
Paint By Relaxation

Aaron Hertzmann

New York University

Abstract

We use relaxation to produce painted imagery from
images and video. An energy function is first spec-
ified; we then search for a painting with minimal en-
ergy. The appeal of this strategy is that, ideally, we need
only specify what we want, not how to directly compute
it. Because the energy function is very difficult to op-
timize, we use a relaxation algorithm combined with
search heuristics.

This formulation allows us to specify painting style
by varying the relative weights of energy terms. The
basic energy function yields an economical style that
conveys an image with few strokes. This style produces
greater temporal coherence for video than previous tech-
niques. The system allows as fine user control as de-
sired: the user may interactively change the painting
style, specify variations of style over an image, and/or
add specific strokes to the painting.

1. Introduction

The time is ripe for novel computer-generated vi-
sual styles. The increasingly adventurous use of digital
effects in movies and television, together with many
recent advances in non-photorealistic rendering (NPR)
make this an exciting time for NPR research. Painterly
rendering, the subject of this paper, promises to merge
the beauty and expressiveness of painting with the flex-
ibility of computer graphics.

In this paper, we formulate painting as an energy
minimization problem, given a source image or video
sequence. This approach has many benefits. Most gen-
erally, it allows us to express the desired features of
the painting style as energy terms, freeing us from the
often-difficult task of devising a new or modified paint-
ing algorithm for each new consideration in a style.

This gives us the ability to produce paintings that
closely match the input imagery. This is particularly
important in processing video sequences, where impre-
cision can lead to unacceptable problems with tempo-

Figure 1. A source image and painting

ral coherence; the only previous algorithm for auto-
matically painting video with long, curved strokes [9]
requires many small strokes, and still produces a de-
gree of flickering that may be objectionable for some
applications. We have attempted to recreate a some-
what “generic,” modern painting style: realistic, but
with visible brush strokes, inspired by artists such as
Richard Diebenkorn, John Singer Sargent, and Lucian
Freud.

The energy minimization approach also allows us to
bridge the gap between automatic painterly filters and
user-driven paint systems. Users may specify require-
ments about a painting at a high-level (painting style),
middle-level (variations of style over the image), and
low-level (specific brush strokes); the user may work
back and forth between these different levels of abstrac-
tion as desired. This feature is of critical importance
for taking the best advantage of the skills of artists.
This also allows us to accommodate a wide range of
user requirements and skill levels, from desktop pub-
lishing to feature film production.

Color images and additional details
from this work may be found in [8] (see
http://www.mrl.nyu.edu/∼hertzman).

1.1. Related Work

We now review previous work on painterly render-
ing. (A more general survey of NPR can be found in
[4].) One thread of work are painterly filters, which

do not require an explicit 3D model of the world be-
ing painted. Haeberli [6] demonstrated an interactive
painting system for quickly producing a painted rep-
resentation of a still image. Several commercial pack-
ages (e.g. [1]) provide automatic painterly image filters
based on these ideas, using fixed size and shape strokes.
Shiraishi and Yamaguchi [16] use local image measure-
ments to choose stroke size and orientation. Litwinow-
icz [12] demonstrated how these ideas could be ex-
tended for processing video, by moving short strokes
with estimated optical flow. In previous work, we var-
ied brush stroke sizes by layering and placed curved
strokes by following normals of image gradients [7].
This method produces images that are loose but not
very economical or precise; fine details are often lost
even after several layers of painting. This method is
extended to video processing in [9]. Although the ex-
isting techniques produce excellent imagery in a vari-
ety of styles, the range of styles available is limited by
the particular painting process; this paper expands the
range of styles in several dimensions, and provides a
framework for the straightforward addition of further
styles.

The availability of 3D geometry allows more flex-
ibility in producing painterly animation. Meier [14]
demonstrated an automatic particle-based approach
for painting with short brush strokes. Extensions of
this idea with interactively-placed strokes were used
with great success in the recent feature films What
Dreams May Come [13] and Tarzan [5]. Such sys-
tems naturally provide excellent temporal coherence
and an economical painting style, if desired. However,
exact 3D information is often unavailable. Klein et al.
[11] renders objects with filtered textures. Also, the
use of 3D typically yields a different aesthetic from
painterly filters, because strokes that adhere closely
to 3D shape over time usually give the impression of
strokes attached to objects in space, rather than of a
view through an animated painting. Which appearance
is preferred will depend on the application.

Haeberli [6] introduced the use of relaxation for
painterly rendering, and Turk and Banks [18] used
relaxation to illustrate vector fields with streamlines.
This paper extends their work.

2. Energy Function

The central idea of this paper is to formulate paint-
ing as an energy relaxation problem. Given an energy
function E(P), we seek the painting P ∗ with the least
energy:

P ∗ = arg min
P∈P

E(P)

where P refers to a specific painting and P to the space
of all paintings. In this paper, a painting is defined as
an ordered collection of colored brush strokes, together
with a fixed canvas color or texture. A brush stroke is
a thick curve defined by a list of control points, a color,
and a thickness/brush width. A painting is rendered by
compositing the brush strokes in order onto the canvas.
Brush strokes are rendered as thick cubic B-splines.
Strokes are drawn in the order that they were created.

An energy function can be created as a combination
of different functions, allowing us to express a variety
of desires about the painting, and their relative impor-
tance. Each energy function corresponds to a different
painting style. This formulation gives us a reasonably
intuitive way of designing painting styles, in that we
specify the desired features of the painting, rather than
providing a direct method for computing the painting,
as has been done in the past.

At a high level, our goal has been to seek concise
paintings that match a source image closely and cover
the image with paint, but use as few strokes as possible.
To this end, we use the following energy function for a
painting:

E(P) = Eapp(P) + Earea(P) +

Enstr (P) + Ecov (P)

Eapp(P) =
∑

(x,y)∈I

wapp(x, y)||P (x, y)−G(x, y)||

Earea(P) = warea

∑

S∈P

Area(S)

Enstr (P) = wnstr · (number of strokes in P)

Ecov (P) = wcov · (number of empty pixels in P)

This energy is a linear combination of four terms.
The first term, Eapp , measures the pixelwise differences
between the painting and a source image G. Each
painting in this paper was created with respect to a
source image. The second term, Earea , measures the
sum of the surface areas of all of the brush strokes in
the painting. In some sense, this is a measure of the
total amount of paint that was used by the artist in
making the image. The number of strokes term Enstr

can be used to bias the painting towards larger brush
strokes. The coverage term Ecov can be used to force
the canvas to be filled with paint, if desired, by setting
wcov to be very large. The weights w are user-defined
values. The color distance || · || represents Euclidean
distance in RGB space.

The first two terms of the energy function quantify
the trade-off between two competing desires: the desire
to closely match the appearance of the source image,
and the desire to use as little paint as possible, i.e. to
be economical. By adjusting the relative proportion of

Figure 2. Top: Painterly renderings with the
method of [7] with 1 and 2, layers, respec-
tively. The algorithm has difficulty capturing
detail below the stroke size. (The source is
shown in Figure 1.) Bottom: Paint by relax-
ation, with 1 and 2 layers. Strokes are pre-
cisely aligned to image features, especially
near sharp contours, such as the lower-right
corner of the jacket.

wapp and warea , a user can specify the relative impor-
tance of these two desires, and thus produce different
painting styles. Likewise, adjusting wnstr allows us to
discourage the use of smaller strokes.

By default, the value of wapp(x, y) is initialized by a
binary edge image, computed with a Sobel filter. This
gives extra emphasis to the edges, although a constant
weight often gives decent results as well. If we allow
the weight to vary over the canvas, then we get an
effect that is like having different energy functions in
different parts of the image (Figure 3). The weight im-
age wapp(x, y) allows us to specify how much detail is
required in each region of the image, and can be gener-
ated automatically, or hand-painted by a user (Section
7).

The particular form of these equations has no in-
trinsic meaning (that we are aware of); they are sim-
ply one possible formulation of the desires expressed
above. When the user chooses a set of weights (usu-
ally by experimentation), the complete energy function
encapsulates some aesthetic sensibility of the user.

3. Relaxation

The energy function presented in the previous sec-
tion is very difficult to optimize: it is very discontinu-
ous, it has a very high dimensionality and there does
not appear to be an analytic solution.

Following Haeberli [6] and Turk and Banks [18], we
use a relaxation algorithm. This is a trial-and-error
approach, illustrated by the following pseudocode:

P ← empty painting

while not done
C ← Suggest() // Suggest change
if (E(C(P)) < E(P)) // Does the change help?

P ← C(P) // If so, adopt it

There is no guarantee that the algorithm will con-
verge to a result that is globally optimal or even locally
optimal. Nevertheless, this method is still useful for
producing pleasing results.

The main question of interest is how make the sug-
gestions. In our initial experiments, we used highly
random suggestions, such as adding a disc stroke in
a random location with a random size. Most of the
computation time was spent on suggestions that were
rejected, resulting in paintings poorly-matched to the
energy. Because the space of paintings has very high
dimensionality, it is possible to make many suggestions
that do not substantially reduce the energy. Hence, it
is necessary to devise more sophisticated ways of gen-
erating suggestions.

4. Stroke Relaxation

A basic strategy that we use for generating sugges-
tions is to use a stroke relaxation procedure. This is
an adaptation of snakes [10, 2] to the painting energy
function: it searches for an approximate local minimum
for a given stroke placement.

The high-level algorithm for modifying a stroke is:

1. Measure the painting energy

2. Select an existing stroke

3. Optionally, modify some stroke attribute

4. Relax the stroke

5. Measure the new painting energy

This algorithm is described in detail in Section 8.1.
However, we mention two important aspects of the im-
plementation here: First, the stroke search procedure

(a) (b) (c) (d)

Figure 3. Spatially-varying style. (a) Source image. (b) Interactively-painted weight image (wapp). (c)
Painting with the given weights. More detail appears near faces and hands. (d) Another choice of
weights; detail is concentrated on the rightmost figures.

evaluates the painting energy with the stroke deleted
(for reasons described later). Hence, the modification
suggestion may become a stroke deletion suggestion, at
no extra cost. Second, the relaxation procedure would
be very expensive and difficult to implement if done
precisely. Instead, we use an approximation for the en-
ergy inside the relaxation loop, and measure the exact
energy only after generating the suggestion.

4.1. Single Relaxation Steps

In this Section, we describe individual procedures
for generating suggestions.

Add Stroke: A new stroke is created, starting from
a given point on the image. The new stroke is always
added in front of all existing strokes. Control points are
added to the stroke, using the contour-approximating
procedure described in [9]. The stroke is then relaxed
(see previous section). The result of this search is then
suggested as a change to the painting.

Reactivate Stroke: A given stroke is relaxed, and
the modification is suggested as a change to the paint-
ing. However, if deleting the stroke reduces the paint-
ing energy more than the modification does, then the
stroke will be deleted instead. Note that this procedure
does not modify the ordering of strokes in the image.
Thus, it will delete any stroke that is entirely hidden,
so long as there is some penalty for including strokes
in the painting (i.e. warea > 0 or wnstr > 0).

Enlarge Stroke: If the stroke radius is below the
maximum, the stroke radius is incremented and the
stroke is reactivated. The resulting stroke becomes a
suggestion.

Shrink Stroke: If the stroke radius is above the
minimum radius, the stroke radius is decremented and
the stroke is reactivated.

Recolor: The color for a stroke is set to the average
of the source image colors over all of the visible pixels
of the stroke, and the stroke is reactivated.

4.2. Combining Steps

Individual suggestions are combined into loops in
order to guarantee that every stroke is visited by a
relaxation step.

Place Layer: Loop over image, Add Strokes of
a specified radius, with randomly perturbed starting
points.

Reactivate All: Iterate over the strokes in order
of placement, and Reactivate them.

Enlarge/Shrink All: For each stroke, Enlarge un-
til the change is rejected or the stroke is deleted. If the
stroke is unchanged, then Shrink the stroke until the
change is rejected or the stroke deleted.

Recolor All: Iterate over the strokes, and Recolor
each one.

Script: Execute a sequence of relaxation loops. To
make a painting from scratch, we use the following
script:

foreach brush size Ri, from largest to smallest,
do N times:

Reactivate all strokes
Place Layer Ri

Enlarge/Shrink All
Recolor All

We normally use N = 2. This script usually brings
the painting sufficiently close to convergence. Note
that the reactivation loops apply to all brush strokes,
not just those of the current size. For processing video,
we reduce processing time by setting N = 1 and omit-
ting the recolor and enlarge steps.

Creating a final image can take several hours, de-
pending on the image size and the painting style. Most
of the images in this paper were generated in a few
hours on a 225 MHz SGI Octane R10000. Video was
processed at low resolution (320x240) with the reduced
script above to save time, yielding a processing rate of
about 1 hour per frame.

5. Stroke Color, Texture, and Opacity

Our system provides a variety of different ways to
render an intermediate or final painting. Brush strokes
can be rendered with random color and intensity per-
turbations (as in [7]), with transparency, and/or with
procedural textures. Texture is currently omitted from
the main relaxation procedure solely for the sake of
efficiency. Furthermore, separating the rendering step
allows us to experiment with different stroke colors and
textures without needing to perform relaxation anew.
Our procedural stroke texturing is described in [8].

6. Video

The relaxation framework extends naturally to pro-
cessing video. A variety of energy formulations can
be employed for video. In the simplest formulation,
the energy of the video sequence is the sum of the en-
ergy for each frame. The target image for each video
frame is the corresponding image in the source se-
quence. For efficiency and temporal coherence, we can
use the painting for one frame as the initial painting for
the next frame. For speed, we currently process each
frame sequentially; a more general extension would be
to perform relaxation over the entire sequence in arbi-
trary order.

This method can be improved if optical flow infor-
mation is available [12, 9]. Optical flow is a measure of
the motion of scene objects projected onto the image
plane. Warping brush strokes by optical flow gives the
impression of brush strokes moving to follow the mo-
tions of objects in the scene. We compute flow using
a variant of coarse-to-fine differential motion estima-
tion [17]. In order to generate the initial painting for a
frame, we warp the stroke positions by the optical flow
before relaxation. This gives a good initialization for
the next frame.

This yields a relatively clear video sequence, with
much less flickering than occurs in previous algorithms.
In particular, it is possible to paint a video sequence
with much larger strokes than before. However, the
temporal coherence is far from perfect, and more work
remains to be done in this area.

7. Interaction and Metapainting

The energy formulation is well-suited for an inter-
active painting application. In this view, the software
functions as a high-level paintbox, allowing the user to
make artistic decisions at any stage and at any level of
abstraction in the painting process. In particular, the
user may:

• Select overall painting styles.

• Select different styles for different image regions.

• Place individual brush strokes, as suggestions or
by decree.

We refer to this approach as metapainting. (A related
system was described by Salisbury et al. for pen-and-
ink illustration [15].)

In our implementation, the user has complete free-
dom to make these choices before, during, and after
relaxation. For example, the user might select an over-
all style for an image and perform a relaxation. Af-
ter seeing the result, the user decides that a particular
part of the image should be emphasized, paints a new
appearance weight function, and then performs relax-
ation again. The user then realizes that she desires
specific brush strokes in one image region, and then
paints them in.

We believe that interactive metapainting can be a
very powerful tool for image-making, combining the
ease of an automatic filter with the fine control of a
digital paint system. The artist holds absolute con-
trol over the appearance of the final painting, without
being required to specify every detail. The appeal is
even greater for video processing, where one can au-
tomatically propagate artistic decisions between video
frames.

The system is currently too slow to provide tight in-
teractivity. With faster hardware, the user feedback
loop can be made tighter. We look forward to the
day when it is possible to visualize changes in painting
styles at interactive rates.

8. Implementation Details

In this section, we describe some of the algorithms
and data structures used in our implementation to
avoid redundant computation.

Lazy evaluation and partial result caching are used
throughout our code. The values of each subterm in the
energy function are cached, and are only updated when
they change. For example, one image encodes the per-
pixel value of the weighted color difference (WCD) be-
tween the painting and source image (i.e. the summand
of Eapp). Whenever a pixel value changes, the corre-
sponding value in the WCD image is updated. The
sum of the WCD image is also updated by subtract-
ing the old value and adding the new value. Similar
methods are used for other the energy terms.

Figure 4. Consecutive frames from a painterly animation rendered at low-resolution (320x240).

8.1. Stroke Relaxation

We now describe the details of the stroke relaxation
procedure introduced in Section 4.

Performing a search for a locally optimal set of
stroke control points would be prohibitively expensive
even with dynamic programming; the cost is a prod-
uct of the number of per-pixel operations, the cost of
scan-converting a curve section, and an exponential in
the size of the search neighborhood. A key idea of
the relaxation procedure is to perform relaxation over
a simpler energy function that approximates the true
energy, and has roughly the same minima as the true
energy. The true stroke energy will only be evaluated
once, for the resulting suggestion.

Our goal is to replace initial stroke S with a stroke
T , where T has the same color and thickness as S, and
T minimizes the new energy E(P − S + T). This is
equivalent to minimizing the change in energy E(P −
S +T)−E(P −S), because E(P −S) is constant with
respect to T . This change can be evaluated faster than
the energy.1

We build an approximate energy function I(T) ≈
E(P − S + T) − E(P − S) over which to search. In
this new energy function, a brush stroke is modeled
as the union of discs, each centered at a control point.
This simpler shape will allow us to use a faster dynamic
programming algorithm, because the shape of the ap-
proximation depends locally on only one control point,
and a computation over a disc can easily be cached.

The search is restricted in order to ensure that ad-
jacent control points maintain a roughly constant dis-
tance from each other. This is done by adding an ex-
tra term to the painting energy function: Emem(T) =
wmem

∑
vi∈T (||vi−vi+1||−R)2, for a stroke T of radius

R with control points vi. This is a variant of membrane
energy [10]. This energy is included in the painting en-
ergy by summing it over every paint stroke.

1We use + and − in the set theoretic sense when applied to
paintings and strokes, e.g. P + T = P ∪ {T} = painting P with
stroke T added. E(P) is a scalar, and thus E(P1) − E(P2) is a
scalar subtraction.

All of the terms of the true energy function E(P)
have corresponding terms in the approximation I(T):

I(T) = Iapp(T)+Iarea(T)+Instr (T)+Icov (T)+Imem(T)

The number of strokes and spacing terms are measured
exactly: Istr (T) = wnstr , Imem(T) = Emem(T). The
area energy Iarea is approximated as the product of the
stroke’s radius and its control polygon arc length.

The appearance (Iapp) and coverage improvements
(Iempty) are approximated by making use of auxiliary
functions IR(x, y) and Ip(x, y). This formulation allows
us to use lazy evaluation to avoid redundant computa-
tion of the auxiliary functions. Ip(x, y) measures the
energy improvement due to changing pixel (x, y) to the
color of the stroke, unless the stroke would be hidden
by another stroke at that pixel. IR(x, y) sums Ip(x, y)
over a circular disc around (x, y). These functions are
given by:

IR(x, y) =
∑

||(u,v)−(x,y)||≤R

Ip(u, v)

Ip(x, y) = h(x, y)wapp(x, y)IC(x, y)− c(x, y)wempty

IC(x, y) = ||C −G(x, y)|| −

||(P − S)(x, y)−G(x, y)||

C is the color of the brush stroke. c(x, y) and h(x, y)
are indicator functions computed from the fragment
buffer: c(x, y) is 0 if (x, y) is covered by any paint, 1
otherwise; h(x, y) is 0 if (x, y) is covered by a stroke
that was created after S. (The new stroke will take
the same place as the old stroke in the painting; e.g. if
S is completely hidden, then T may be as well.) Sum-
ming IR(x, y) over the control points for a stroke gives
an approximation to the appearance and coverage im-
provement terms due to placing the stroke:

Iapp(T)+Iempty(T) =
∑

(x,y)∈control points of T

IR(x, y)

With these functions, we can modify a stroke as fol-
lows:

Measure E(P)
Select an existing stroke S ∈ P

Remove the stroke, and measure E(P − S)
Optionally, modify some attribute of the stroke
Relax the stroke:

S′ ← S

do lastImp ← I(S′)
S′ ← arg minT∈neighborhood(S′) I(T)

while I(S′) < min{lastImp, H}
Measure the new painting energy E(P + S ′ − S).
P ← arg minQ∈{P,P−S,P+S′−S} E(Q)

The do loop above represents the actual stroke re-
laxation. We use a modified version of the dynamic
programming algorithm described by Amini et al. [2].
This method creates dynamic programming tables con-
taining optimal control point configurations for sub-
problems of strokes of length 2 to n; the minimum en-
try in the n-th table corresponds to the locally optimal
stroke of length n. We modify this procedure to find
the optimal stroke length as well as control point lo-
cations, by observing that the dynamic programming
tables contain the minimum stroke energies for each
stroke length. Thus, we can find the optimal number
of control points simply by locating the minimum el-
ement among all tables corresponding to the allowed
stroke lengths (as specified by the painting style). In
addition, we extend the length of the stroke before each
relaxation step, by adding a point to the end of the
stroke, thus allowing the stroke to lengthen as well as to
shrink. The algorithm is described in detail in [8]. The
constant H is used to prevent pursuing strokes that
appear to be unprofitable. We normally use H = 0; H

could also be determined experimentally.

8.2. Fragment Buffer

When we delete a brush stroke, we need to find out
what the new painting looks like. A simple (but exceed-
ingly slow) method would be to rerender the revised
painting from scratch. Because brush stroke deletion
is a very common operation in the relaxation process,
we need a faster way to delete brush strokes.

We choose an approach similar to an A-buffer [3],
called a fragment buffer. Each pixel in the image is
associated with a list of the fragments that cover that
pixel, as well as their associated stroke indices. A frag-
ment is defined as a single RGBA value, and each list
is sorted by depth. In our current implementation, this
is equivalent to sorting by the order of stroke creation.

To compute the color of a pixel, we composite its
fragment list from bottom to top, unless the top frag-
ment is opaque. Creating or deleting a stroke requires

generating or deleting one fragment for each pixel cov-
ered by the stroke. In our experiments, the length of a
typical fragment list rarely exceeds 5 for automatically-
generated images.

The fragment buffer is also useful for other opera-
tions, such as picking a stroke from a mouse click.

There are a variety of alternatives to this method,
based on saving partial rendering results; we chose this
as a good trade-off between simplicity and efficiency.

8.3. Parallel Implementation

We have implemented a parallel version of the relax-
ation algorithm for better performance. A server sys-
tem contains the main copy of the painting, and client
machines provide suggestions to the server. Whenever
a client generates a suggestion, it is sent to the server
over the socket. These suggestions are kept in a queue
on the server, and are tested in the order they were re-
ceived. Whenever the server commits a change to the
painting, it is announced over the socket, and adopted
by all clients in their local copies of the painting.

This system is limited by the main processor’s speed
in processing suggestions. We have also devised (but
not implemented) a decentralized version in which any
processor may commit changes to a painting after ac-
quiring a lock on the appropriate image region.

9. Discussion

We have presented a novel method for generating
painted imagery from images and video. This is done
by searching for a painting that minimizes some en-
ergy function. The style of the painting is completely
specified by the energy function, constraints on stroke
sizes, the brush textures, and, to some extent, the re-
laxation steps. This allows us to produce an econom-
ical painting style, and to easily accommodate user-
specified constraints or spatial variations in style. In
the long run, it provides a general framework for de-
signing painting styles in terms of energy functions.

The relaxation algorithm requires substantially
more computation time than do previous algorithms,
but can produce images in novel styles. The distinction
is analogous to the situation in photorealistic graphics,
with a continuum from fast, low-end methods to more
expensive high-end methods. Painting can be done at
different points along the continuum: relaxation can be
combined with another painting algorithm, and compu-
tation time can be traded off for more polished results.
As in photorealistic graphics, we expect that the high-
end painterly rendering of today can be a part of the
consumer-level graphics of tomorrow.

10. Future Work

The most pressing need is for speed; we were unable
to test many of the styles that we wanted, because they
would have been too slow to compute. We are hopeful
that faster hardware in the next few years will go a long
way to speeding up the computation. The suggestion
mechanism could also be tuned.

Given faster computation, we can explore standard
methods for finding better minima, including anneal-
ing, Monte Carlo methods, and genetic algorithms, any
of which would be straightforward to incorporate into
relaxation. Likewise, stroke relaxation could be im-
proved by using a better approximation, and including
stroke color, radius, and texture in the search.

The temporal coherence of painted video needs im-
provement. We experimented with an energy term that
penalizes the difference between painted frame ti and
the painted frame ti−1 warped to ti. This produced
very poor results, because the brush strokes are placed
in frame ti−1 without regard to the scene geometry.
For example, a stroke that is placed across the silhou-
ette of a white surface against a white background will
not work if a change of viewpoint reveals a red surface
at the silhouette. Global optimization over an entire
sequence may give better results.

A more sophisticated user interface would be help-
ful, especially one that provides diagnostic tools for es-
timating energy functions from examples or from local
information.

From an artistic standpoint, the most interesting fu-
ture work is the exploration of the energy functions and
painting styles. Thus far, we have only scratched the
surface of painting and animation styles that can be
created by energy minimization.

11. Acknowledgments

We are grateful to Ken Perlin and Denis Zorin
for fruitful discussions and feedback, to Chris Breḡler
for pointing out the work of Amini et al., to Robert
Buff and Will Kenton for help with capturing in-
put images and video, and to Philip Greenspun
(http://photo.net/philg) for Figure 3(a). This work
was supported in part by NSF Grant DGE-9454173.

References

[1] Adobe Systems. Adobe Photoshop. Software package.

[2] A. A. Amini, T. E. Weymouth, and R. C. Jain. Using
Dynamic Programming for Solving Variational Prob-
lems in Vision. IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence, 12(9):855–867, Sept.
1990.

[3] L. Carpenter. The A-buffer, an Antialiased Hidden
Surface Method. Computer Graphics (SIGGRAPH ’84
Proceedings), 18(3):103–108, July 1984.

[4] C. Curtis, A. Gooch, B. Gooch, S. Green, A. Hertz-
mann, P. Litwinowicz, D. Salesin, and S. Schofield.
Non-Photorealistic Rendering. SIGGRAPH 99 Course
Notes, 1999.

[5] E. Daniels. Deep Canvas in Disney’s Tarzan. In SIG-
GRAPH 99: Conference Abstracts and Applications,
page 200, 1999.

[6] P. E. Haeberli. Paint By Numbers: Abstract Im-
age Representations. In F. Baskett, editor, Computer
Graphics (SIGGRAPH ’90 Proceedings), volume 24,
pages 207–214, Aug. 1990.

[7] A. Hertzmann. Painterly Rendering with Curved
Brush Strokes of Multiple Sizes. In SIGGRAPH 98
Conference Proceedings, pages 453–460, July 1998.

[8] A. Hertzmann. Paint by Relaxation. Technical Report
TR2000-801, NYU Computer Science, May 2000.

[9] A. Hertzmann and K. Perlin. Painterly Rendering for
Video and Interaction. In Proceedings of the First An-
nual Symposium on Non-Photorealistic Animation and
Rendering, June 2000.

[10] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Ac-
tive Contour Models. International Journal of Com-
puter Vision, 1(4), 1987.

[11] A. W. Klein, W. W. Li, M. M. Kazhdan, W. T. Cor-
rea, A. Finkelstein, and T. A. Funkhouser. Non-
photorealistic virtual environments. Proceedings of
SIGGRAPH 2000, July 2000.

[12] P. Litwinowicz. Processing Images and Video for an
Impressionist Effect. In SIGGRAPH 97 Conference
Proceedings, pages 407–414, Aug. 1997.

[13] P. Litwinowicz. Image-Based Rendering and Non-
Photorealistic Rendering. In S. Green, editor, Non-
Photorealistic Rendering, SIGGRAPH Course Notes.
1999.

[14] B. J. Meier. Painterly Rendering for Animation. In
SIGGRAPH 96 Conference Proceedings, pages 477–
484, Aug. 1996.

[15] M. P. Salisbury, M. T. Wong, J. F. Hughes, and D. H.
Salesin. Orientable Textures for Image-Based Pen-
and-Ink Illustration. In SIGGRAPH 97 Conference
Proceedings, pages 401–406, Aug. 1997.

[16] M. Shiraishi and Y. Yamaguchi. An algorithm for
automatic painterly rendering based on local source
image approximation. NPAR 2000 : First Interna-
tional Symposium on Non Photorealistic Animation
and Rendering, pages 53–58, June 2000.

[17] E. P. Simoncelli, E. H. Adelson, and D. J. Heeger.
Probability Distributions of Optical Flow. In Proc.
IEEE Conference of Computer Vision and Pattern
Recognition, June 1991.

[18] G. Turk and D. Banks. Image-Guided Streamline
Placement. In SIGGRAPH 96 Conference Proceed-
ings, pages 453–460, Aug. 1996.

