
Structuring and Supporting Persistent Chat Conversations
David Fono, Ron Baecker

University of Toronto
40 St. George St, Toronto, ON, M5S 2E4

fono@dgp.toronto.edu, rmb@kmdi.utoronto.ca

ABSTRACT
Persistence of conversations has been found to be a useful feature
in group chat tools. When conversations are stored and made
accessible to all members of a group, they can facilitate
organizational memory, group awareness, and other beneficial
practices. However, the lack of structure in chat conversations
makes it difficult for users to read and keep track of lengthy
conversation histories. To contend with this problem, we have
developed a persistent chat system that incorporates a number of
features which facilitate participation in long, ongoing
conversations.

Categories and Subject Descriptors
H.5.3 [Information Interfaces and Presentation]: Group and
Organization Interfaces.

General Terms
Design, Human Factors

Keywords
Chat, CMC, persistence.

1. INTRODUCTION
Group text chat has been widely found to be a useful CMC
medium, capable of supporting a wide variety of helpful
collaborative behaviours. The advantage of chat compared to
other communicative tools is its relative simplicity, and the
typically informal tone which that simplicity engenders.

Several studies have also documented the usefulness of persistent
or semi-persistent chat history [1,3,5,6]. In most chat tools,
conversations are ephemeral, and only visible to their participants.
Conversely, in a chat tool with persistence, conversations are
logged and remain visible for an extended or unlimited period of
time. Finding an old conversation, even if one did not participate
in it, is a simple matter of scrolling through the chat history.
Persistence is helpful for a variety of reasons: it creates a record
of organizational knowledge for users to refer back to; it allows
newcomers to quickly perceive the history and conversational
style of a group; it supports a blend of asynchronous and

synchronous interaction. In general, chat tools with persistence
appear to facilitate longer, more complex discussions than chat
tools without persistence.

However, the simplicity and informality of chat creates problems
for persistence. Chat conversations typically lack the structure
found in conversations that take place over other communicative
tools, such as e-mail and message boards. As a result, it can be
difficult to read or browse lengthy chat logs, thus limiting
effective use of persistent chat.

To contend with this problem, we have created BackTalk, a
persistent chat system that incorporates a variety of features that
make it easier to browse, search, and keep track of lengthy
conversations. One of our design goals for BackTalk has been to
avoid eliminating the advantageous simplicity of the traditional
chat interface. Thus, the system is intended to combine the
advantages of chat with those of more structured tools, creating an
environment that is capable of sustaining rich, complex
conversations that are also lightweight and approachable.

2. BACKGROUND
2.1 Persistent Chat
Most commercially available chat or instant messaging
applications incorporate very limited forms of persistence. The
traditional chat interface consists of a textbox for typing in new
messages, and a history pane that displays a chronologically
sorted list of recent messages, with the newest messages at the
bottom. These messages are lost when the user logs out, and each
new session starts with a blank history. Some chat tools allow
users to save transcripts of chat sessions as local text files, which
can then be browsed and searched. Halverson [3] found that this
feature facilitates recovery of useful information from old
conversations, although it can sometimes be difficult to find the
desired information amongst a large collection of transcripts with
limited metadata.

A number of research projects have experimented with greater
degrees of persistence. Erickson et al. [1] developed Babble, a
chat application which stores all conversations that take place
within the system, and makes them available to all participants.
The authors found that this “conversation as a single document”
approach supported group awareness, and helped foster an
ongoing narrative of the group as the persistent conversation
continuously evolved. Ribak et al. [5] developed ReachOut, a
peer support tool that features fully persistent conversations with
limited lifespans. In this case, persistence was found to generate
additional ideas and dialogue which may not have otherwise
emerged, since users were able to observe previous discussion
before deciding to contribute their own thoughts. Robbins-
Sponaas and Nolan [6] have made similar observations about

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CSCW'06, November 4–8, 2006, Banff, Alberta, Canada.
Copyright 2006 ACM 1-59593-249-6/06/0011...$5.00.

455

MOOs, which have many chat-like properties. In particular, they
noted that persistence allows a blend of synchronous and
asynchronous interaction, a combination that makes for a dynamic
collaborative environment.

These findings indicate that persistence in chat facilitates a
variety of useful collaborative practices. However, all of these
practices are contingent on the ability of users to read and keep
track of lengthy chat histories, which can often be difficult.

2.2 Augmenting Chat
A few research prototypes have been developed with the intention
of making conversations more legible by restructuring the
conversations themselves.
Vronay et al. [8] developed a “flow client” that displays chat
history with information about status and timing. With this
interface, users could better understand the temporal flow of the
conversation, as well as the relationships between turns.
Several projects have aimed to find a way to help users
distinguish between the different topics or threads in a
conversation. Smith et al. [7] developed a “threaded chat”
interface that closely mimics the threaded structure of interfaces
for newsgroups and message boards. Geyer et al. [2] developed
Chat Spaces, a persistent chat application that lists messages in
two ways simultaneously: temporally, and grouped by topic.
Both [7] and [8] included thorough evaluations of their prototype
interfaces. In both cases, the authors found that by radically
revising the traditional chat interface, they solved some problems,
but also introduced new problems. We agree that the traditional
chat interface, which has remained static for the past several
decades, is in need of change. At the same time, we acknowledge
that over these decades, users have become thoroughly
accustomed to the standard interface, and have built a variety of
strategies to make the most of its idiosyncrasies [4]. Thus, we
believe that any attempt to develop a revised interface should
walk a fine line between altering and respecting current practices.

3. PROBLEMS WITH PERSISTENT CHAT
We will now discuss the four key ways in which the traditional
chat interface fails to support persistent chat. This discussion
reflects similar observations in [7] and [8].

1. Difficulty of distinguishing between topics. Traditional chat
treats all messages equivalently. The entirety of the chat
history is rendered as a simple chronological list of all
messages. In the case of a persistent chat system, this can
result in an extremely long list going back weeks, months or
years. Over such a long period of time, it is very likely that
discussion will shift amongst a variety of topics. However,
there is no way to find which parts of the history contain
discussion on which topics, other then by reading the entire
list of messages. This limitation makes it difficult for users to
locate or keep track of discussions on a particular topic of
interest.

2. High noise-to-signal ratio. Due to the informal tone of chat,
conversations often contain a great deal of socialization
phrases or other messages that are not of much interest later
on. However, since all messages are treated equivalently, it
is difficult to discern which messages contain important

information, without having to read them all. This limitation
is particularly problematic for users want to review
conversations they did not participate in, since they lack any
foreknowledge of which sequences are important, and which
can be ignored.

3. Thread confusion. Frequently in chat histories, replies to a
message do not appear adjacent to that message. This
interspersing of threads occurs because chatters often type
their messages simultaneously, leading to unpredictability in
ultimate ordering of these messages. The out-of-order turns
that result often make chat histories difficult to read, because
it is unclear which messages are replies to which other
messages.

4. Reviewing vs. chatting. In the traditional chat interface, there
is an inherent tension between reviewing old messages and
keeping track of new ones. If the user scrolls the history pane
to view messages higher up, then messages added to the
bottom will be missed. This tension can be particularly
problematic in a persistent chat interface, because
asynchronous interaction will typically focus on messages
higher up, and synchronous interaction will typically focus
on messages at the bottom. In practice, this tension typically
results in users avoiding the chat history entirely.

4. BACKTALK
BackTalk is a chat system that was developed with the intention
of providing effective support for persistent conversations. The
design of the BackTalk interface addresses the first two problems
with persistent chat by incorporating a combination of message
annotation and message filtering. It addresses the third problem
by incorporating threading. Finally, it addresses the fourth
problem by incorporating a recent message popup.

Figure 1. The BackTalk interface.

456

Figure 2. The message console. Clicking on a message or
series of messages brings up this console, which contains

options for message manipulation.

4.1 System Overview
The BackTalk interface is shown in Figure 1. Like the traditional
chat interface, its primary features are a textbox for message entry
(B) and a scrollable history pane that shows the chat history as a
chronological list of messages (A). Each message is preceded by a
header that contains the timestamp of the message, and the name
of the poster. New messages are added to the bottom of the
history pane, and older messages can be viewed by scrolling up.
All messages are accessible to all users, at all times. A box in the
corner of the interface shows which users are currently logged
into the system (C).
Since information about the temporal flow of a conversation can
be helpful when reviewing that conversation [8], consecutive
messages are separated by lines that indicate the amount of time
that passed in between the two postings. The absence of a line
indicates a separation of a few seconds; a short, translucent line
indicates a separation of a few minutes; and a full, opaque line
across the entire pane indicates a separation of an hour or more.
The history pane also shows a marker indicating the point in the
history at which the user last logged out. When the user logs back
in, the history pane automatically scrolls to this point. As a result,
the user can easily determine which messages are new.
Clicking on a message brings up a console window, which offers
various options for manipulating the selected message (Figure 2).
Multiple messages can be selected and manipulated together by
clicking and dragging the cursor across several messages before
releasing the mouse button.

4.2 Message Annotation
Users can annotate messages in the chat history by tagging them
or resizing them. Any user can annotate any message, and all
annotations are visible to all users. Together, these two forms of
annotation offer a quick way for users to visually distinguish
messages with different kinds of content while browsing the chat
history. Different tags can be used to indicate different topics,
while different sizes can be used to indicate different levels of
importance. Since annotation requires ongoing user effort, we
sought to make the process of annotation as quick and unobtrusive
as possible.

4.2.1 Tagging Messages
A tag consists of a combination of a colour and a name. A user
tags a message or a series of messages by bringing up the message
console, then clicking the “Click to tag” box. This action causes
the selected messages to be tagged with the active tag, which can
be selected from a dropbox either on the console, or above the
history pane (D).
When a message in the history pane is tagged, the colour of its
text changes to the colour of the corresponding tag, and a mark of
the same colour appears to the left of the message. Untagged
messages have black text. Once a message is tagged, that tag can
be deleted or replaced from the console, or additional tags can be
added. When additional tags are added to a message, the colour of
its text does not change, but additional coloured marks appear to
the left of the message. A variety of messages with different tags
can be seen in Figure 1.
Tags can be created, renamed, or deleted by clicking on the
appropriate buttons above the history pane (E).

4.2.2 Resizing Messages
A user resizes a message or a series of messages by bringing up
the message console, then clicking the up or down arrows. There
are three possible sizes for a message. By default, all messages
are created with the smallest size. A variety of messages with
different sizes can be seen in Figure 1.

4.2.3 Annotation While Typing
A user can annotate a new message while typing it. To apply a
tag, the user holds the Control key, and types the letter that is
underlined in the name of the tag. To change the size of the
message, the user holds the Control key and presses the up or
down key. The colour and size of the text being typed change to
reflect these annotations.

4.2.4 Visualization
A visualization component to the right of the history pane (F)
gives an at-a-glance overview of annotations across a large period
of the chat history. Each message is represented in the
visualization as a dot, the size and colour of which indicate how
that message has been annotated. The messages are ordered along
the vertical axis according to their ordering in the history pane.
The position of the message along the horizontal axis indicates
how old that message is; the scale of this axis can be adjusted by
selecting different timeframes from the dropbox above the
visualization. The user can click and drag within the visualization
to quickly scroll the history pane to specified points in the history.

4.3 Message Filtering
A user can control the kinds of messages that are shown in the
chat history by using a set of filters. By using the filter dropboxes
to the right of the history pane (G), the user can view only
messages that have a certain tag, have a certain size, or are from a
certain user. The user can also view messages that contain a
specific phrase by entering it into the “Search” box below the
dropboxes.
These filters allow users to focus their attention specifically on
messages that are of interest to them, without being distracted by
the frequent sequences of irrelevant messages that populate a
lengthy chat history. In particular, if messages have been properly
annotated, a user can easily concentrate only on important
messages, or on messages corresponding to a particular topic.
When viewing a filtered list of messages, the user may want to
see a particular message within the context of the surrounding,
unfiltered conversation. To do so, the user brings up the message

457

console, and clicks the “View Context” button. This action
deactivates all filters, and keeps the history pane focused on the
selected message.

4.4 Threading
A user can post a threaded reply to a message in the history pane.
To do so, the user brings up the message console, clicks the
“Reply” button, and types a reply into textbox that appears,
pressing Enter when done. The reply appears directly below the
parent message, and slightly indented, similarly to other tools
which support threaded discussion. Proper use of threaded replies
prevents the thread confusion discussed above.
This functionality is similar to the “threaded chat” interface
discussed in [7]. However, in the evaluation of that system, the
authors found that users frequently found it difficult to follow the
discussion. Rather than appearing sequentially at the bottom of
the screen, new messages would appear at unpredictable locations
all over the screen. BackTalk remedies this problem by displaying
new replies both in the appropriate thread, and at the bottom of
the history pane. The copy of the message that appears at the
bottom of the history has an icon alongside it, in order to
distinguish it from other new messages that are not replies.
Clicking on the icon causes the history pane to scroll to the thread
in which the reply was posted.

4.5 Recent Message Popup
When a user has scrolled up in the history pane, and new
messages are posted to the bottom, a popup with these messages
appears below the pane (Figure 3). Thus, a user can focus on old
messages without losing track of new ones. To avoid taking too
much screen space away from the history pane, the popup shows
only the 5 most recent messages, and messages disappear from
the popup after 10 seconds.

5. INITIAL USER FEEDBACK
We have been using BackTalk within our research group for one
month. Based on this experience, a few initial observations about
the system have emerged.

First, the current design seems to offer a graceful learning curve
for users accustomed to the traditional chat interface. Previous
iterations of the design placed the widgets for message
manipulation within the history pane, which caused confusion
amongst users. As discussed, many users are highly accustomed
to the traditional interface, and even minor modifications can
cause consternation. On the other hand, moving these widgets to a
separate console window allowed users to approach BackTalk as

they approached their usual chat tools, and allowed them to
discover and experiment with BackTalk’s advanced functionality
at their own pace.

The main problem with our usage of BackTalk has thus far been a
lack of consistent annotation. We expected this issue when
designing the system, and tried to keep the annotation feature
simple and straightforward. However, the problem does not seem
to have stemmed from issues with the interface, but rather from a
lack of shared understanding amongst the group about proper
annotation practices. It is possible that the system should offer
some degree of codification of proper practices, sacrificing
flexibility for consistency. However, we have been using the
system for a relatively short period, and it is likely that more time
is necessary before a set of norms around annotation can emerge.

We are currently in the process of evaluating BackTalk more
rigorously, using a combination of field studies and laboratory
experiments.

6. CONCLUSION
Persistence of conversations has been found to be a useful feature
in group chat tools. However, the lack of structure in chat
conversations makes it difficult for users to read and keep track of
lengthy conversation histories. Our persistent chat system,
BackTalk, address this problem by incorporating a number of
features which facilitate participation in long, ongoing
conversations. At the same time, BackTalk’s interface maintains
many similarities to the traditional chat interface, and so many of
the advantages of the traditional interface are preserved.

7. REFERENCES
[1] Erickson, T, Smith, D.N., Kellogg, W.A., Laff, M., Richards,

J.T., & Bradner, E. (1999). Socially translucent
conversations: social proxies, persistent conversation, and
the design of “Babble”. Proceedings of CHI 1999, 72-79.

[2] Geyer, W., Witt, A., Wilcox, E., Muller, M., Kerr, B.,
Brownholtz, B., & Millen, D. (2004). Chat spaces.
Proceedings of DIS 2004, 333-336

[3] Halverson, C.A. (2004). The value of persistence: a study of
the creation, ordering and use of conversation archives by a
knowledge worker. Proceedings of HICSS 2004, 108-117.

[4] Herring, S. (1999). Interaction coherence in CMC. Journal of
Computer Mediated Communication, 4, 4 (June 1999).

[5] Ribak, A., Jacovi, M., & Soroka, V. (2002). “Ask before you
search”: peer support and community building with
ReachOut. Proceedings of CSCW 2002, 126-135.

[6] Robbins-Sponaas, R.J., & Nolan, J. (2005). MOOs:
polysynchronous collaborative virtual environments.
Workplace Internet-Based Communication: Industry and
Academic Perspective, Idea Group, 130-155.

[7] Smith, M., Cadiz, J.J., & Burkhalter, B. (2000).
Conversation trees and threaded chats. Proceedings of
CSCW 2000, 97-105.

[8] Vronay, D., Smith, M., & Drucker, S. (1999). Alternative
interfaces for chat. Proceeds of UIST 1999. ACM Press, 19-
26.

Figure 3. The recent message popup. When the user has
scrolled away from the bottom of the history pane, new

messages appear temporarily in the popup.

458

