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ABSTRACT 
In this paper, we present an attentive windowing technique 
that uses eye tracking, rather than manual pointing, for focus 
window selection. We  evaluated the performance of 4 focus 
selection techniques: eye tracking with key activation, eye 
tracking with automatic activation, mouse and hotkeys in a 
typing task with many open windows. We also evaluated a 
zooming windowing technique designed specifically for eye-
based control, comparing its performance to that of a stan-
dard tiled windowing environment. Results indicated that 
eye tracking with automatic activation was, on average, 
about twice as fast as mouse and hotkeys. Eye tracking with 
key activation was about 72% faster than manual conditions, 
and preferred by most participants. We believe eye input 
performed well because it allows manual input to be pro-
vided in parallel to focus selection tasks. Results also sug-
gested that zooming windows outperform static tiled win-
dows by about 30%. Furthermore, this performance gain 
scaled with the number of windows used. We conclude that 
eye-controlled zooming windows with key activation pro-
vides an efficient and effective alternative to current focus 
window selection techniques. 

ACM Classification: H.5.2 [Information Interfaces and 
Presentation]: User Interfaces—Windowing systems 

Keywords: Attentive User Interfaces; Alternative Input; Eye 
Tracking 

INTRODUCTION 
Windowing systems of commercial desktop interfaces have 
experienced little change over the last 20 years. Today’s 
systems employ the same basic technique of allocating dis-
play space using manually arranged, overlapping windows 
into the task world. However, the task world of current com-
puter users is radically different from that of 20 years ago. In 
particular, today’s user is characterized by frequent shifts of 

attention between tasks [25]. We can identify a number of 
reasons for this. Firstly, users are more likely to work on 
multiple simultaneous tasks. As a result, many application 
windows may be open at any given time (see Figure 1). This 
means windows are likely to occlude one another, obscuring 
the user’s view into the task world. Secondly, due to the 
emergence of the Internet, current users are frequently inter-
rupted by digital communications, such as email and instant 
messaging notifications  [17, 22]. The above two factors 
conspire to increase the number of window operations re-
quired to reveal information pertaining to an event or task of 
interest. This problem has prompted research into window-
ing systems that allow users to shift attention with greater 
ease, e.g., through zooming techniques, as in Sideshow [6], 
Fisheye views [9], Elastic Windows [13, 14] and Mac OS X 
Exposé [1]. While most of this work emphasizes the use of 
manual input for task management, there has been little work 
on windowing systems that sense the user’s attention using 
more direct means.  
Using an alternate channel for sensing the attention of the 
user for parts of a display has two key benefits. First, it al-
lows an undisrupted use of manual input for task-oriented 
activities. Second, it allows for continuous accommodation 
to shifts in user attention. By tracking the focus of attention 
of users, interfaces may actively avoid obscuring the user’s 
view. By designing a more careful and attention-sensitive 
placement of windows and dialog boxes, annoying visual 
interruptions may thus be reduced [10, 16, 20]. 
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Fig. 1. Typical clutter in today’s windowing systems. 
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Summary of the Paper 
In this paper, we explored how eye tracking may be used to 
manage tasks more effectively within a limited display 
space. EyeWindows is a non-overlapping windowing system 
that uses eye tracking to decide which window is within the 
focus of user attention. EyeWindows also uses zooming 
windows to manage display space according to user focus. 
The user selects a window for focus by looking at it while 
pressing a trigger key. Subsequently, the focus window 
zooms to a useable resolution, with surrounding windows 
shrinking and moving into the periphery of the user’s vision. 
First, we will discuss prior work, after which we present two 
prototypes of our system. We then discuss an empirical 
evaluation of eye-based focus window selection. Results 
indicate that eye input is faster than either mouse-based or 
key-based selection when hands are occupied by content-
related activity. Finally, we present an evaluation of the per-
formance of zooming windows, in comparison to a tiled 
windowing technique. Results show that zooming windows 
outperform static tiles when window content is greater than 
available display space.  

PREVIOUS WORK  
According to Baudisch et al. [2], the problem of allocating 
screen real estate is indeed one of allowing users to optimize 
their attention space. The human eye can only attend to a 
relatively small portion of display space at any one time. 
Fine-grained visual acuity is limited by the retina to an area 
of about 2 degrees of visual angle: the fovea [7]. As a result, 
at any one time, only a limited display area of about 2-5 cm 
around the location of an eye fixation is made available for 
higher-level cognitive processing [7]. Other areas of a dis-
play are observed with peripheral vision, providing crucial 
information for understanding the context of foveated infor-
mation. Peripheral vision also guides eye movements (sac-
cades). During a saccade, visual processing in the brain is 
attenuated. This allows a computer display to imperceptibly 
alter the resolution of displayed information during eye 
movements. Displays that employ this technique are known 
as Gaze-Contingent Displays (GCDs) [2]. A good example 
of a static windowing system that exploits the limited resolu-
tion of human peripheral vision is the Focus Plus Context 
screen [3].  

Windows of Attention 
Although Focus Plus Context works well for tasks that in-
volve a single large window, multitasking requires a mecha-
nism for choosing one amongst many visual tasks. Accord-
ing to Smith et al., WIMP (Windows, Icons, Menus and 
Pointers) [19] interfaces were originally designed for this 
purpose. Windows represent foreground tasks at high resolu-
tion, and occupy the bulk of display space in the center of 
vision. Icons represent peripheral tasks at low resolution in 
the periphery of the user’s vision. Pointers allow users to 
communicate their focus of attention to graphic objects. By 
clicking icons to open windows, and by positioning, resizing 
and closing windows, users use their pointing device to 
manually manage their attention space. However, by cover-
ing other windows and icons, front or focus windows may 

obscure part of the global context of tasks in an overlapping 
windowing system. A number of solutions have been de-
signed for this problem: 
a) Tiled Windows. According to Bly and Rosenberg [4], we 
can expect a tiled windowing system to be preferable over an 
overlapping one in task situations where the contents of the 
window conform to a predetermined window arrangement. 
Their evaluations show that novices perform better with tiled 
windows than with overlapping windows. Experts also per-
form better with tiled windows, but only in regular tasks, 
tasks that require few window manipulations in order to 
view the required contents. For irregular tasks, in which not 
all content is immediately visible, expert users perform better 
with overlapping windows. 
b) Elastic Windows. Tiled windowing does not easily lend 
itself to control over spatial organization of a large number 
of documents. Kandogan and Shneiderman [13,14] sug-
gested a space-filling tiled windowing system that allows 
hierarchical organization. Their Elastic Windows system 
allows users to organize windows by dragging items into a 
container window. The window group stretches like elastic 
material when resized, with surrounding window groups 
shrinking proportionally to fill the remaining space. Evalua-
tions show Elastic Windows outperforming overlapping 
windows in most of the studied tasks.  
c) Fisheye Views. Furnas [8] suggested early on that if dis-
plays would behave like a fisheye lens, users would be able 
to spatially organize a large number of documents without 
overlap. There have been many studies on the use of fisheye 
views, particularly in groupware systems [9]. In a fisheye 
view the magnification or “zoom factor” of a window de-
pends dynamically on its distance to the pointer. The fisheye 
lens causes the focus window at the location of the pointer to 
expand, while other windows drift to the edge of the screen. 
However, Gutwin [9] showed that continuous fisheye magni-
fication actually slows down focus window targeting. This 
slowdown arises because the magnification lens makes win-
dows appear to move in the direction opposite to pointer 
movement. While speed-coupled flattening [9] reduces this 
effect, we considered continuous fisheye magnification det-
rimental to eye-controlled targeting.  

Interacting with Multiple Windows 
In addition to optimizing the way in which screen real estate 
is allocated in situations with many open windows, we inves-
tigated how we might optimize the process of selecting a 
focus window. Most current windowing systems use focus 
window selection techniques based on manual pointing de-
vices. However, there are a number of problems with these 
techniques, particularly when they are combined with an 
overlapping windowing system. Firstly, manual input may 
be overloaded by focus selection tasks. This means that the 
hands cannot perform a content-related task while targeting a 
focus window. For example, the use of a mouse for focus 
window selection may introduce homing times while typing 
on a keyboard. Secondly, uncovering a window obscured by 
the current focus window in an overlapping windowing sys-
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tem may require several pointing actions and keystrokes. 
First, the current focus window may need to be resized by 
clicking inside its zoom box and dragging its outline. Next, 
the pointer needs to be moved to click inside the title bar. 
Next, the window needs to be dragged to the side such that 
the new focus window is revealed. Finally, the user needs to 
click inside the new focus window. Thus, overlapping win-
dows may reduce the efficiency of focus window targeting 
when many windows are open. 

Using Eye Input for Focus Window Selection 
We experimented with altogether removing the need for 
manual pointing in focus window targeting actions. It has 
been noted that eye input is inappropriate for manual control 
tasks, since the eye is a perceptual organ. Eye movements 
are frequently unintentional, so a direct mapping to explicit 
commands would lead to frequent unintended effects (the 
Midas Touch problem [11]).  Furthermore, eye tracking 
yields inexact measurements. In developing their MAGIC 
system [26], Zhai et al. found that eye tracking is inefficient 
for direct cursor control, but useful for warping the cursor’s 
approximate “home” position. This technique is effective 
because eye movements merely set the context for succes-
sive manual cursor movement. Eye tracking could be applied 
similarly to focus window selection. Selecting a new focus 
window merely redefines the context for content-related 
manual operations. Furthermore, windows in a non-
overlapping environment are usually large enough to allow 
for inexact gaze measurements.     
There is a good case for using eye input for focus window 
targeting. Firstly, the eyes typically acquire a target well 
before manual pointing is initiated [25]. Secondly, eye mus-
cles operate much faster than hand muscles [25]. Finally, the 
eyes provide a continuous signal that frees the hands for 
other tasks. One of the few systems to deploy eye input for 
focus window targeting was Gaze-Orchestrated Dynamic 
Windows by Bolt [5]. The system simulated a composite of 
40 simultaneously playing television episodes on one large 
display. Via a pair of eye tracking glasses it sensed when the 
user looked at an image, turning off the soundtracks of other 
episodes. If users looked at one episode for a few seconds, 
the system would “zoom in” to fill the screen with that im-
age. Unfortunately, early eye tracking technology was se-
verely restricted in resolution. Recent advances have made it 
possible to invisibly integrate an eye tracker with a head 
movement tolerance of up to 30 cm and an accuracy of better 
than 1 degree into a 17” LCD screen [21] (see Figure 2).  

Empirical Evaluations 
It is important to note that the use of eye input for focus win-
dow targeting is quite distinct from that of using eye input 
for cursor positioning. While there are a number of experi-
mental studies evaluating eye-controlled cursor positioning, 
there are few studies that examine eye-controlled focus se-
lection [7,11,12,18,24]. Results of performance comparisons 
between eye-based and mouse-based selection of on-screen 
targets are mixed. Ware & Mikaelian suggested that selec-
tion of on-screen targets with eye movements follows Fitts’ 

law [24]. Its index of performance is similar to the mouse, 
but its selection time (the intercept in Fitts’ law) is twice as 
fast. Jacob [11,12] studied the use of an eye tracker for target 
selection, but did not report quantitative comparisons. Sibert 
and Jacob [18] reported that dwell-time activated eye-based 
selection of large on-screen targets was about twice as fast as 
mouse-based selection. Wang et al. [23] discussed an evalua-
tion of eye-based selection of Chinese characters for text 
entry. Users chose one of 8 on-screen characters by looking 
at the character while pressing the space bar. Results showed 
that eye-based selection was no faster than traditional key-
based selection. They attributed this to eye tracking lag, and 
the fact that their task was dominated by decision time rather 
than selection time. 

EYEWINDOWS: EYE-CONTROLLED ZOOMING  
WINDOWS 
We will now discuss EyeWindows, an eye-controlled win-
dowing system that uses eye tracking as a means for parallel 
selection of focus windows. To facilitate eye control, we 
explored two different non-overlapping windowing tech-
niques. The first prototype explores the use of elastic win-
dowing for the task of media browsing. The second proto-
type uses a hybrid elastic windowing technique that allows 
arbitrary placement of windows for arbitrary tasks on a desk-
top. Both prototypes feature automatic zooming of the focus 
window after selection. Before we discuss each windowing 
technique, we will first describe some of the details of the 
hardware and software implementation.    

System Implementation 
For eye input, we deployed a Tobii [21] eye tracker. The 
Tobii integrates tracking capabilities into a 17” screen, and 
communicates eye position over TCP/IP to client computers 
running EyeWindows. The media browser was implemented 
using the Microsoft Directshow C++ API, and runs on a 1.5 
GHz Intel PC under Windows XP. The second prototype 
was implemented using Apple’s Cocoa API, and runs on an 
800 MHz G4 under Mac OS 10.3. Requiring only a single 
15-second calibration, the Tobii eye tracker allows 30x15x20 
cm of user head movement with an average on-screen accu-
racy of 1 cm. Users can move in and out of view of the 
tracker without having to recalibrate.  

 
Figure 2. User with Tobii eye tracker running EyeWindows. 
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Prototype 1: EyeWindows Media Browser 
Our first prototype design for EyeWindows explored the 
parallel browsing of online digital media. Figure 4 shows 
how we implemented a digital media browser that facilitates 
the exploration of multiple audiovisual sequences in one 
tiled windowing environment. A sequence may consist of a 
live webcast or an online movie file. EyeWindows renders 
any number of live media streams onto the display by divid-
ing the screen into a corresponding number of connected 
tiles. Each tile is active, and plays concurrently to allow the 
user to simultaneously explore all material in the set.  

Eye-Controlled Zooming Windows 
Figures 4 and 5 show how windows can be enlarged to re-
veal more detail. The user selects a window for focus by 
looking at it and pressing the spacebar.  Upon selection, the 
focus window is automatically zoomed to a predefined size. 
The zoom function animates the window’s four borders 
away from its center coordinate until a preset maximum size 
is reached, or until the user selects another focus window. 
Zoom is applied linearly through time, and completes within 
1 s. As in Elastic Windows, surrounding tiles accommodate 
the change by shrinking proportionally. Enlarging focus 
windows in this manner reveals visual detail and allows the 
user to inspect the video on display. Shrinking the remaining 
windows prevents them from being obscured, thus allowing 
the user to maintain peripheral awareness of all videos while 
examining the focus window. Since focus window selection 
is done with the eyes, the user continuously observes the 
videos without having to refocus attention on peripheral in-
put devices.  

Elastic Windowing Algorithm 
Tile size adjustments are propagated across tiles using the 
original Elastic Window algorithm [13]. This algorithm ad-
justs the border of each tile proportionately to the location of 
that border. Figure 3 shows how the border movement of 
Tile A is propagated to Tiles B, C, and D. The right border 

of tile A is adjusted by 40 pixels. The distance between the 
right border of tile B and the edge of the screen is 50% of the 
distance between the original border of tile A and the edge of 
the screen. For the right border of tile C, that relative dis-
tance is 25%. Subsequently, the right border of tile B is 
moved 50% of the adjustment, or 20 pixels, while the right 
border of tile C is moved 25% of the adjustment, or 10 pix-
els. A full explanation of the algorithm, including the calcu-
lation of propagation adjustments, can be found in [13]. Tiles 
have a minimum horizontal and vertical size. If a border ad-
justment requires that a tile be shrunk below this size, the 
adjustment propagates to the next border. Failing this, the 
original adjustment is not allowed. 

Auditory Zoom 
In addition to visual zooming of the focus window, EyeWin-
dows allows users to focus on the audio stream of the focus 

Figure 5. To select a new focus window, the user looks at a tile 
while pressing the space bar (here the bottom left tile). As the 

tile zooms, all surrounding windows shrink. 

Figure 4. A digital media browser with nine EyeWindows tiles. 
The center window is the current focus window (images cour-

tesy ACM SIGGRAPH 2001 Video Program). 

Figure 3. Example of an elastic window border operation. 
Window A’s right border is moved to the right by 40 pixels. 

These pixels are distributed proportionally over the other bor-
ders. B’s border moves 50% of the adjustment or 20 pixels, C’s 

border moves 25% of the adjustment or 10 pixels. 
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window by attenuating audio from other tiles. Attenuation is 
logarithmically proportional to tile surface area. Each tile’s 
stereo balance is panned proportionally to the on-screen lo-
cation of the tile. 

Scenario 1: Digital Media Browsing   
The following scenario illustrates the use of EyeWindows 
for the task of searching a movie segment in a multimedia 
database with a limited sample set.  
User Alex is looking for the name of the author of a movie 
he saw while visiting the SIGGRAPH conference. He re-
members a segment showing a beautifully ray-traced glass 
dropping off a table. Alex enters the URL of the SIGGRAPH 
video program in EyeWindows. The system scans the URL 
for movies files, loading each of the nine movies found into 
a separate tile of equal size. As the movies start playing, 
Alex focuses sequentially on each tile for detailed inspection 
of its contents. As he focuses on the center tile it expands, 
allowing him to inspect the movie sequence in great detail, 
while remaining aware of activity in the other movies in his 
peripheral vision (see Figure 4). As he watches, Alex antici-
pates hearing the sound of breaking glass. When he hears the 
sound originating from the bottom left tile, he shifts his gaze, 
expanding the tile. As the closing credits roll, resolution is 
now sufficient for Alex to note the name of the author of the 
clip (see Figure 5). 

User Observations: Overloaded Visual Input 
We performed initial evaluations comparing eye tracking to 
the mouse for focus window selection using our prototype. 
Ten users engaged in a video searching task similar to the 
scenario described above, with selection time measured for 
each input technique. Users were also asked to comment on 
their experiences using the prototype. Overall, users found 
the system useful and satisfying for media browsing. Fur-
thermore, we found that eye input using spacebar activation 
performed equivalently to the mouse with click activation. 
One of the caveats with the use of eye tracking as parallel 
input during browsing is that manual input might not in fact 
be overloaded. Instead, when asking users to search for a 
movie segment, the eye’s role in providing visual input to the 
user becomes overloaded with the role of providing output to 
the computer [25]. One advantage of manual selection in this 
scenario is that the hands can move toward the next antici-
pated focus window in parallel, while the eyes remain on a 
segment playing in the current focus window. These obser-
vations indicate that eye tracking may perform superiorly to 
the mouse when manual input is overloaded by content-
related activities.  

Prototype 2: Desktop EyeWindows 
For our second prototype, we adapted elastic windowing to 
function in a normal desktop environment with arbitrary 
positioning and resizing of windows. This allowed us to pro-
vide the user with multiple large windows placed anywhere 
on the screen, in a way that minimized the number of zoom-
ing operations required. Windows may contain any applica-
tion or document normally available in Mac OS X. Figures 7 

and 8 show many applications on-screen at once, with a sin-
gle zoomed focus window. We again deployed eye input for 
focus selection, thus freeing up the hands for content-related 
activities such as typing. 

Modified Elastic Windowing Algorithm 
Our adaptation of the Elastic Window algorithm first tries to 
allocate any unused space to the focus window. Upon activa-
tion, a focus window expands until it reaches full horizontal 
and vertical resolution. If the focus window can fully expand 
without colliding with surrounding windows, the size of 
those windows remains unchanged. If a neighboring window 
prevents full expansion of the focus window, the neighbor is 
first moved laterally to use up empty space between win-
dows. Further operation of the algorithm is similar to that in 
our first technique. Figure 6 shows how adjustments are 
propagated recursively upon collision of borders. A buffer 
gap of at least 5 pixels is maintained between windows at all 
times. Upon activation, focus window A is expanded to the 
right by a total of 50 pixels. There are 15 pixels of unused 
space between A’s right border and window B’s left border. 
Maintaining a buffer of 5 pixels between the windows, B’s 
left border is moved to the right by 40 pixels. This move-
ment is propagated proportionally to B’s right border. Since 
B’s right border is located halfway between B's left border 
and the edge of the screen, B’s right border accommodates 
50% of the 40 pixels, moving 20 pixels to the right. If a win-
dow C were placed at the right of B, the movement of B’s 
right border would similarly propagate to the borders of C. 
As in our first prototype, the expansion is animated linearly 

Figure 6. Example of an Irregular Elastic Window zooming 
operation. The bottom diagram shows the results of window 
A’s expansion from the top diagram. The right border of A is 

moved to the right by 50 pixels, which pushes the left border of 
B to the right by 40 pixels. Since B’s right border is located 

halfway between B’s left border and the edge of the screen, the 
adjustment is proportionally propagated to the right border of 

B, which moves 20 pixels. This effectively removes unused 
space between affected windows, but limits the effect of the 

operation on the rest of the screen. 

155



CHI 2005  ׀  PAPERS: Eyes on Interaction April 2–7 ׀  Portland, Oregon, USA 

 

 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

with a 1 s completion time. The rates of expansion for hori-
zontal and vertical axes of the focus window are calculated 
independently, such that expansion in both directions always 
completes simultaneously. As before, all windows have a 
minimum horizontal and vertical size. If a border adjustment 
requires that a window is reduced below this size, the ad-
justment propagates to the next border. Failing this, the 
original adjustment is not allowed.  

Scenario 2: Visual Turn Taking in Instant Messaging 
The following scenario illustrates how our second prototype 
supports parallel input, with the eye specifying context and 
the hands specifying content. We chose instant messaging, as 
it is a good example of a common task with manual over-
loading (where typing and focus window selection is nor-
mally performed using sequential hand movements), and 
rapid shifts of attentional focus. 
Figure 7 shows user Jeff in an instant messaging session with 
user Vic. Jeff notices the online arrival of his friend Ryan 
through a notification alert in the periphery of his vision. He 
looks at the alert and presses the activation key. The alert is 
dismissed and a new instant messaging window opens. Jeff 
looks back at Vic’s window, and continues typing a response 
to Vic without having removed his hands from the keyboard. 
In his peripheral vision he notices Ryan posting a response. 
He looks at Ryan’s window while pressing the activation key 
and immediately starts typing. Ryan’s window zooms (see 
Figure 8). A third person, Jake, arrives. After opening a ses-
sion, Jeff wants to copy one of Vic’s responses to Jake. He 
looks at Vic’s window while pressing the activation key. Jeff 
keeps his hands on the keyboard to scroll back and copy the 
line. He looks at Jake’s window, hits the activation key and 
pastes the response. 

EXPERIMENT 1: EYE INPUT FOR FOCUS WINDOW SE-
LECTION 
We designed an experiment to evaluate the efficiency of eye 
input for focus window selection when manual input is over-
loaded by content-related tasks. The experiment compared 

the performance of four selection techniques during a simple 
transcription task. Since we wished to evaluate eye-
controlled focus selection separately from zooming win-
dows, the experiment was performed on a simplified version 
of our second prototype. We later conducted a second ex-
periment using the second prototype itself, in order to evalu-
ate eye-controlled focus selection in unison with zooming 
windows. 

Participants and Design 
Twelve volunteers participated in the experiment. All were 
expert mouse users, seven had previous experience with eye 
tracking, and six were touch typists. We used a within-
subjects design, where each participant used each of the four 
selection techniques. Participants performed 3 trials with 
each selection technique, using 4, 8, and 12 windows at a 
time. The orders of presentation for selection technique and 
number of windows were counterbalanced between subjects.  
After completion of all twelve trials, participants were asked 
to fill out a questionnaire evaluating the various selection 
techniques. 

Selection Techniques 
Participants used four different techniques for focus window 
selection, across three different input devices: 
• Eye tracker with key activated selection (Eye +key). The 

current coordinate of on-screen gaze was used to deter-
mine the target window. This target window became se-
lected after pressing the spacebar. 

• Eye tracker with automatic selection (Eye + auto). The 
coordinate of on-screen gaze was used to determine the 
target window. The target window became selected im-
mediately upon eye fixation. 

• Mouse with click activated selection. A two-button 
mouse was used to position a visible cursor over the tar-
get window. The target window became selected after 
pressing the left mouse button. 

Figure 8. The user selects the lower right window as the new 
focus window. That window zooms to full resolution, while the 

other windows move aside. 

Figure 7. The user concentrates on a single focus window with 
an active conversation. Other windows are distorted but re-

main visible. 
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• Hotkeys. The F1-F12 function keys were used to select 
corresponding windows. During the 4-window condi-
tion, windows corresponded to keys F1-F4. During the 
8-window condition, the first row of windows corre-
sponded to keys F1-F4, and the second row corre-
sponded to keys F5-F8. During the 12-window condi-
tion, keys were the same as with 8 windows, with keys 
F9-12 added for the third row. 

Window Arrangements 
Participants performed three trials using each selection 
method, with a different number of windows each time: 
• Four windows: A 2x2 grid. 
• Eight windows: A 4x2 grid. 
• Twelve windows: A 4x3 grid. 

Apparatus 
The experimental task was displayed on a 1024x768 LCD 
screen. We used an LC Technologies Eyegaze system to 
implement the two eye input conditions for the experiment. 
Users were calibrated with the system using a standard 15-
point calibration procedure. We used a Logitech optical 
mouse for the mouse condition. To allow for optimal per-
formance with the mouse, control-to-display gain was set to 
medium using standard Mac OS X acceleration. We used a 
108-key Apple Extended keyboard for the hotkey condition. 

Task 
Participants were presented with a grid of 4, 8 or 12 win-
dows. Each window contained an upper panel and a lower 
panel. At the start of the trial, the lower panel of a random 
window would turn red. The participant would then select 
the window, and we measured the time from stimulus to 
selection. Upon selection, the lower panel would turn into a 
text entry field, and the upper panel would show a 6-
character string. Participants would then type the given string 
into the lower panel (see Figure 9). Upon completion, the 
string would disappear and another window would turn red. 
This process was repeated sequentially 20 times for each 
trial. We chose this task because it is a representative ab-
straction of activities that require both continuous manual 
input and frequent window switching.  

Results 
Table 1 shows a ranked list of the mean window selection 
times and standard errors for each combination of selection 
technique and number of windows. Selection times varied 
significantly with selection method (F3,33=104.54, p<0.01) 
and with number of windows (F2,22=17.00, p<0.01). The 
interaction between method and number of windows was 
also significant  (F3,102=2.58, p=0.027). 
Post-hoc comparisons show that differences between eye 
with key activation and mouse were significant in all win-
dowing conditions (after Bonferroni corrections: t11=-5.08, 
p<0.01, t11=-6.38, p<0.01, t11=-9.42, p<0.01 for 4, 8, 12 
windows respectively). At 4 windows, eye with key activa-
tion was 33% faster than mouse. At 8 windows, eye with key 

activation was 36% faster, and at 12 windows, it was 34% 
faster.  
Post-hoc comparisons also show that eye with automatic 
activation was significantly faster than eye with key activa-
tion (after Bonferonni corrections: t11=-8.26, p<0.01, t11=-
6.01, p<0.01, t11=-4.22, p=0.06 for 4, 8, 12 windows respec-
tively). The difference in speed between eye with automatic 
activation and eye with key activation was approximately 
23% in all cases. 

User Satisfaction 
Table 2 shows the mean scores for responses to the four 5-
point Likert-type questions on our questionnaire. For each 
selection technique, the questions evaluated speed of win-
dow selection, difficulty of window selection, distraction 
caused by selection, and overall impression. A non-
parametric Friedman Test showed differences between selec-
tion methods were significant for perceived speed 
(χ2(3)=14.04, p=.003) and difficulty (χ2(3)=8.63, p=.035). 
Pairwise comparisons suggest that the differences between 
eye with key activation and eye with automatic activation 
were not significant. Similarly, the differences between 
mouse and hotkeys were not significant. These results sug-
gest that observed differences were between the two pairs of 
selection methods. Differences between input methods were 
not significant for distraction and overall satisfaction 
(χ2(3)=5.66, p=0.129 and χ2(3)=5.65, p=0.231, respec-
tively).  
Participants frequently reported unintentional focus window 
selection and fatigue using eye input with automatic activa-
tion. Although participants appreciated the way in which the 
focus of their keyboard input seemed to “magically” flow 
across the screen with their eyes, they also reported frustra-
tion with their inability to look away from the target window 
while typing. This limitation caused significant difficulties 
for participants who were not efficient touch typists, since 
they could not look at the keyboard while typing.  

 
Figure 9. Screenshot of the experimental task from our first 

experiment. The user has selected a window, and is now tran-
scribing the string that appeared. 
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Discussion 
Results indicate that for focus window selection during tasks 
that require manual input, eye input is more efficient than 
either a mouse or hotkeys. Eye input with key activation 
provided a performance increase over mouse and hotkeys by 
a minimum of 33%. Eye input with automatic activation 
provided an additional speed increase over key activation of 
approximately 135 ms, in line with typical keystroke 
selection times of about 200 ms. The 65 ms difference is 
likely due to lag from the eye tracker, which was more no-
ticeable when using automatic activation, and may have 
mitigated its speed advantage over key activation.  
The primary reason for the poor performance of the mouse in 
this task appeared to be manual overloading. In order to se-
lect a new window after typing a string, participants had to 
move their dominant hand from the keyboard to the mouse. 
They then had to move the hand back to the keyboard to 
continue typing. Conversely, both eye input methods al-
lowed users to keep their hands on the keyboard at all times. 
Furthermore, the eye input methods appeared to reduce cog-
nitive load while selecting windows. During training trials, 
hotkeys often outperformed the mouse. We believe this was 
because during training, participants were able to consis-
tently concentrate on the key-to-window mapping. However, 
during the actual task, participants had to swap between typ-
ing and window selection. Concentration switched continu-
ously to and from the key-to-window mapping, increasing 
the mental load placed on participants during the task. These 
observations indicate that hotkeys may be appropriate for 
tasks involving selection alone, but inappropriate for tasks 
that involve other content-related manual activity. 
Despite the difference in speed between automatic activation 
and key activation for eye input, eye input with key activa-
tion appeared to be the more effective method overall. When 
using eye input with automatic activation, participants were 
unable to glance away from the target window while typing. 
This restriction would severely limit the efficacy of eye input 
with automatic activation in real world usage, since users 
often consult off-screen documents or other information 
sources while typing. Moreover, users would be unable to 
look at their input devices while using them. Thus, eye input 

with key activation appears to provide the most appropriate 
compromise between efficiency and effectiveness.  

EXPERIMENT 2: ZOOMING WINDOWS 
One of the stipulations of using eye input for focus window 
selection is that windows may not overlap. Overlapping 
windows would result in certain windows becoming partially 
or completely obscured, thus making them inaccessible to 
the eye. While some partially overlapped windows in an 
overlapping environment could still be selected, there would 
be no clear way to limit overlap to within the acceptable 
threshold. Eye input as a focus window selection method is 
thus best applied in a non-overlapping environment. In 
EyeWindows, we attempted to limit the repercussion of this 
stipulation on resolution by implementing windows that 
zoom upon focus selection.  
We conducted a second experiment to evaluate the efficiency 
of zooming windows compared to regular static windows. 
Since this evaluation was performed within the context of 
EyeWindows, eye input with key activation was used as the 
focus window selection technique.  

Design 
Ten of the participants from the first experiment participated 
in this experiment as well. The same apparatus was used. 
Each participant engaged in four trials with the following 
conditions: 4 zooming windows, 12 zooming windows, 4 
static windows, and 12 static windows. Once again, the order 
of conditions was counterbalanced between participants. 

Task 
As in the first experiment, participants were presented with a 
grid of 4 or 12 windows. Each window had an upper and a 
lower panel.  Each upper panel contained a random 500-
character string spread across multiple lines, with a scrollbar 
to the right of the text. At the start of the trial, the lower 
panel of a random window would turn red. Upon selecting 
this window, the lower panel would turn into a text entry 
field. The user then typed the first 20 characters of the string 
(see Figure 10). Upon completion, no more input into the 
current window was allowed, and another window would 
turn red. This process was repeated 10 times. When a par-
ticipant returned to a previously selected window, the previ-
ously typed text would remain, and the participant would 
enter the next 20 characters of the string. Thus, participants 
often had to scroll down to reveal more of the string in the 

Mean Selection Time (milliseconds) 
(standard error) 

Method 4 Windows 8 Windows 12 Windows 
Eye + auto 448  

(14.5) 
461  

(11.2) 
475  

(14.3) 
Eye + key 580  

(23.4) 
591  

(22.2) 
618  

(32.0) 
Mouse 868  

(65.6) 
927  

(60.8) 
941  

(55.0) 
Hotkeys 1035  

(59.5) 
1186  
(69.7) 

1200  
(60.4) 

Table 1. Ranked mean selection times and standard errors 
for each of our four selection methods at each window ar-

rangement. 

Mean Score 

 Eye 
+ key 

Eye 
+ auto 

Mouse Hotkeys 

Fast 4.2 4.7 3.5 2.9 

Difficult 2.4 2.2 3.3 3.8 

Distracting 2.4 2.7 3.8 3.6 
Overall Satis-

faction 3.7 3.9 3.0 2.8 

Table 2. Mean responses to each of the questions about our four 
selection methods. 
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upper panel. We measured time from stimulus to completion 
of the 20-character text entry. 
During the static window conditions, window sizes never 
changed and text was displayed at a constant resolution. Dur-
ing the zooming window conditions, windows were initially 
shrunk and would zoom to a larger size using the Elastic 
Window algorithm described in our first prototype. Text was 
displayed at normal font size when the window containing 
the text was zoomed. Text was reduced in size when the 
window containing the text was shrunk. Thus, zooming win-
dows displayed more text per line than static windows.  

Results 
Table 3 shows a list of the mean text entry times and stan-
dard errors for each condition. Times varied significantly 
with windowing style (F1,9=96.51, p<0.01) and with number 
of windows (F1,9=27.42, p=0.01). The interaction between 
windowing style and number of windows was also signifi-
cant  (Fq,9=48.89, p<0.01). 
Post-hoc comparisons show that the difference between 
static and zooming windows was significant at both 4 and 12 
windows (after Bonferroni corrections: t9=6.76, p<0.01 and 
t9=9.59, p<0.01, respectively). At 4 windows, working with 
zooming windows was 14% faster than working with static 
windows. At 12 windows, the difference was 30%. These 
results strongly suggest that the performance gain afforded 
by zooming windows increases with the number of windows 
in use.  
After the experiment, each participant was asked which win-
dowing style they preferred. Participants appeared to adapt 
quickly to the sudden changes on the screen caused by 
zooming windows, unanimously preferring this technique. 

Discussion 
Zooming windows led to noticeably better user performance 
than static windows throughout the experiment. Furthermore, 
the difference was much greater with 12 windows on-screen 

than it was with 4 windows. The primary difficulty with 
tiled, static windows is that window size is limited by the 
sharing of display space: the more windows there are, the 
less content can be displayed in each. This problem mani-
fested itself in the experiment with a tendency of subjects to 
scroll more when windows were smaller. Since zooming 
windows increase in size when selected, they require fewer 
scrolling actions. Given that participants worked with only 
one window at a time, the distortion of peripheral windows 
did not appear to pose any problems. We conclude that 
zooming windows are an effective alternative to static win-
dows in a non-overlapping environment when content is 
greater than the available display space. This observation is 
in line with the results of the Elastic Windows evaluation in 
[14]. Zooming windows are particularly effective when 
many windows are open simultaneously. 

CONCLUSIONS 
We have presented an attentive windowing system that uses 
eye tracking, rather than manual pointing, for focus window 
selection. We evaluated the performance of 4 focus selection 
techniques: eye tracking with key activation, eye tracking 
with automatic activation, mouse and hotkeys in a typing 
task with many open windows. We also evaluated a zooming 
windowing technique designed specifically for eye-based 
control, comparing its performance to that of a standard tiled 
windowing environment. Results indicated that eye tracking 
with automatic activation was, on average, about twice as 
fast as mouse and hotkeys. Eye tracking with key activation 
was about 72% faster than manual conditions, and preferred 
by most participants. We believe eye input performed well 
because it allows manual input to be provided in parallel to 
focus selection tasks. Results also suggested that zooming 
windows outperform static tiled windows by about 30%. 
Furthermore, this performance gain scaled with the number 
of windows used. We conclude that eye-controlled zooming 
windows provides an efficient and effective alternative to 
current focus window selection techniques. 
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