
CHI 2005 ׀ PAPERS: Eyes on Interaction April 2–7 ׀ Portland, Oregon, USA

EyeWindows: Evaluation of Eye-Controlled
Zooming Windows for Focus Selection

David Fono and Roel Vertegaal
 Human Media Lab
 Queen’s University

 Kingston, ON K7L 3N6, Canada
 { fono, roel } @ cs.queensu.ca

ABSTRACT
In this paper, we present an attentive windowing technique
that uses eye tracking, rather than manual pointing, for focus
window selection. We evaluated the performance of 4 focus
selection techniques: eye tracking with key activation, eye
tracking with automatic activation, mouse and hotkeys in a
typing task with many open windows. We also evaluated a
zooming windowing technique designed specifically for eye-
based control, comparing its performance to that of a stan-
dard tiled windowing environment. Results indicated that
eye tracking with automatic activation was, on average,
about twice as fast as mouse and hotkeys. Eye tracking with
key activation was about 72% faster than manual conditions,
and preferred by most participants. We believe eye input
performed well because it allows manual input to be pro-
vided in parallel to focus selection tasks. Results also sug-
gested that zooming windows outperform static tiled win-
dows by about 30%. Furthermore, this performance gain
scaled with the number of windows used. We conclude that
eye-controlled zooming windows with key activation pro-
vides an efficient and effective alternative to current focus
window selection techniques.

ACM Classification: H.5.2 [Information Interfaces and
Presentation]: User Interfaces—Windowing systems

Keywords: Attentive User Interfaces; Alternative Input; Eye
Tracking

INTRODUCTION
Windowing systems of commercial desktop interfaces have
experienced little change over the last 20 years. Today’s
systems employ the same basic technique of allocating dis-
play space using manually arranged, overlapping windows
into the task world. However, the task world of current com-
puter users is radically different from that of 20 years ago. In
particular, today’s user is characterized by frequent shifts of

attention between tasks [25]. We can identify a number of
reasons for this. Firstly, users are more likely to work on
multiple simultaneous tasks. As a result, many application
windows may be open at any given time (see Figure 1). This
means windows are likely to occlude one another, obscuring
the user’s view into the task world. Secondly, due to the
emergence of the Internet, current users are frequently inter-
rupted by digital communications, such as email and instant
messaging notifications [17, 22]. The above two factors
conspire to increase the number of window operations re-
quired to reveal information pertaining to an event or task of
interest. This problem has prompted research into window-
ing systems that allow users to shift attention with greater
ease, e.g., through zooming techniques, as in Sideshow [6],
Fisheye views [9], Elastic Windows [13, 14] and Mac OS X
Exposé [1]. While most of this work emphasizes the use of
manual input for task management, there has been little work
on windowing systems that sense the user’s attention using
more direct means.
Using an alternate channel for sensing the attention of the
user for parts of a display has two key benefits. First, it al-
lows an undisrupted use of manual input for task-oriented
activities. Second, it allows for continuous accommodation
to shifts in user attention. By tracking the focus of attention
of users, interfaces may actively avoid obscuring the user’s
view. By designing a more careful and attention-sensitive
placement of windows and dialog boxes, annoying visual
interruptions may thus be reduced [10, 16, 20].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHI 2005, April 2–7, 2005, Portland, Oregon, USA.
Copyright 2005 ACM 1-58113-998-5/05/0004…$5.00.

Fig. 1. Typical clutter in today’s windowing systems.

151

CHI 2005 ׀ PAPERS: Eyes on Interaction April 2–7 ׀ Portland, Oregon, USA

Summary of the Paper
In this paper, we explored how eye tracking may be used to
manage tasks more effectively within a limited display
space. EyeWindows is a non-overlapping windowing system
that uses eye tracking to decide which window is within the
focus of user attention. EyeWindows also uses zooming
windows to manage display space according to user focus.
The user selects a window for focus by looking at it while
pressing a trigger key. Subsequently, the focus window
zooms to a useable resolution, with surrounding windows
shrinking and moving into the periphery of the user’s vision.
First, we will discuss prior work, after which we present two
prototypes of our system. We then discuss an empirical
evaluation of eye-based focus window selection. Results
indicate that eye input is faster than either mouse-based or
key-based selection when hands are occupied by content-
related activity. Finally, we present an evaluation of the per-
formance of zooming windows, in comparison to a tiled
windowing technique. Results show that zooming windows
outperform static tiles when window content is greater than
available display space.

PREVIOUS WORK
According to Baudisch et al. [2], the problem of allocating
screen real estate is indeed one of allowing users to optimize
their attention space. The human eye can only attend to a
relatively small portion of display space at any one time.
Fine-grained visual acuity is limited by the retina to an area
of about 2 degrees of visual angle: the fovea [7]. As a result,
at any one time, only a limited display area of about 2-5 cm
around the location of an eye fixation is made available for
higher-level cognitive processing [7]. Other areas of a dis-
play are observed with peripheral vision, providing crucial
information for understanding the context of foveated infor-
mation. Peripheral vision also guides eye movements (sac-
cades). During a saccade, visual processing in the brain is
attenuated. This allows a computer display to imperceptibly
alter the resolution of displayed information during eye
movements. Displays that employ this technique are known
as Gaze-Contingent Displays (GCDs) [2]. A good example
of a static windowing system that exploits the limited resolu-
tion of human peripheral vision is the Focus Plus Context
screen [3].

Windows of Attention
Although Focus Plus Context works well for tasks that in-
volve a single large window, multitasking requires a mecha-
nism for choosing one amongst many visual tasks. Accord-
ing to Smith et al., WIMP (Windows, Icons, Menus and
Pointers) [19] interfaces were originally designed for this
purpose. Windows represent foreground tasks at high resolu-
tion, and occupy the bulk of display space in the center of
vision. Icons represent peripheral tasks at low resolution in
the periphery of the user’s vision. Pointers allow users to
communicate their focus of attention to graphic objects. By
clicking icons to open windows, and by positioning, resizing
and closing windows, users use their pointing device to
manually manage their attention space. However, by cover-
ing other windows and icons, front or focus windows may

obscure part of the global context of tasks in an overlapping
windowing system. A number of solutions have been de-
signed for this problem:
a) Tiled Windows. According to Bly and Rosenberg [4], we
can expect a tiled windowing system to be preferable over an
overlapping one in task situations where the contents of the
window conform to a predetermined window arrangement.
Their evaluations show that novices perform better with tiled
windows than with overlapping windows. Experts also per-
form better with tiled windows, but only in regular tasks,
tasks that require few window manipulations in order to
view the required contents. For irregular tasks, in which not
all content is immediately visible, expert users perform better
with overlapping windows.
b) Elastic Windows. Tiled windowing does not easily lend
itself to control over spatial organization of a large number
of documents. Kandogan and Shneiderman [13,14] sug-
gested a space-filling tiled windowing system that allows
hierarchical organization. Their Elastic Windows system
allows users to organize windows by dragging items into a
container window. The window group stretches like elastic
material when resized, with surrounding window groups
shrinking proportionally to fill the remaining space. Evalua-
tions show Elastic Windows outperforming overlapping
windows in most of the studied tasks.
c) Fisheye Views. Furnas [8] suggested early on that if dis-
plays would behave like a fisheye lens, users would be able
to spatially organize a large number of documents without
overlap. There have been many studies on the use of fisheye
views, particularly in groupware systems [9]. In a fisheye
view the magnification or “zoom factor” of a window de-
pends dynamically on its distance to the pointer. The fisheye
lens causes the focus window at the location of the pointer to
expand, while other windows drift to the edge of the screen.
However, Gutwin [9] showed that continuous fisheye magni-
fication actually slows down focus window targeting. This
slowdown arises because the magnification lens makes win-
dows appear to move in the direction opposite to pointer
movement. While speed-coupled flattening [9] reduces this
effect, we considered continuous fisheye magnification det-
rimental to eye-controlled targeting.

Interacting with Multiple Windows
In addition to optimizing the way in which screen real estate
is allocated in situations with many open windows, we inves-
tigated how we might optimize the process of selecting a
focus window. Most current windowing systems use focus
window selection techniques based on manual pointing de-
vices. However, there are a number of problems with these
techniques, particularly when they are combined with an
overlapping windowing system. Firstly, manual input may
be overloaded by focus selection tasks. This means that the
hands cannot perform a content-related task while targeting a
focus window. For example, the use of a mouse for focus
window selection may introduce homing times while typing
on a keyboard. Secondly, uncovering a window obscured by
the current focus window in an overlapping windowing sys-

152

CHI 2005 ׀ PAPERS: Eyes on Interaction April 2–7 ׀ Portland, Oregon, USA

tem may require several pointing actions and keystrokes.
First, the current focus window may need to be resized by
clicking inside its zoom box and dragging its outline. Next,
the pointer needs to be moved to click inside the title bar.
Next, the window needs to be dragged to the side such that
the new focus window is revealed. Finally, the user needs to
click inside the new focus window. Thus, overlapping win-
dows may reduce the efficiency of focus window targeting
when many windows are open.

Using Eye Input for Focus Window Selection
We experimented with altogether removing the need for
manual pointing in focus window targeting actions. It has
been noted that eye input is inappropriate for manual control
tasks, since the eye is a perceptual organ. Eye movements
are frequently unintentional, so a direct mapping to explicit
commands would lead to frequent unintended effects (the
Midas Touch problem [11]). Furthermore, eye tracking
yields inexact measurements. In developing their MAGIC
system [26], Zhai et al. found that eye tracking is inefficient
for direct cursor control, but useful for warping the cursor’s
approximate “home” position. This technique is effective
because eye movements merely set the context for succes-
sive manual cursor movement. Eye tracking could be applied
similarly to focus window selection. Selecting a new focus
window merely redefines the context for content-related
manual operations. Furthermore, windows in a non-
overlapping environment are usually large enough to allow
for inexact gaze measurements.
There is a good case for using eye input for focus window
targeting. Firstly, the eyes typically acquire a target well
before manual pointing is initiated [25]. Secondly, eye mus-
cles operate much faster than hand muscles [25]. Finally, the
eyes provide a continuous signal that frees the hands for
other tasks. One of the few systems to deploy eye input for
focus window targeting was Gaze-Orchestrated Dynamic
Windows by Bolt [5]. The system simulated a composite of
40 simultaneously playing television episodes on one large
display. Via a pair of eye tracking glasses it sensed when the
user looked at an image, turning off the soundtracks of other
episodes. If users looked at one episode for a few seconds,
the system would “zoom in” to fill the screen with that im-
age. Unfortunately, early eye tracking technology was se-
verely restricted in resolution. Recent advances have made it
possible to invisibly integrate an eye tracker with a head
movement tolerance of up to 30 cm and an accuracy of better
than 1 degree into a 17” LCD screen [21] (see Figure 2).

Empirical Evaluations
It is important to note that the use of eye input for focus win-
dow targeting is quite distinct from that of using eye input
for cursor positioning. While there are a number of experi-
mental studies evaluating eye-controlled cursor positioning,
there are few studies that examine eye-controlled focus se-
lection [7,11,12,18,24]. Results of performance comparisons
between eye-based and mouse-based selection of on-screen
targets are mixed. Ware & Mikaelian suggested that selec-
tion of on-screen targets with eye movements follows Fitts’

law [24]. Its index of performance is similar to the mouse,
but its selection time (the intercept in Fitts’ law) is twice as
fast. Jacob [11,12] studied the use of an eye tracker for target
selection, but did not report quantitative comparisons. Sibert
and Jacob [18] reported that dwell-time activated eye-based
selection of large on-screen targets was about twice as fast as
mouse-based selection. Wang et al. [23] discussed an evalua-
tion of eye-based selection of Chinese characters for text
entry. Users chose one of 8 on-screen characters by looking
at the character while pressing the space bar. Results showed
that eye-based selection was no faster than traditional key-
based selection. They attributed this to eye tracking lag, and
the fact that their task was dominated by decision time rather
than selection time.

EYEWINDOWS: EYE-CONTROLLED ZOOMING
WINDOWS
We will now discuss EyeWindows, an eye-controlled win-
dowing system that uses eye tracking as a means for parallel
selection of focus windows. To facilitate eye control, we
explored two different non-overlapping windowing tech-
niques. The first prototype explores the use of elastic win-
dowing for the task of media browsing. The second proto-
type uses a hybrid elastic windowing technique that allows
arbitrary placement of windows for arbitrary tasks on a desk-
top. Both prototypes feature automatic zooming of the focus
window after selection. Before we discuss each windowing
technique, we will first describe some of the details of the
hardware and software implementation.

System Implementation
For eye input, we deployed a Tobii [21] eye tracker. The
Tobii integrates tracking capabilities into a 17” screen, and
communicates eye position over TCP/IP to client computers
running EyeWindows. The media browser was implemented
using the Microsoft Directshow C++ API, and runs on a 1.5
GHz Intel PC under Windows XP. The second prototype
was implemented using Apple’s Cocoa API, and runs on an
800 MHz G4 under Mac OS 10.3. Requiring only a single
15-second calibration, the Tobii eye tracker allows 30x15x20
cm of user head movement with an average on-screen accu-
racy of 1 cm. Users can move in and out of view of the
tracker without having to recalibrate.

Figure 2. User with Tobii eye tracker running EyeWindows.

153

CHI 2005 ׀ PAPERS: Eyes on Interaction April 2–7 ׀ Portland, Oregon, USA

Prototype 1: EyeWindows Media Browser
Our first prototype design for EyeWindows explored the
parallel browsing of online digital media. Figure 4 shows
how we implemented a digital media browser that facilitates
the exploration of multiple audiovisual sequences in one
tiled windowing environment. A sequence may consist of a
live webcast or an online movie file. EyeWindows renders
any number of live media streams onto the display by divid-
ing the screen into a corresponding number of connected
tiles. Each tile is active, and plays concurrently to allow the
user to simultaneously explore all material in the set.

Eye-Controlled Zooming Windows
Figures 4 and 5 show how windows can be enlarged to re-
veal more detail. The user selects a window for focus by
looking at it and pressing the spacebar. Upon selection, the
focus window is automatically zoomed to a predefined size.
The zoom function animates the window’s four borders
away from its center coordinate until a preset maximum size
is reached, or until the user selects another focus window.
Zoom is applied linearly through time, and completes within
1 s. As in Elastic Windows, surrounding tiles accommodate
the change by shrinking proportionally. Enlarging focus
windows in this manner reveals visual detail and allows the
user to inspect the video on display. Shrinking the remaining
windows prevents them from being obscured, thus allowing
the user to maintain peripheral awareness of all videos while
examining the focus window. Since focus window selection
is done with the eyes, the user continuously observes the
videos without having to refocus attention on peripheral in-
put devices.

Elastic Windowing Algorithm
Tile size adjustments are propagated across tiles using the
original Elastic Window algorithm [13]. This algorithm ad-
justs the border of each tile proportionately to the location of
that border. Figure 3 shows how the border movement of
Tile A is propagated to Tiles B, C, and D. The right border

of tile A is adjusted by 40 pixels. The distance between the
right border of tile B and the edge of the screen is 50% of the
distance between the original border of tile A and the edge of
the screen. For the right border of tile C, that relative dis-
tance is 25%. Subsequently, the right border of tile B is
moved 50% of the adjustment, or 20 pixels, while the right
border of tile C is moved 25% of the adjustment, or 10 pix-
els. A full explanation of the algorithm, including the calcu-
lation of propagation adjustments, can be found in [13]. Tiles
have a minimum horizontal and vertical size. If a border ad-
justment requires that a tile be shrunk below this size, the
adjustment propagates to the next border. Failing this, the
original adjustment is not allowed.

Auditory Zoom
In addition to visual zooming of the focus window, EyeWin-
dows allows users to focus on the audio stream of the focus

Figure 5. To select a new focus window, the user looks at a tile
while pressing the space bar (here the bottom left tile). As the

tile zooms, all surrounding windows shrink.

Figure 4. A digital media browser with nine EyeWindows tiles.
The center window is the current focus window (images cour-

tesy ACM SIGGRAPH 2001 Video Program).

Figure 3. Example of an elastic window border operation.
Window A’s right border is moved to the right by 40 pixels.

These pixels are distributed proportionally over the other bor-
ders. B’s border moves 50% of the adjustment or 20 pixels, C’s

border moves 25% of the adjustment or 10 pixels.

154

CHI 2005 ׀ PAPERS: Eyes on Interaction April 2–7 ׀ Portland, Oregon, USA

window by attenuating audio from other tiles. Attenuation is
logarithmically proportional to tile surface area. Each tile’s
stereo balance is panned proportionally to the on-screen lo-
cation of the tile.

Scenario 1: Digital Media Browsing
The following scenario illustrates the use of EyeWindows
for the task of searching a movie segment in a multimedia
database with a limited sample set.
User Alex is looking for the name of the author of a movie
he saw while visiting the SIGGRAPH conference. He re-
members a segment showing a beautifully ray-traced glass
dropping off a table. Alex enters the URL of the SIGGRAPH
video program in EyeWindows. The system scans the URL
for movies files, loading each of the nine movies found into
a separate tile of equal size. As the movies start playing,
Alex focuses sequentially on each tile for detailed inspection
of its contents. As he focuses on the center tile it expands,
allowing him to inspect the movie sequence in great detail,
while remaining aware of activity in the other movies in his
peripheral vision (see Figure 4). As he watches, Alex antici-
pates hearing the sound of breaking glass. When he hears the
sound originating from the bottom left tile, he shifts his gaze,
expanding the tile. As the closing credits roll, resolution is
now sufficient for Alex to note the name of the author of the
clip (see Figure 5).

User Observations: Overloaded Visual Input
We performed initial evaluations comparing eye tracking to
the mouse for focus window selection using our prototype.
Ten users engaged in a video searching task similar to the
scenario described above, with selection time measured for
each input technique. Users were also asked to comment on
their experiences using the prototype. Overall, users found
the system useful and satisfying for media browsing. Fur-
thermore, we found that eye input using spacebar activation
performed equivalently to the mouse with click activation.
One of the caveats with the use of eye tracking as parallel
input during browsing is that manual input might not in fact
be overloaded. Instead, when asking users to search for a
movie segment, the eye’s role in providing visual input to the
user becomes overloaded with the role of providing output to
the computer [25]. One advantage of manual selection in this
scenario is that the hands can move toward the next antici-
pated focus window in parallel, while the eyes remain on a
segment playing in the current focus window. These obser-
vations indicate that eye tracking may perform superiorly to
the mouse when manual input is overloaded by content-
related activities.

Prototype 2: Desktop EyeWindows
For our second prototype, we adapted elastic windowing to
function in a normal desktop environment with arbitrary
positioning and resizing of windows. This allowed us to pro-
vide the user with multiple large windows placed anywhere
on the screen, in a way that minimized the number of zoom-
ing operations required. Windows may contain any applica-
tion or document normally available in Mac OS X. Figures 7

and 8 show many applications on-screen at once, with a sin-
gle zoomed focus window. We again deployed eye input for
focus selection, thus freeing up the hands for content-related
activities such as typing.

Modified Elastic Windowing Algorithm
Our adaptation of the Elastic Window algorithm first tries to
allocate any unused space to the focus window. Upon activa-
tion, a focus window expands until it reaches full horizontal
and vertical resolution. If the focus window can fully expand
without colliding with surrounding windows, the size of
those windows remains unchanged. If a neighboring window
prevents full expansion of the focus window, the neighbor is
first moved laterally to use up empty space between win-
dows. Further operation of the algorithm is similar to that in
our first technique. Figure 6 shows how adjustments are
propagated recursively upon collision of borders. A buffer
gap of at least 5 pixels is maintained between windows at all
times. Upon activation, focus window A is expanded to the
right by a total of 50 pixels. There are 15 pixels of unused
space between A’s right border and window B’s left border.
Maintaining a buffer of 5 pixels between the windows, B’s
left border is moved to the right by 40 pixels. This move-
ment is propagated proportionally to B’s right border. Since
B’s right border is located halfway between B's left border
and the edge of the screen, B’s right border accommodates
50% of the 40 pixels, moving 20 pixels to the right. If a win-
dow C were placed at the right of B, the movement of B’s
right border would similarly propagate to the borders of C.
As in our first prototype, the expansion is animated linearly

Figure 6. Example of an Irregular Elastic Window zooming
operation. The bottom diagram shows the results of window
A’s expansion from the top diagram. The right border of A is

moved to the right by 50 pixels, which pushes the left border of
B to the right by 40 pixels. Since B’s right border is located

halfway between B’s left border and the edge of the screen, the
adjustment is proportionally propagated to the right border of

B, which moves 20 pixels. This effectively removes unused
space between affected windows, but limits the effect of the

operation on the rest of the screen.

155

CHI 2005 ׀ PAPERS: Eyes on Interaction April 2–7 ׀ Portland, Oregon, USA

with a 1 s completion time. The rates of expansion for hori-
zontal and vertical axes of the focus window are calculated
independently, such that expansion in both directions always
completes simultaneously. As before, all windows have a
minimum horizontal and vertical size. If a border adjustment
requires that a window is reduced below this size, the ad-
justment propagates to the next border. Failing this, the
original adjustment is not allowed.

Scenario 2: Visual Turn Taking in Instant Messaging
The following scenario illustrates how our second prototype
supports parallel input, with the eye specifying context and
the hands specifying content. We chose instant messaging, as
it is a good example of a common task with manual over-
loading (where typing and focus window selection is nor-
mally performed using sequential hand movements), and
rapid shifts of attentional focus.
Figure 7 shows user Jeff in an instant messaging session with
user Vic. Jeff notices the online arrival of his friend Ryan
through a notification alert in the periphery of his vision. He
looks at the alert and presses the activation key. The alert is
dismissed and a new instant messaging window opens. Jeff
looks back at Vic’s window, and continues typing a response
to Vic without having removed his hands from the keyboard.
In his peripheral vision he notices Ryan posting a response.
He looks at Ryan’s window while pressing the activation key
and immediately starts typing. Ryan’s window zooms (see
Figure 8). A third person, Jake, arrives. After opening a ses-
sion, Jeff wants to copy one of Vic’s responses to Jake. He
looks at Vic’s window while pressing the activation key. Jeff
keeps his hands on the keyboard to scroll back and copy the
line. He looks at Jake’s window, hits the activation key and
pastes the response.

EXPERIMENT 1: EYE INPUT FOR FOCUS WINDOW SE-
LECTION
We designed an experiment to evaluate the efficiency of eye
input for focus window selection when manual input is over-
loaded by content-related tasks. The experiment compared

the performance of four selection techniques during a simple
transcription task. Since we wished to evaluate eye-
controlled focus selection separately from zooming win-
dows, the experiment was performed on a simplified version
of our second prototype. We later conducted a second ex-
periment using the second prototype itself, in order to evalu-
ate eye-controlled focus selection in unison with zooming
windows.

Participants and Design
Twelve volunteers participated in the experiment. All were
expert mouse users, seven had previous experience with eye
tracking, and six were touch typists. We used a within-
subjects design, where each participant used each of the four
selection techniques. Participants performed 3 trials with
each selection technique, using 4, 8, and 12 windows at a
time. The orders of presentation for selection technique and
number of windows were counterbalanced between subjects.
After completion of all twelve trials, participants were asked
to fill out a questionnaire evaluating the various selection
techniques.

Selection Techniques
Participants used four different techniques for focus window
selection, across three different input devices:
• Eye tracker with key activated selection (Eye +key). The

current coordinate of on-screen gaze was used to deter-
mine the target window. This target window became se-
lected after pressing the spacebar.

• Eye tracker with automatic selection (Eye + auto). The
coordinate of on-screen gaze was used to determine the
target window. The target window became selected im-
mediately upon eye fixation.

• Mouse with click activated selection. A two-button
mouse was used to position a visible cursor over the tar-
get window. The target window became selected after
pressing the left mouse button.

Figure 8. The user selects the lower right window as the new
focus window. That window zooms to full resolution, while the

other windows move aside.

Figure 7. The user concentrates on a single focus window with
an active conversation. Other windows are distorted but re-

main visible.

156

CHI 2005 ׀ PAPERS: Eyes on Interaction April 2–7 ׀ Portland, Oregon, USA

• Hotkeys. The F1-F12 function keys were used to select
corresponding windows. During the 4-window condi-
tion, windows corresponded to keys F1-F4. During the
8-window condition, the first row of windows corre-
sponded to keys F1-F4, and the second row corre-
sponded to keys F5-F8. During the 12-window condi-
tion, keys were the same as with 8 windows, with keys
F9-12 added for the third row.

Window Arrangements
Participants performed three trials using each selection
method, with a different number of windows each time:
• Four windows: A 2x2 grid.
• Eight windows: A 4x2 grid.
• Twelve windows: A 4x3 grid.

Apparatus
The experimental task was displayed on a 1024x768 LCD
screen. We used an LC Technologies Eyegaze system to
implement the two eye input conditions for the experiment.
Users were calibrated with the system using a standard 15-
point calibration procedure. We used a Logitech optical
mouse for the mouse condition. To allow for optimal per-
formance with the mouse, control-to-display gain was set to
medium using standard Mac OS X acceleration. We used a
108-key Apple Extended keyboard for the hotkey condition.

Task
Participants were presented with a grid of 4, 8 or 12 win-
dows. Each window contained an upper panel and a lower
panel. At the start of the trial, the lower panel of a random
window would turn red. The participant would then select
the window, and we measured the time from stimulus to
selection. Upon selection, the lower panel would turn into a
text entry field, and the upper panel would show a 6-
character string. Participants would then type the given string
into the lower panel (see Figure 9). Upon completion, the
string would disappear and another window would turn red.
This process was repeated sequentially 20 times for each
trial. We chose this task because it is a representative ab-
straction of activities that require both continuous manual
input and frequent window switching.

Results
Table 1 shows a ranked list of the mean window selection
times and standard errors for each combination of selection
technique and number of windows. Selection times varied
significantly with selection method (F3,33=104.54, p<0.01)
and with number of windows (F2,22=17.00, p<0.01). The
interaction between method and number of windows was
also significant (F3,102=2.58, p=0.027).
Post-hoc comparisons show that differences between eye
with key activation and mouse were significant in all win-
dowing conditions (after Bonferroni corrections: t11=-5.08,
p<0.01, t11=-6.38, p<0.01, t11=-9.42, p<0.01 for 4, 8, 12
windows respectively). At 4 windows, eye with key activa-
tion was 33% faster than mouse. At 8 windows, eye with key

activation was 36% faster, and at 12 windows, it was 34%
faster.
Post-hoc comparisons also show that eye with automatic
activation was significantly faster than eye with key activa-
tion (after Bonferonni corrections: t11=-8.26, p<0.01, t11=-
6.01, p<0.01, t11=-4.22, p=0.06 for 4, 8, 12 windows respec-
tively). The difference in speed between eye with automatic
activation and eye with key activation was approximately
23% in all cases.

User Satisfaction
Table 2 shows the mean scores for responses to the four 5-
point Likert-type questions on our questionnaire. For each
selection technique, the questions evaluated speed of win-
dow selection, difficulty of window selection, distraction
caused by selection, and overall impression. A non-
parametric Friedman Test showed differences between selec-
tion methods were significant for perceived speed
(χ2(3)=14.04, p=.003) and difficulty (χ2(3)=8.63, p=.035).
Pairwise comparisons suggest that the differences between
eye with key activation and eye with automatic activation
were not significant. Similarly, the differences between
mouse and hotkeys were not significant. These results sug-
gest that observed differences were between the two pairs of
selection methods. Differences between input methods were
not significant for distraction and overall satisfaction
(χ2(3)=5.66, p=0.129 and χ2(3)=5.65, p=0.231, respec-
tively).
Participants frequently reported unintentional focus window
selection and fatigue using eye input with automatic activa-
tion. Although participants appreciated the way in which the
focus of their keyboard input seemed to “magically” flow
across the screen with their eyes, they also reported frustra-
tion with their inability to look away from the target window
while typing. This limitation caused significant difficulties
for participants who were not efficient touch typists, since
they could not look at the keyboard while typing.

Figure 9. Screenshot of the experimental task from our first

experiment. The user has selected a window, and is now tran-
scribing the string that appeared.

157

CHI 2005 ׀ PAPERS: Eyes on Interaction April 2–7 ׀ Portland, Oregon, USA

Discussion
Results indicate that for focus window selection during tasks
that require manual input, eye input is more efficient than
either a mouse or hotkeys. Eye input with key activation
provided a performance increase over mouse and hotkeys by
a minimum of 33%. Eye input with automatic activation
provided an additional speed increase over key activation of
approximately 135 ms, in line with typical keystroke
selection times of about 200 ms. The 65 ms difference is
likely due to lag from the eye tracker, which was more no-
ticeable when using automatic activation, and may have
mitigated its speed advantage over key activation.
The primary reason for the poor performance of the mouse in
this task appeared to be manual overloading. In order to se-
lect a new window after typing a string, participants had to
move their dominant hand from the keyboard to the mouse.
They then had to move the hand back to the keyboard to
continue typing. Conversely, both eye input methods al-
lowed users to keep their hands on the keyboard at all times.
Furthermore, the eye input methods appeared to reduce cog-
nitive load while selecting windows. During training trials,
hotkeys often outperformed the mouse. We believe this was
because during training, participants were able to consis-
tently concentrate on the key-to-window mapping. However,
during the actual task, participants had to swap between typ-
ing and window selection. Concentration switched continu-
ously to and from the key-to-window mapping, increasing
the mental load placed on participants during the task. These
observations indicate that hotkeys may be appropriate for
tasks involving selection alone, but inappropriate for tasks
that involve other content-related manual activity.
Despite the difference in speed between automatic activation
and key activation for eye input, eye input with key activa-
tion appeared to be the more effective method overall. When
using eye input with automatic activation, participants were
unable to glance away from the target window while typing.
This restriction would severely limit the efficacy of eye input
with automatic activation in real world usage, since users
often consult off-screen documents or other information
sources while typing. Moreover, users would be unable to
look at their input devices while using them. Thus, eye input

with key activation appears to provide the most appropriate
compromise between efficiency and effectiveness.

EXPERIMENT 2: ZOOMING WINDOWS
One of the stipulations of using eye input for focus window
selection is that windows may not overlap. Overlapping
windows would result in certain windows becoming partially
or completely obscured, thus making them inaccessible to
the eye. While some partially overlapped windows in an
overlapping environment could still be selected, there would
be no clear way to limit overlap to within the acceptable
threshold. Eye input as a focus window selection method is
thus best applied in a non-overlapping environment. In
EyeWindows, we attempted to limit the repercussion of this
stipulation on resolution by implementing windows that
zoom upon focus selection.
We conducted a second experiment to evaluate the efficiency
of zooming windows compared to regular static windows.
Since this evaluation was performed within the context of
EyeWindows, eye input with key activation was used as the
focus window selection technique.

Design
Ten of the participants from the first experiment participated
in this experiment as well. The same apparatus was used.
Each participant engaged in four trials with the following
conditions: 4 zooming windows, 12 zooming windows, 4
static windows, and 12 static windows. Once again, the order
of conditions was counterbalanced between participants.

Task
As in the first experiment, participants were presented with a
grid of 4 or 12 windows. Each window had an upper and a
lower panel. Each upper panel contained a random 500-
character string spread across multiple lines, with a scrollbar
to the right of the text. At the start of the trial, the lower
panel of a random window would turn red. Upon selecting
this window, the lower panel would turn into a text entry
field. The user then typed the first 20 characters of the string
(see Figure 10). Upon completion, no more input into the
current window was allowed, and another window would
turn red. This process was repeated 10 times. When a par-
ticipant returned to a previously selected window, the previ-
ously typed text would remain, and the participant would
enter the next 20 characters of the string. Thus, participants
often had to scroll down to reveal more of the string in the

Mean Selection Time (milliseconds)
(standard error)

Method 4 Windows 8 Windows 12 Windows
Eye + auto 448

(14.5)
461

(11.2)
475

(14.3)
Eye + key 580

(23.4)
591

(22.2)
618

(32.0)
Mouse 868

(65.6)
927

(60.8)
941

(55.0)
Hotkeys 1035

(59.5)
1186
(69.7)

1200
(60.4)

Table 1. Ranked mean selection times and standard errors
for each of our four selection methods at each window ar-

rangement.

Mean Score

 Eye
+ key

Eye
+ auto

Mouse Hotkeys

Fast 4.2 4.7 3.5 2.9

Difficult 2.4 2.2 3.3 3.8

Distracting 2.4 2.7 3.8 3.6
Overall Satis-

faction 3.7 3.9 3.0 2.8

Table 2. Mean responses to each of the questions about our four
selection methods.

158

CHI 2005 ׀ PAPERS: Eyes on Interaction April 2–7 ׀ Portland, Oregon, USA

upper panel. We measured time from stimulus to completion
of the 20-character text entry.
During the static window conditions, window sizes never
changed and text was displayed at a constant resolution. Dur-
ing the zooming window conditions, windows were initially
shrunk and would zoom to a larger size using the Elastic
Window algorithm described in our first prototype. Text was
displayed at normal font size when the window containing
the text was zoomed. Text was reduced in size when the
window containing the text was shrunk. Thus, zooming win-
dows displayed more text per line than static windows.

Results
Table 3 shows a list of the mean text entry times and stan-
dard errors for each condition. Times varied significantly
with windowing style (F1,9=96.51, p<0.01) and with number
of windows (F1,9=27.42, p=0.01). The interaction between
windowing style and number of windows was also signifi-
cant (Fq,9=48.89, p<0.01).
Post-hoc comparisons show that the difference between
static and zooming windows was significant at both 4 and 12
windows (after Bonferroni corrections: t9=6.76, p<0.01 and
t9=9.59, p<0.01, respectively). At 4 windows, working with
zooming windows was 14% faster than working with static
windows. At 12 windows, the difference was 30%. These
results strongly suggest that the performance gain afforded
by zooming windows increases with the number of windows
in use.
After the experiment, each participant was asked which win-
dowing style they preferred. Participants appeared to adapt
quickly to the sudden changes on the screen caused by
zooming windows, unanimously preferring this technique.

Discussion
Zooming windows led to noticeably better user performance
than static windows throughout the experiment. Furthermore,
the difference was much greater with 12 windows on-screen

than it was with 4 windows. The primary difficulty with
tiled, static windows is that window size is limited by the
sharing of display space: the more windows there are, the
less content can be displayed in each. This problem mani-
fested itself in the experiment with a tendency of subjects to
scroll more when windows were smaller. Since zooming
windows increase in size when selected, they require fewer
scrolling actions. Given that participants worked with only
one window at a time, the distortion of peripheral windows
did not appear to pose any problems. We conclude that
zooming windows are an effective alternative to static win-
dows in a non-overlapping environment when content is
greater than the available display space. This observation is
in line with the results of the Elastic Windows evaluation in
[14]. Zooming windows are particularly effective when
many windows are open simultaneously.

CONCLUSIONS
We have presented an attentive windowing system that uses
eye tracking, rather than manual pointing, for focus window
selection. We evaluated the performance of 4 focus selection
techniques: eye tracking with key activation, eye tracking
with automatic activation, mouse and hotkeys in a typing
task with many open windows. We also evaluated a zooming
windowing technique designed specifically for eye-based
control, comparing its performance to that of a standard tiled
windowing environment. Results indicated that eye tracking
with automatic activation was, on average, about twice as
fast as mouse and hotkeys. Eye tracking with key activation
was about 72% faster than manual conditions, and preferred
by most participants. We believe eye input performed well
because it allows manual input to be provided in parallel to
focus selection tasks. Results also suggested that zooming
windows outperform static tiled windows by about 30%.
Furthermore, this performance gain scaled with the number
of windows used. We conclude that eye-controlled zooming
windows provides an efficient and effective alternative to
current focus window selection techniques.

REFERENCES
1. Apple Computers, Inc. Mac OS X Exposé.

http://www.apple.com/macosx/features/expose/, 2003.

2. Baudisch, P., DeCarlo, D., Duchowski, A., and Geisler.
W. Focusing on the Essential: Considering Attention in
Display Design. In Special Issue on Attentive User Inter-
faces, Communications of ACM Vol. 46, No. 3, 2003,
pp. 60-66.

Figure 10. Screenshot of the experimental task from our second

experiment, using zooming windows. The user has zoomed a
window by selecting it, and is now transcribing a portion of the
string within. Once the text within view has been transcribed,

the user must scroll down to reveal more of the string.

Mean Text Entry Time (seconds)
(standard error)

Style 4 Windows 12 Windows
Static 17.0

(0.9)
21.4
(1.3)

Zooming 14.6
(1.2)

14.9
(1.4)

Table 3. Mean text entry times and standard errors for each
windowing style at each window arrangement.

159

CHI 2005 ׀ PAPERS: Eyes on Interaction April 2–7 ׀ Portland, Oregon, USA

3. Baudisch, P., Good, N., Belotti, V., and Schraedley, P.
Keeping Things in Context: A Comparative Evaluation
of Focus Plus Context Screens, Overviews, and Zoom-
ing. In Proceedings of CHI’02 Conference on Human
Factors in Computing Systems. Minneapolis: ACM
Press, 2002, pp. 259-266.

4. Bly, S. and Rosenberg, J.K. A Comparison of Tiled and
Overlapping Windows. In Proceedings of CHI’86 Con-
ference on Human Factors in Computing Systems, Bos-
ton: ACM Press, 1986, pp. 101-106.

5. Bolt, R. A. Gaze-Orchestrated Dynamic Windows. In
Proceedings of the 8th Annual Conference on Computer
Graphics and Interactive Techniques. Dallas: ACM
Press, 1981, pp. 109-119.

6. Cadiz, J., Venolia, G., Jancke, G. Gupta, A. All Ways
Aware: Designing and Deploying an Information
Awareness Interface. In Proceedings of ACM CSCW’02
Conference on Computer Supported Cooperative Work.
New Orleans: ACM Press, 2002, pp. 314-323.

7. Duchowski, A. Eye Tracking Methodology: Theory &
Practice. London, UK: Springer Verlag, 2003.

8. Furnas, G.W. Generalized Fisheye Views. In Proceed-
ings of CHI’86 Conference on Human Factors in Com-
puting Systems. Boston: ACM Press, 1986, pp. 16-23.

9. Gutwin, C. Improving Focus Targeting in Interactive
Fisheye Views. In Proceedings of CHI’02, Conference
on Human Factors in Computing Systems. Minneapolis:
ACM Press, 2002, pp. 267-274.

10. Horvitz, E., Jacobs, A., and Hovel, D. Attention-
Sensitive Alerting. In Proceedings of UAI’99 Conference
on Uncertainty and Artificial Intelligence, 1999, pp. 305–
313.

11. Jacob, R. The Use of Eye Movements in Human-
Computer Interaction Techniques: What You Look At is
What You Get. In ACM Transactions on Information
Systems, Vol. 9, No 3, 1991, pp. 152-169.

12. Jacob, R. What You Look At Is What You Get: Eye
Movement-Based Interaction Techniques. In Proceedings
of ACM CHI’90 Conference on Human Factors in Com-
puting Systems. Seattle, ACM Press, 1990, pp. 11-18.

13. Kandogan, E. and Shneiderman, B. Elastic Windows: A
Hierarchical Multi-window World-Wide Web Browser.
In Proceedings of ACM UIST’97 Symposium on User
Interface Software and Technology. Banff, Canada:
ACM Press, 1997, pp. 169-177.

14. Kandogan, E. and Shneiderman, B. Elastic Windows:
Evaluation of Multi-window Operations. In Proceedings

of ACM CHI’97 Conference on Human Factors in Com-
puting Systems. Atlanta: ACM Press, 1997, pp. 250-257.

15. Sarkar, M., and Brown, M. Graphical Fisheye Views of
Graphs. In Proceedings of CHI’92 Conference on Human
Factors in Computing Systems. Monterey: ACM Press,
1992, pp. 83-91.

16. Shell, J., Vertegaal, R, and Skaburskis, A. EyePliances:
Attention-Seeking Devices that Respond to Visual Atten-
tion. In Extended Abstracts of ACM CHI ’03 Conference
on Human Factors in Computing Systems, 2003, pp.
770-771.

17. Shell, J., Selker, T., and Vertegaal, R. Interacting with
Groups of Computers. In Special Issue on Attentive User
Interfaces, Communications of ACM Vol. 46 No. 3,
2003, pp. 40-46.

18. Sibert L., and Jacob, J. Evaluation of Eye Gaze Interac-
tion. In Proceedings of CHI’00 Conference on Human
Factors in Computing Systems. The Hague: ACM Press,
2000, pp. 281-288.

19. Smith, D., Irby, C., et al. Designing the Star User Inter-
face. BYTE 7(4), 1982.

20. Starker, I., and Bolt, R. A Gaze-Responsive Self-
Disclosing Display. In Proceedings of CHI’90 Confer-
ence on Human Factors in Computing Systems. Boston:
ACM Press, 1990, pp. 3-9.

21. Tobii Systems. http://www.tobii.se, 2003.

22. Vertegaal, R. Attentive User Interfaces. Editorial, Special
Issue on Attentive User Interfaces, Communications of
ACM Vol. 46, No. 3, 2003, pp. 31-33.

23. Wang, J., Zhai, S. and Su, H. Chinese Input with Key-
board and Eye-Tracking - An Anatomical Study. In Pro-
ceedings of ACM CHI’01 Conference on Human Factors
in Computing Systems, 2001, pp. 349-356.

24. Ware, C., and Mikaelian, H.T. An Evaluation of an Eye
Tracker as a Device for Computer Input. In Proceedings
of the ACM CHI + GI’87 Human Factors in Computing
Systems Conference. Toronto, Canada: ACM Press,
1987, pp. 183-188.

25. Zhai, S. What’s in the Eyes for Attentive Input. Special
Issue on Attentive User Interfaces, Communications of
ACM Vol. 46, No. 3, 2003, pp. 34-39.

26. Zhai, S., Morimoto, C., and Ihde, S. Manual and gaze
input cascaded (MAGIC) pointing. In Proceedings of the
ACM CHI’99 Conference on Human Factors in Comput-
ing Systems, 1999, pp. 246-253.

160

