry program; Web pages on a Physics program).

�������&	�'���()����*��+����
� ���������	�
���������������
����
�����������������������������,��������	�-������
��
����$��������������
��������������������$�
������
������
���#��+���������������	��

177

We first ran a pilot study with five participants, refined the protocol,
and ran the formal experiment with 12 participants, representing a
mix of technical and non-technical undergraduate and graduate
students at the University of Toronto.

At the start of the evaluation, users were given 15 minutes training
time with Hunter Gatherer. Users were then asked to build two
collections, each from a given set of bookmarks, to be clear enough
to be used by someone else. This direction was motivation to use the
tools’ editing capability to create the most effective collection
possible within the time constraints. We alternated which tool a
participant would use first, Word or Hunter Gatherer. To reduce
potential learning effects, we prepared two similar collections of
bookmarks, one on the Chemistry program and one on the Physics
program at the University. The pages for each set were taken from
the same general Web sites, so that pages were similar but for
content. So, for each tool, the participant used similarly structured
data with distinct content. Participants were given 5 minutes with
each set of 3 bookmarks to familiarize themselves with the content
of the pages before each tool trial. Participants were then given 15
minutes to build a collection from the bookmarks that would (a)
explain how to get a minor in the given subject, (b) list and describe
the required courses, and (c) show the course instructors for those
course for the term. The experiment let us test HG in terms of our 3
requirements: (1) the efficiency of component addition (2) the
effectiveness of HG in the complete collection making cycle (3) the
immediate legibility of the resulting collection.

5.1.2 Empirical Results
A one-way within-subjects ANOVA showed a significant effect of
tool type (collection time (F = 5.730, p < .040) in comparing
average component collection time using HG and Word.
Participants required an average of 6.70 seconds using HG and an
average of 10.9 seconds using Word (Figure 6). The effect of the
content variable was non-significant and was pooled over.

5.2 Observations
General Observations. First, despite practice with the Hunter
Gatherer tool in which we also demonstrated that each component
captured contained a default header and source page URL, only 3
participants, when using Word to build a collection, included the
URL of the source page for a given component. The collections, on
average, had over a dozen components. The participants who
included URLs did so for only a few components, and each of them
had used Hunter Gatherer as their first collection making tool.

Word-specific Observations. In creating collections in Word, many
participants over-captured the information required from the Web
page, and then edited the extra material out from the collection file.
Also in editing, Word was more efficient than Hunter Gatherer for
revising component headers. Headers in Word could be edited
directly in the collection, whereas Hunter Gatherer required
participants to move to the List/Edit view to enter a dialog box to
make a change. This motivated our revision of the tool to support
editing of the component headers directly in the Collection View

HG-specific Observations. In the post-evaluation questionnaire,
most users reported that they would prefer highlighting components
to collect them, in addition to having the bounding box as methods
for component selection. Participants also commented that sorting
components in collections was “easier” in Hunter Gatherer than in
Word. Similarly, in being asked what the best feature of Hunter
Gatherer is, 10 out of 12 participants reported the automatic capture
of the component’s URL.

5.3 Analysis
We have met our first design requirement to make the addition of a
component as efficient as selecting text in a browser. Though
participants expressed a desire to have highlighting as a selection
method, HG selection performance was significantly better than
with Word. The Hunter Gatherer method is also more effective than
Word for component addition, since HG automatically adds both a
header for the component and the URL for the source page, the
latter addition indicated by users as the most valuable attribute of the
tool.

The alpha prototype only partially met our second design
requirement to support user-determined focus shift among collection
tasks. Header editing in the prototype forced users to concentrate on
the tool, rather than the task: double clicking a header title in
List/Edit view and ok’ing a change in a header dialog box is less
transparent than editing the header directly in a file. Our
observations also indicate that users want to be able to make a first
pass at component selection, and then edit the components further,
after they have been collected. We may be requiring users to focus
too much on precise component selection when they would rather be
focusing on faster, more general initial “information triage” as
described above, and edit further, later.

With the automatic capture of the URL, the prototype partially met
our third design requirement for automatic capture of enough
information for the collection to continue to be useful to the user.
Our initial evaluation showed us that the headers, which consisted of
only the source page title, were not descriptive enough to be

�������.	��/������0
���������������
�����������������������
����������
����������
��,���	�

178

automatically useful if many components came from the same
page(s), which was the case in our trials. This lack of distinction in
the List/Edit view rendered parts of the collection immediately less
useful.

We describe the second prototype resulting from this analysis in the
section Prototype 2, below. First, we describe the field study that
went on in parallel with the lab evaluation of the first prototype.

5.4 Field Study
5.4.1 Design and Methodology
Andrew Dillon, discussing Process, Outcome and Affect as
alternative evaluation measures to Effect, Efficiency and
Satisfaction, suggests that the affect of a design – whether a user
experiences the interaction as empowering or frustrating – is critical
for understanding and improving the interaction design [6]. With
Hunter Gatherer, we are interested to know if, given an efficient and
effective interaction, the tool itself will become an affective part of
Web information practices. To begin to answer this question, we
have followed Dillon’s suggestions for evaluating affect: we have
given the tool to participants to explore “free style.” Participants in
the four week field study were asked to try the tool over a month, to
answer a weekly set of questions about their tool use, and to share
example collections made during that time. Participants learned how
to use the tool via a Web page, describing its features and known
bugs. There were 14 participants from a wide variety of disciplines.
Each identified themselves as “tolerant” of alpha software and
expressed an interest in using the tool.

5.4.2 Overview of Results and Analysis
All but one participant reported that they like the tool and make
collections with it. Participants tended to make specific collections
for specific purposes, rather than making more casual, serendipitous
collections. In other words, preliminary findings indicate that users
form the intent to collect first, and then use the tool, rather than
using the tool for more casual perusal. We do not have the data to
say whether this deliberate approach is because of any particular
attributes of the tool, or due to preconceptions about information
gathering. Kinds of collections made, however, were diverse. One
participant made a collection of components from a variety of
financial information sites, which, he recorded, he consults daily,
since the components are dynamic and he wants only current
financial information. Another participant in Medicine has a
collection on a particular disease profile that he wishes to publish
for participants at an upcoming conference. Another has gathered
components for course lecture notes. The intent of these collections
suggests that they will have a relatively long shelf life and possibly
high return use. Only one participant, a reporter for a national
television network, indicated being interested in making collections
for shorter term purposes such as collecting background sources for
upcoming stories. We will quantify both collection making and
return to collection rates in the follow-up study.

When asked specifically if the concept of making collections from
within-Web-pages had become a technique that was now part of
their way of thinking about managing Web-based information or
not, most users responded that the tool/concept had indeed become
part of their way of thinking about gathering information on the

Web. Only one participant reported discovering that he did not find
a need to make within-Web-page collections. Indeed, many of the
participants regularly emailed design suggestions that would make
the tool more effective for them, most of which reinforced our
findings in the lab evaluations, such as: more descriptive default
headers, fewer steps to edit those headers and highlighting as well as
bounding boxes for component selection.

Surprisingly, we did not hear any concern about several parts of the
prototype we had anticipated: bumping/dynamic components and
collection layout. In the first case, as described in the Architecture
section above, if an author adds a component before a component
previously collected, that will offset which component is represented
in the collection. Our first prototype, used in the field trial, did not
have the Robust Linking adaptation to manage bumped material. No
one, however, reported having had this experience of content being
bumped. Similarly, no one when asked reported having problems
with dynamic vs. static components. That is, participants seemed to
understand that components in a collection behaved similarly to
bookmarks: material referenced may change. Indeed, so far it has
only been participants in design discussions who have suggested
that we must support “saving static versions of a collection.” While
this feature seems to make sense intuitively, it is not a feature that
any of our field trial users requested. That said, our second
prototype does have a “save” option to save a static version of a
collection as a fixed HTML page. Our next evaluation will
instrument this feature so that we can measure frequency of use.
Further, no one reported wanting to be able to resize or reposition
components in the collection view. One participant in particular said
that he knew what was in a collection – he’d made it – and he could
use the Find command in the browser to locate an element quickly
in a collection, if required.

5.5 Prototype Two
Based on the formal experiment and field study, we have created a
second prototype with the following revisions:

• default headers: the default header created by the collection
operation now creates headers for components that contain
both keywords from the component selection and the title of
the component’s source page. This means that components
from within the same page are distinguishable from each other.

• direct editing of headers: users can now double click on a
header directly in the Collection page to edit the header.

• post collection component deletion: users can now over-
capture components (for instance, grab three paragraphs rather
than 1 paragraph) and then, at their discretion, delete
unnecessary elements within a component from within the
collection view.

• single component viewing: by shift-clicking on a component in
the List/Edit view, a user can render that single component
without having to render the entire collection.

Overall, we anticipate that these revisions will bring Hunter
Gatherer closer to supporting our design requirements for

179

transparent collection making. Informally, the majority of our field
study participants have continued to use the tool and are now using
the second prototype. The response has been favourable, with some
participants suggesting that the changes have both improved
interaction with the tool and (perhaps consequently) increased tool
use.

6. Conclusions and Future Work
6.1 Conclusions
In this paper, we discussed the problem of selecting and managing
smaller-than-page-sized information components when interacting
with Web-based documents. We presented results from needs
assessment and tools analysis, which showed that current tools
either over-capture the desired information, or require users to
divide their attention between knowledge discovery and knowledge
management, and that this divided attention can compromise
performance of either task. To begin addressing this problem, we
presented Hunter Gatherer, a tool and architecture to support Web-
based, within-page component collections. We presented how the
tool supports collection interaction. The tool supports browsing,
sorting, addition and deletion of components. Each component also
has a link back to its source document for reference. Since collection
information is stored in its URL, collections can easily be shared
and retrieved. We then presented results of formal lab experiments
and field studies which have helped us improve the tool. We will re-
evaluate the new prototype to confirm whether or not these design
revisions have indeed improved tool efficiency and efficacy. The
previous field trial was too short to let us know if tool use had a
significant effect on the perception of the web page as a less fixed
information source as opposed to one in which the user could
determine context for presenting information. We are designing a
new protocol to use with our revised tool in a longer and larger field
study to see if we can better capture tool effect.

6.2 Future Work
Context and Navigation. While our design motivation for Hunter
Gatherer has been to support fine-grained component collection, a
side effect of this work has become of increasing interest. This is the
effect of collection making on navigation. Collection making
foregrounds the idea that users can focus their attention on
knowledge discovery rather than on both location tracking and
information management of selected information. Since the
components in collections have back links to their source
documents, the collection becomes a loose map for the user-
constructed hyperspace represented by the collection. Thus, a user
can potentially refer to the collection to re-situate themselves in a
previously discovered context of interest. We are looking at methods
to strengthen this process of associative navigation with Hunter
Gatherer. One of these approaches we refer to as Back++.

Back++: History in Context. In observing participants use Hunter
Gatherer, both in the lab and in hands-on demonstrations, we
discovered that our tool may still be too course-grained to support
the collection-making process optimally. Our tool is binary about
selections: an element is either part of a collection or it is not, just as
a bookmark is either added to a list or it is not.

We are just completing development of a prototype that will allow
users to indicate a “maybe” state for a selected element, as well as
support multiple views of the collection. These views would allow
users to view the “definite includes,” definite includes with maybes,
and definite includes, maybes and anything else viewed on that path
(effectively, the history list) – or any combination of these views. At
any time components can be moved among categories of definite,
maybe or part of history. Pages will also show up as frequently as
they are visited: for instance, page A visited before collected
component Y shows up before component Y in the list, and then
shows up again after collected component Z, if it was visited after Y.
Because of this integrated view, the path of the user’s travels in
creating the collection will be immediately apparent. These views
can be rendered in list form in the List/Edit view, or rendered
completely in the Collection view. What we wish to evaluate two
effects in particular with this extension to the HG tool: (1) do these
views create an automatic, transparent and associative map of one’s
information gathering sessions, and if so, in what contexts is this
especially useful? and (2) does the support for “maybe” improve the
value of the tool by lessening the need to make a seeming “absolute”
decision at selection time, or does it have the opposite effect,
introducing more decisions a user feels the need to make during
information triage? We look forward to reporting the results of these
tests.

Web-Testing Hypermedia Assumptions. The Web, besides becoming
the default information resource, is a powerful test bed for
understanding and evaluating information interaction design. By
embodying attributes like composites from Open Hypermedia in
browser-based systems, we have the opportunity to test Hypermedia
concepts like the user as simultaneous Reader/Editor/Author.

6.3 Overall
Our first studies with Hunter Gatherer have helped us both to
improve the tool’s efficiency, as well as to understand better users’
expectations for Web-based information interaction support. These
studies have already shown us that the required tasks may be more
subtle in the both the capture and reflection processes (do I want to
keep this? Maybe. Show me versions of the collection based on
scenarios of definites, maybes, everything) and more tolerant in the
representation process (layout refinements are largely unneeded)
than anticipated. Consistent with our early hypothesis however, is
the observation that users do find value in being able to create their
own information contexts (like collections) for information access
and for reflection on that information, especially when support for
this process is well-integrated with the browsing process.

7. ACKNOWLEDGEMENTS
Thanks to Adele Newton, Michael Milton and Tim Dinesen for their
support through the Bell University Labs funding program. Thanks
to Graeme Hirst and Alberto Mendelzon and Peter Nürnberg for
their feedback throughout the project’s development, and to Steve
Feiner, Dan Olsen, and Kelly Booth for their feedback at
UIST2001’s open demo sessions. Thanks to the participants in our
evaluations, as well as to those who reviewed, commented on and
copy-edited iterations of this paper. The work is better for your
insights.

180

8. REFERENCES
[1] Abrams, D., Baecker, R., Chignell, M. Information archiving

with bookmarks: personal Web space construction and
organization in Conf. Proc. on Human Factors in Computing
Systems, 1998, pp. 41–48.

[2] Amento, B., Terveen, L., Hill, W., Hix, D. TopicShop,
enhanced support for evaluating and organizing collections of
Web sites in Proc. of the 13th Annual ACM symposium on
User interface software and technology, 2000, 201–209.

[3] Brush, A.J., Bargeron, D., Gupta, A., and Cadiz, J.J.. Robust
Annotation Positioning in Digital Documents. Proc. CHI 2001
(Seattle, WA, 2001), ACM Press, 285-292.

[4] Card, S. K., Robertson, G. G., York, W. The WebBook and
the Web Forager: an Information Workspace for the World
Wide Web. Conf. Proc. on Human Factors in Computing
Systems (Vancouver, Canada, April 13–18, 1996), 111.

[5] Czerwinski, M., van Dantzich, M., Robertson, G.G., Hoffman,
H. The contribution of thumbnail image, mouse-over text and
spatial location memory to Web page retrieval in 3D. Sasse A.
& Johnson, C., Eds. HCI–Proc of Interact '99 (Edinburgh,
Scotland, 1999), IOS Press, 163-170.

[6] Dillon, A. Beyond Usability: Process, Outcome and Affect in
Human-Computer Interaction. Presentation to Faculty of
Information Studies University of Toronto, 23/03/01.

[7] Garzotto, Franca, Mainetti, Luca, Paolini, Paolo. Adding
Multimedia Collections to the Dexter Model. Conference on
Hypertext and Hypermedia (Edinburgh Scotland, Sept. 19–23,
1994), 70-80.

[8] Halasz, Frank G. Reflections on NoteCards: Seven Issues for
the Next Generation of Hypermedia Systems in Proceeding of
the ACM conference on Hypertext, 1987, pp. 345–365.

[9] Marshall, C. C., Shipman, F. M., Coombs, J. H. VIKI: Spatial
Hypertext Supporting Emergent Structure. Proceedings of the
1994 ACM European Conf on Hypermedia Technology, 1994,
13–23.

[10] Nelson, T. H. “A Literary Structure with Two Fundamentally
Different Means of Connection.” Xanalogical Structure,
Needed Now More than Ever: Parallel Documents, Deep Links
to Content, Deep Versioning and Deep Re-Use.
http://www.sfc.keio.ac.jp/%7Eted/XUsurvey/xuDation.html.

[11] Phelps, T., and Wilensky R. Robust Intra-document Locations,
Proc. of the 9th World Wide Web Conference, (Amsterdam,
May 2000).

[12] Robertson, G., Czerwinski, M., Larson, K. Robbins, D., Thiel,
D., van Dantzich, M. Data Mountain: Using Spatial Memory
for Document Management. Proc. of UIST '98, 11th Ann.
Sym. on User Interface Software and Technology, ACM Press,
153–162.

[13] schraefel, m.c. and Zhu, Yuxiang. Preliminary Requirements
Gathering for the Design of User-determined, Within-page,
Web-based Collections. Tech Report, CSRG-433, DCS, U of
Toronto, 2001.

[14] Terveen, L., Hill, W., Amento, B. Constructing, Organizing,
and Visualizing Collections of Topically Related Web
Resources. ACM Trans. Comput-Hum. Interact. 6, 1 (Mar.
1999), 67–94.

[15] Wickens, C. D., Hollands, J. D. Engineering Psychology and
Human Performance, 3rd Ed., Prentice Hall, 2000.

181

