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A1. Additional results

Additional results on real scenes We show four additional scenes captured by the Nexus5 cellphone camera in Figure A1
and seven scenes captured by the Samsung S3 cellphone camera in Figure A2. Among the seven Samsung scenes, three of
them already appeared in [9]. Here we also show flow field estimations in addition to the depth map estimations. The scene,
camera and imaging conditions of all our data are summarized in Table A1.

Comparison to the DFF method [8] On the Samsung dataset, we compare our LDFD and GDFD results to the results
of [8]. Observe that our two-image method outperforms the DFF method even through the DFF technique takes a full focal
stack of 25 to 41 images as input.

Comparison of GDFD to the HCF semi-dense method [4] In Figure A1 and Figure A2, we qualitatively compare our
results to that of the recent hierarchical consensus framework [4] (HCF) applied to the sparse results of LDFD. Our method
produces superior results with more accurate discontinuities. This is also shown in Figure A3 which contains comparisons
on the dataset synthesized from the Middlebury dataset. We have already shown quantitative comparisons on this dataset in
[9].

We tune the two main HCF parameter using grid search and choose the best setting by visual inspection. The depth map is
scaled to be in unit of pixels before processing. We use an HCF smoothness weight of 0.4 for both depth and flow, and use
an outlier cost of 0.03 for depth and 10 for flow.

Comparison of GDFD to the SPS semi-dense method [11] In Figure A1, A2 and A3 we also show comparison to the
slanted-plane-smoothing method [11] (SPS) applied to the sparse results of LDFD. SPS tends to produce outliers where the

scene camera ISO resolution aperture focusing distances depth range camera motion scene motion flow magnitude
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r bottles Samsung S3 N/A 640⇥ 360 F2.6 1.2cm, 2.5cm 1cm -2m yes none < 5 pixels
telephone Samsung S3 N/A 640⇥ 360 F2.6 1.2cm, 2.5cm 1cm -2m yes none < 5 pixels

plants Samsung S3 N/A 640⇥ 360 F2.6 1.2cm, 2.5cm 1cm -3m yes none < 5 pixels
window Samsung S3 N/A 640⇥ 360 F2.6 1.2cm, 2.5cm 1cm-1 yes none < 5 pixels
flower2 Nexus5 100 3280⇥ 2464 F2.4 13cm, 45cm 10cm-30cm yes none < 110 pixels

christmas Nexus5 152 3280⇥ 2464 F2.4 13cm, 45cm 15cm-80cm yes none < 70 pixels
sushi Nexus5 100 3280⇥ 2464 F2.4 13cm, 45cm 15cm-80cm yes none < 40 pixels

potrait2 Nexus5 100 3280⇥ 2464 F2.4 13cm, 45cm 20cm-10m yes non-rigid < 140 pixels
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keyboard Samsung S3 N/A 640⇥ 360 F2.6 1.2cm, 2.5cm 1cm -2m yes none < 5 pixels
balls Samsung S3 N/A 640⇥ 360 F2.6 1.2cm, 2.5cm 1cm -2m yes none < 5 pixels
fruit Samsung S3 N/A 640⇥ 360 F2.6 1.2cm, 2.5cm 1cm -2m yes none < 5 pixels

bagels Nexus5 222 3280⇥ 2464 F2.4 12cm, 30cm 10cm-30cm yes rigid < 80pixels
flower Nexus5 100 3280⇥ 2464 F2.4 8cm, 16cm 10cm-30cm yes piecewise-rigid < 80 pixels

bell Nexus5 143 3280⇥ 2464 F2.4 16cm, 90cm 15cm-80cm yes piecewise-rigid < 60pixels
potrait Nexus5 180 3280⇥ 2464 F2.4 16cm, 90m 20cm-1 yes non-rigid < 150 pixels
patio Canon7D 100 5184⇥ 3456 F4 10m, 20m 6m -1 no piecewise-rigid < 50 pixels
stairs Canon7D 100 5184⇥ 3456 F16 3m, 10m 2m -1 no non-rigid < 70 pixels

Table A1: Scenes, cameras and imaging conditions (Figures 1, 9, 10, A1, and A2).
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input LDFD (depth) GDFD (depth) SPS (depth) [11] HCF (depth) [4] LDFD (flow) GDFD (flow) SPS (flow) [11] HCF (flow) [4]
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Figure A1: Additional results on real scenes we captured with the Nexus5 phone. Note that SPS, HCF and GDFD are all
applied to the same input, generated by LDFD.

LDFD data is sparse, and produces blocky boundaries around outliers. Our GDFD optimization is much more robust to these
problems.

The SPS method has eleven parameters. We set the number of local planes to 500, as our model uses N = 500 control
points. Starting from the recommended setting for the KITTI dataset by the authors [11], we tuned the remaining parameters
by trial and error. We used an SPS appearance weight of 1000 and regularization weight of 10. We set length and size weight
both to 1000 and the disparity weight to 1000. The hinge and coplanar weights were set to 0.2. The thresholds for coplanar
label, hinge label and inier are set to 15, 2 and 3 respectively. Before running SPS, we scale the LDFD depth map to the
range [100, 150] and the DFD flow maps to the range [0, 255]. In this way, the depth and flow values of our problem are have
similar magnitude to the disparity range that SPS was designed to process.

Discussion It may appear surprising that the two semi-dense methods [4, 11] perform so poorly on our DFD problem despite
our efforts to tune their parameters. We see two main reasons. First, defocus is usually much sparser and noisier than stereo
data which the two methods were designed to handle. Second, both SPS and HCF initializes the pixel-based depth map and
the flow field by inpainting the LDFD results with a naive scanline-based method. Although this works reasonably well on
clean stereo data, it performs poorly on our noisy defocus data.

See [1] for more results.
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input image 1 LDFD (depth) GDFD (depth) SPS (depth) [11] HCF (depth) [4] DFF (depth)[8] LDFD (flow) GDFD (flow) SPS (flow) [11] HCF (flow) [4]
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Figure A2: Results on Samsung data [8]. We take two input images out of the full focal stack of 20-40 images, and compute
LDFD results from the image pair. The GDFD, SPS and HCF results are computed from the LDFD results. The DFF results
are computed from the entire focal stack. Despite this the DFF depth maps are significantly less detailed than both LDFD
and GDFD.



input image 1 groundtruth LDFD GDFD SPS [11] HCF [4]
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Figure A3: Qualitative results on a synthetic dataset with groundtruth. We generate input images from the Middlebury stereo
dataset, where displacement between images is due to parallax and is along scanlines. The black pixels in the groundtruth
correspond to pixels whose disparity is not available in the dataset. We ran our Local DFD method to estimate depth and flow
and applied the Global DFD optimization and the two semi-dense methods to the LDFD results.



A2. Basic Expressions

Below we provide expressions and proofs supporting the technical discussions in [9].

A2.1. Analytical expression for blur kernels kd1 and kd2

Consider a thin lens model with focal length F and aperture radius A. The defocus radii at focus settings f1 and f2 are

r

n

(d) = A

✓
1� f

n

F

◆
+Af

n

d n = 1, 2 . (A1)

A negative defocus radius indicates that the sensor plane is behind the point’s in-focus plane.

The magnification difference between images i1 and i2 is

m12 = f1/f2 . (A2)

After correcting for magnification, the blur kernels kd1, k
d

2 for a point of depth d are pillbox kernels with radius r1(d) and
m12r2(d), respectively:

kd1(x, y) = K(x, y; r1(d))

kd2(x, y) = K(x, y;m12r2(d))
(A3)

where K(x, y; r) is the pillbox blur kernel with radius r

K(x, y; r) =

(
1

⇡r

2 if x2 + y

2  r

2

0 otherwise.
. (A4)

We use the matlab function fspecial(’disk’, |r|) to compute K(x, y; r).

A2.2. Expressions for controlled focus

From Eq. (A1) and (A2) we know the difference in blur kernel radii between the two images is

r1(d)�m12r2(d) = A

✓
1� f1

f2

◆
. (A5)

Our tiny blur assumption requires the defocus blur to differ by two pixels for all depths

r1(d)�m12r2(d) = 2 . (A6)

Therefore given focus setting f1, we choose f2 to satisfy

f1

f2
= 1� 2

A

. (A7)

A2.3. Analytical expressions for Figure 5 in [9]

We give analytical expressions for the curves plotted in Figure 5. These curves characterize the depth variance and oper-
ating range of Local DFD method for a Nexus5 cellphone camera. We reproduce that figure in Figure A4 for the reader’s
convenience.

Analytical expression for the depth variance ��2
p We first derive the depth variance �p for patch centered at pixel p in the

first image from second-order Taylor expansion of the likelihood function in Eq. (4), assuming that no illumination change
occurs to the patch (i.e., the scalar factor ↵ = 1).
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Figure A4: Reproduction of Figure 5 in [9]. (a) Predicting depth uncertainty for three 9 ⇥ 9-pixel patches taken from the flower
photo in Figure 1 (outlined in color on the left). For each patch, we calculate the standard deviation of the defocus kernel’s maximum
likelihood (ML) estimate as a function of the ground-truth kernel. This amounts to computing the second derivative of Eq. (4) at the ML
depth. The plots confirm our intuition that defocus estimation should be much more precise near an edge (green patch) than on patches
with weak (blue) or no (red) texture. (b) Taking the Nexus N5’s lens parameters into account, it is possible to convert the plot in (a) into a
prediction of actual distance errors to expect from DFD on those patches. (c) Enforcing the tiny blur condition. We first focus at the desired
distance (point on the x axis) and then set the second focus to maximize the condition’s working range (see Section A2.3 for the analytic
expression). The plots show the working ranges of Schechner and Kiryati’s optimality condition (red) and of ours (red and pink).

Below we show that computation of the depth variance ��2
p amounts to computing the second derivative of the likelihood

function at the maximum likelihood estimate of depth and flow (d⇤p,v
⇤
p):
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Derivation From a second-order Taylor expansion, the likelihood function in Eq. (4) can be approximated by
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(A10)

where Hv denotes the 2 ⇥ 2 hessian matrix with regard to vp at (dp,vp).1 We get Eq. (A8) by comparing Eq. (A10) to
Eq. (5).

In Eq. (4), assuming no illumination change occurs (i.e., ↵ = 1), the likelihood function is

� log Pr(dp = d,vp = v
�� i1, i2) =

1

2
�

�2
i

X

q2⌦(p)

[(i1 ⇤ gd1)(q)� ↵ · (i2 ⇤ gd2)(q+ v)]2. (A11)

where i1 and i2 denotes the pair of corresponding patches in the input images under the hypothesis (d,v).

By the convolutional theorem and Parseval’s theorem, we can express the likelihood equivalently in the Fourier domain as

� log Pr(dp = d,vp = v
�� i1, i2) =

1

2
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�2
i

X

!

|I1(!)Gd

1(!)� I2(!)G
d

2(!)|2. (A12)

where I1 and I2 denote the Fourier transform of i1 and i2. The Fourier transform of the unbiased defocus-equalization filters
gd1 and gd2 are denoted by Gd

1 and Gd

2,2 which are real numbers since gd1 and gd2 are both symmetric.
1The approximation does not have a first-order term due to Fermat’s theorem.
2We denote Fourier transforms of images and kernels in capital letters.



Taking second-order derivative with regard to depth d on both sides of Eq. (A12), we have
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At each frequency !,3:
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The term I2 denotes complex conjugate of I2.

To further expand the above expression, we compute the second-order derivatives of terms |Gd
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Plugging Eq. (A15) into Eq. (A14) we get
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At the ground-truth depth (i.e. d = d

⇤), I1Gd

1 � I2G
d

2 vanishes and thus the first term of Eq. (A16) becomes 0. Applying this
simplification and plugging the result back into Eq. (A13) we get
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By transforming Eq. (A17) back to the image domain and applying the convolutional theorem and Parseval’s theorem, we
derive Eq. (A9) immediately. ⇤
Figure 5(a): The x-axis is the defocus radius r1 of the first patch whose ground-truth depth is d

⇤. The y-axis is the depth
variance in units of pixels, and denoted by �

r

. According to Eq. (A1),

�

r

= Af1�p . (A18)

Figure 5(b): The x-axis corresponds to the ground-truth object distances z(r⇤). The y-axis corresponds to the estimated
object distances. We plot the interval of distance corresponding to defocus radii r 2 [r⇤ � �

r

, r

⇤ + �

r

], and compute them
with

z(r) =
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r
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◆�1

. (A19)

according to Eq. (A1).

Figure 5(c): The x-axis corresponds to the in-focus distance of the first focus setting z(0) = (1/F � 1/f1)
�1. The y-axis

corresponds to object distances. Given defocus radius r and focus setting f1, it is computed by Eq. (A19). The red and pink
zone plots our operating range in distance [z(1), z(�3)], while the red zone plots the operating range under Schechner and
Kiryati’s condition [7] [z(1), z(�2)].

3 In Eq. (A14)-(A17) and Eqs. (A24)-(A28), all terms depend on the frequency !. We omit dependence on frequency ! for brievity.



A3. Proof of Proposition 1 : Defocus Equalization Filters

Proposition 1 If i1 and i2 are fronto-parallel image patches related by a 2D translation v and an intensity scaling ↵ that is
sufficiently close to one, the image error

(i1 ⇤ gd1)(p)� ↵ · (i2 ⇤ gd2)(p+ v) (A20)

follows the same distribution as the noise in i1 and i2. The defocus-equalization filters gd1 and gd2 are defined as

gd1 =F�1
⇥
F [kd2]

�q
F [kd1]

2 + F [kd2]
2
⇤

gd2 =F�1
⇥
F [kd1]

�q
F [kd1]

2 + F [kd2]
2
⇤ (A21)

where F [],F�1
⇥⇤

denote the Fourier transform and its inverse.

Proof sketch Let h be the hidden, defocus-free version of the first patch. Assuming the illumination changes by ↵ between
the two patches, the second hidden image is ↵�1h. Denote the defocus blur kernels associated with the two input patches at
the ground-truth depth by k1 and k2. The two patches are given by

i1 = h ⇤ k1 + n1 , (A22)
i2 = ↵

�1h ⇤ k2 + n2 , (A23)

where n1 and n2 are i.i.d. zero mean Gaussian noise variables of variance �2
i

.

Transforming Eqs (A22)-(A23) to the Fourier domain we get

F [i1] = I1 = HK1 +N1 , (A24)
F [i2] = I2 = ↵

�1HK2 +N2 . (A25)

Now we compute the Fourier transform of the image error defined in Eq. (A20), under depth hypothesis d:
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which is a Gaussian random variable.

At each frequency, the mean of the Gaussian equals zero
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according to the definition of defocus-equalization filters. The variance of Eq. (A26) (|Gd

1|2 + ↵

2|Gd

2|2)�2
i

satisfies

lim
↵!1

�
|Gd

1|2 + ↵

2|Gd

2|2
�
�

2
i

= (|Gd

1|2 + |Gd

2|2)�2
i

= �

2
i

. (A28)

Thus for each frequency, Eq. (A26) follows a Gaussian distribution of mean zero and variance �2
i

. Transforming back to the
image domain, Eq. (A20) also follows a Gaussian distribution of zero mean and variance �2

i

. ⇤

A4. The global DFD Optimization

In the following we provide a detailed analysis of the global DFD optimization problem, which allows us to solve the
discrete-continuous problem by block descent on four subsets of variables:

(1) spline weights w and segment label of pixels s;

(2) patch-based depth map and flow field P = (d,v), depth- and flow-specific parameters of the spline model D,U,V,
and the segment labels of control points t;

(3) occlusion relationships between each pair of segments O; and

(4) feature vectors of the control points C.

The first two subsections prove the equivalence of our objective function [EDFD(P,S(M),Z) + Eprior(M,Z)] in Eq. (1)
of the paper with two alternative expressions. These theoretical results builds the foundation for two key steps of our block
descendant algorithm. This leads to the algorithm we give in Section A4.3, also shown as Algorithm 1 in [9].



A4.1. Optimization as MRF minimization

In this subsection, we consider the global DFD optimization over the spline weights w and pixel segmentation s, while fixing
the remaining variables d,v,C,D,U,V and t.

We start by introducing an auxiliary variable s⇤, which is defined as the labels of the front-most segments of patches. Given
the patch-based segment labels s⇤ and the pixel-based segment labels s, we can define the front-most segment of patches as

⌦
f

(p) = {q : q 2 ⌦(p) and s⇤p = sq} . (A29)

The following proposition shows that the global optimization over (w, s) is equivalent to an MRF minimization problem
when ignoring the dependence of s⇤ on s.

Proposition 2 The global DFD optimization problem of Eq. (1)

min
w,s

[ EDFD + Eprior ] s.t. 8q,
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>:
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nP

n

wqn = 1

(A30)

is equivalent to the Markov Random Field minimization problem
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smoothness term

. (A31)

The data term and the smoothness term can be written respectively in the form
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Vpq(sp, sq) =

(
�b if sp 6= sq

0 if sp = sq
. (A33)

In the MRF data term, the functions e

(0)
q , e(1)qn , e(2)qmn

are indepent of w and s when fixing the labels s⇤ of the front-most
segment of all patches.

Proposition 2 shows that we can solve the minimization problem in Eq. (A30) in two layers. In the inner layer, we can compute
for each pixel q the MRF data term of all possible segmentation labels sq by solving the minimization problem in Eq. (A31).
In the outer layer, we can solve the MRF minimization problem in Eq. (A31) to obtain the pixel-based segmentation labels.

To define the MRF terms concretely, we introduce three additional auxiliary functions of sq
Nq(sq) = |{p : q 2 ⌦

f

(p)}| = |{p : q 2 ⌦(p) and s⇤p = sq}| , (A34)
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With these terms we have the following corollary:

Corollary 1 The functions e(1)q , e(2)qn , e(3)qmn

in Eq. (A32) are given by
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is defined in Eq. (12) as 1
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We prove the proposition and the corollary with three lemmas.

Lemma 1 Let w be a N ⇥ 1 weight vector corresponding to a convex combination, i.e.
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w
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scalar x and N ⇥ 1 vector x, the following equality holds:
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Proof sketch We start by expanding the left handside of Eq. (A39)
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Since w is a weight vector corresponding to a convex combination, for any N ⇥ 1 vector z, we have
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By applying Eq. (A41) with z = x� x we can rewrite the right handside of Eq. (A40) as
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By applying Eq. (A41) with z = x we can expand the second term on the right handside of Eq. (A42) as
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Since
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= 1, we have X
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Using the fact that
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By plugging Eq. (A46) into Eq. (A42) we obtain Eq. (A39). ⇤
Lemma 2 The local prior term
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Proof sketch We first swap the two sums on the left handside of Eq. (A47)
X

p

X

q2⌦(p)

Lqp =
X

q

X

p:q2⌦(p)

Lqp

=
X

q

X

p:q2⌦f (p)


1

2�2
d

(dp � d0q)
2 +

1

2�2
v

|vp � v0
q|2
�
+
X

q

2

4
X

p:q2⌦(p)

⌧

o

�
X

p:q2⌦f (p)

⌧

o

3

5

=
X

q

X

p:q2⌦f (p)


1

2�2
d

(dp � d0q)
2 +

1

2�2
v

|vp � v0
q|2
�
+
X

q

(81�Nq)⌧o

(A48)

The contribution relevant to the depth of pixel q is
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The last step is obtained by completing the squares.

Further, we incorporate the hard constraint d0q =
P

n
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q in Eq. (9) into the first term of Eq. (A49), apply Lemma 1 to
depth, and get
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Also note that X
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Plugging Eq. (A50) and Eq. (A51) into Eq. (A49), we obtain
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Similar relationships can be derived for the two flow fields:
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Plugging Eq. (A52) and (A53) into Eq. (A48) we get derive Eq. (A47). ⇤
Lemma 3 The segment-specific smoothing term Esmo can be rewritten as
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Proof sketch For each pixel q
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Since m and n are symmetric in �
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Similarly, we also have X
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Summing Eq. (A56) and Eq. (A57) over all pixels q we get Eq. (A54). ⇤
Proof sketch of Proposition 2 In the top-down term Eprior, the discontinuity penalty term Ebnd is equivalent to the MRF
smoothness function V defined in Eq. (A33). All the other four terms contributes to the data term. For the segmentation-
specific smoothness term, we use the equivalent expressions proposed in Lemma 3. We use the original expression of the
flatness term and the image coherence term. In the bottom-up term EDFD, the local likelihood term is independent of w or
s, and therefore can be omitted. We use the equivalent expression in Lemma 2 for the local prior term. Summing the above
terms and minimizing over the spline weights of each pixel wq gives the MRF data term defined in Eq. (A32). ⇤

A4.2. Optimization as robust estimation

Now we turn to minimizing EDFD + Eprior over the plane’s segment labels t, the patch-based depth map d and flow fields
v = (u, v) and the depth and flow parameters of planes in the spline model D,U,V. We show below such an optimization
problem corresponds to an robust estimation problem.

Proposition 3 The optimization problem
min
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D,U,V,t

EDFD + Eprior (A58)

is equivalent to the following problem
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where the objective function of the optimization problem is composed of two truncated quadratic terms
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and a a quadratic term
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Proof sketch of Proposition 3 The entropy term Eent, the image coherence term Eimg, and the discontinuity penalty term
of the top-down likelihood Eprior does not depend on the optimized variables. In addition we note that t only affects Esmo
Therefore the optimization problem defined in Eq. (A59)
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Algorithm 1: Global DFD
input : initial control points C, feature map f , patch likelihoods Q
output: patch-based depth and flow P = (d,v), spline parameters M = (C,D,U,V,w), scene segmentation Z = (s, t,O),

pixel-based depth and flow S(M) = (d0,v0)
1 initialize S = (0,0),D = U = V = 0, t = 0
2 repeat
3 update s and w jointly by solving MRF
4 update O by thresholding
5 update P , D,U,V and t jointly by solving IRLS
6 update Cn =

P
p(wpnfp)/

P
p wpn

7 until convergence
8 compute S(M) from spline parameters M using Eq. (8).

The first term in Eq. (A63)
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The second term on the right handside of Eq. A64 is contant to the optimized variables. Now we rewrite the last term in in
Eq. (A63). Here we use an equivalent representation of t: the set of binary indicators {�

mn

} that examines whether nearly
planes belong to the same segment. Therefore
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We reorganize the right handside of the above equation noting that the contributions of the binary indicators �
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are inde-
pendent of each other
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Summing the three terms we prove the proposition. ⇤

A4.3. Explanation of Algorithm 1

For the readers convenience we show the global DFD optimization algorithm first in Algorithm 1, and define its exact steps
as follows.

Step 3: MRF minimization and weight update (Algorithm 2) We first compute a rough estimation of the front-most
segment of each patch ⌦(p) in two steps. First, for each control point n which affects a pixel q 2 ⌦(p), we compute the
weighted distance from the patch to the point by
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Then we assign each patch-based segment label s⇤p with the segment label of the control point that minimizes distpn.

We then compute the optimal spline weight for each pixel q which solves the optimization problem defined in Eq. (A32):
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Algorithm 2: MRF minimization (Step 3 of Algorithm 1)
1 for each segment i do
2 for each pixel q, compute e

(0)
q (i) according to Eq. (A36)

3 repeat
4 for each pixel q, compute e

(1)
qn(i) and e

(2)
qmn(i) according to Eq. (A37) and (A38)

5 compute ŵp(i) according to Eq. (A68)
6 until convergence
7 compute data cost of MRF for segment label i by Eq. (A32)

8 set smoothness cost of MRF with Eq. (A33)
9 compute s by solving the MRF in Eq. (A31)

10 update wq = ŵq(sq).

This defines the outer minimization of Eq. (A31) as an Markov random field problem and we solve it with an ↵-expansion
algorithm in the second step.

Step 4: Updating the occlusion relationships The only term relevant to the occlusion relationships in the objective
function is the local prior term

P
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P
q2⌦(p) Lqp. The term can be further decomposed as a sum of contributions Lqp due

to boundaries between segment pairs (i, j):
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Each term L
ij

is a ternary function of occlusion relationship O
ij

parameterized on the patch-based depth and flow, as well
as the spline model
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Therefore, we simply update O
ij

which minimizes L
ij

.

Step 5: Robust estimation (Algorithm 3)

We first solve the robust estimation problem in Eq. (A58) with the iterative reweighted least squares algorithm shown in
Algorithm 3.

Specifically we use the following alternative expressions for the two truncated quadratic terms of Eq. (A59)
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The auxilary variable y is introduced to identify inlier patches from patches that cannot be explained by a single depth and
translational flow model.

Thus we can solve the robust estimation problem with three iterative steps:



Algorithm 3: Robust estimation (Step 5 of Algorithm 1)
1 initialize all elements of y and � to one
2 repeat
3 update d and D by solving the quadratic minimization problem in Eq. (A76)
4 update v = (u, v) and U,V by solving the quadratic minimization problem in Eq. (A77)
5 update yp for each pixel p by Eq. (A73)
6 update �mn for each pair of control points (m,n) by Eq. (A74).
7 until convergence
8 compute t from �mn by finding connected component (see text);
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update d, D by solving the quadratic minimization problem
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3. Update v = (u, v) and U,V by solving the quadratic minimization problem
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Step 2 and step 3 of the iteration requires solving a sparse linear system of up to 3N +P unknowns and 6N +2P unknowns,
respectively, where N is the number of control points in the spline model and P is the number of pixels in the image.

Once the iteration converges, we obtain a set of binary labels �
mn

, which allows us to compute the planes’ segment labels t.
To do so, we first construct a graph with each node corresponding to a control point, and connect node m and n with an edge
if �

mn

= 1. Then we compute connected components of the graph, and thus assign segment labels of the control points as
the connected component label of the corresponding node in the graph.

Step 6: Updating feature vector of control points Finally we optimize the objective function over the feature vector of
control points C. Since only the coherence term Eimg involves this variable, we can update it by minimizing Eimg over C.
This can be computed analytically by

C
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A5. Implementation

A5.1. Camera Calibration Procedure

For each camera in Table A1 (except Samsung) we follow standard camera calibration procedure to compute the magnifica-
tion parameters m12 and blur parameters
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1� f
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F
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n

= Af

n

. (A79)

Since r

n

is a function of depth, which is the inverse of the object distance, r1(0) denotes the defocus radius when the object
is at infinity.

In particular, we capture a checkerboard pattern at 5 different depths using the various focus settings. We extract corners from
the captured images to robustly estimate the relative magnification among the focus settings. This also yields an estimation
of the hidden image, from which we calculate the blur kernel radii at each depth by minimizing the image reconstruction
error. Then, we compute r

n

(0) and �r

n

for each focus setting f

n

by robustly fitting a linear model to the measured defocus
radii, according to Eq. (A1). Finally, we estimate the circular aperture radius, focal length and all focus settings jointly by
minimizing the reconstruction error in the inlier defocus radii.

A5.2. Fitting Qp (Eq. 5)

Now we discuss the fitting algorithm to compute the quadratic approximation Qp(d,v) in Eq. (5) of � log Pr(dp = d,vp =
v | i1, i2) .

Initial optical flow. In principle ANN flow estimation method can be used to initialize flow between defocus equalized
images. Here we compute an initial flow between the two input images regardless of their defocus blur, with the assumption
that the initial flow is close to the actual flow. We use Algorithm 4, a multi-scale method that propagates reliable, local flow
estimates, since it does not produce regions of coherent yet erroneous flow estimation. It is particularlly similar to the recent
work of Fields Flow [3] except for a few minor differences: (1) we initialize flow estimation at coarsest level with Coherent
Sensitive Hashing (CSH) [5] rather than KD-tree; (2) we use SSD error (with relative illumination accounted) as the “data
cost” function (3) rather than allowing flow of subpixel accuracy, we only consider flow of integer values to restrict the search
space; (4) rather than randomly disturbing the flow estimation in the random search step, we exhaustively choose among the
9 flow values surrounding the current flow estimation and (5) we reject outliers only when forward-backward consistency
check fails.

Sampling depth-flow hypotheses. We uniformly sample 32 depth values within the operating depth range and flow values
within 3 pixels from the initial flow estimated in the last step. For each depth-flow pair (d

k

,v
k

), we evaluate its likelihood
Pr(dp = d

k

,vp = v
k

| i1, i2) according to Eq. (4).

Parameter estimation. The parameters of Qp(d,v) are estimated with

d⇤p,v
⇤
p = argmax

dk,vk Pr(dp = d

k

,vp = v
k

| i1, i2) (A80)
qp = � log Pr(dp = d⇤p,vp = v⇤

p|i1, i2) (A81)
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where ⌃p are 2⇥ 2 covariance matrices since v
k

are 1⇥ 2 row vectors.

A5.3. Image features

In our implementation we define the image feature f as a 35-dimensional vector map. This is not a critical choice to our
method, and may be replaced or augmented by other features, e.g. segmentation features utilizing the recent convolutional
neural networks based boundary detection method [6].



Algorithm 4: Initial flow estimation
input : two images i1, i2
output : optical flow map v that warps from i1 to i2
parameter: number of scales S

1 i01 = downsample(i1, 2
�S), i02 = downsample(i2, 2

�S)
2 compute v

F

, v
B

as the forward and backward flow between i01 and i02 using CSH
3 compute inlier mask m by forward-backward consistency check with a threshold of 3 pixels
4 for s = 1 . . . S do
5 is1 = downsample(i1, 2

s�S), is2 = downsample(i2, 2
s�S)

6 upsample v
F

, v
B

and m with a factor of 2 by nearest-neighbor interpolation
7 update v

F

,v
B

as the forward and backward flow between is1 and is2 by 4 propagations and 3 local searches (see [3]
for the propagation algorithm)

8 update m by forward-backward consistency check with a threshold of 3 pixels

9 v = v
F

The features in our implementation includes the following:

1. Pixel locations (2D) We divide the pixels’ 2D spatial coordinates by the image diagonal so that the pixel location
features are invariant to image size.

2. Pixel colors (3D) We convert the input image to the CIE-LAB color space, and normalize each channel so that the
standard deviation in each channel is 0.1.

3. Spectral clustering eigenvectors (30D) We first compute the bilateral affinity matrix S where the affinity between
pixels p and q is defined as

Spq =

(
exp(��pq) + exp(��qp) if |p� q| < 3�

s

0 otherwise
(A84)

�pq = min(
|lp � lq|2

2�2
pl

+
|ap � aq|2

2�2
pa

+
|bp � bq|2

2�2
pb

, ✏) +
|p� q|2

2�2
s

(A85)

where l, a, b are the three channels in the LAB image. Then we compute the eigenvectors f of the laplacian matrix of
S

�z = (Diag(S1)� S)| {z }
Laplacian matrix of S

z. (A86)

Each eigenvector z is associated with an eigenvalue �. We drop the smallest eigenvector (corresponding to � = 0)
as it is all one, and take the next 30 smallest eigenvectors. We normalize each eigenvector image so that its standard
deviation is 1/30.

Since it is impractical to compute spectral clustering eigenvectors on megapixel-sized images, we exploit two work-arounds
to approximately compute them (see Figure A5):

Joint bilateral upsampling. Since even constructing the affinity matrix becomes prohibitively inefficient for large images,
we first downsample our input image to a smaller size and compute the affinity matrix and the eigenvectors at this coarse
scale. Then we upsample the eigenvector images to the original size by nearest-neighbor interpolation, and then refine them
by performing joint bilateral filtering [10] with the full-resolution input image as guidance.

Multi-scale spectral analysis. At the downsampled scale, we further reduce the computational cost of eigenvectors by
using the multi-scale DNCuts algorithm in [2].

Parameters. We downsample the image to a size whose diagonal is approximately 500 pixels. The downsampling ratio is
1/4, 1/6, 1/2, 2/3 for the Nexus, Canon, Middlebury and Samsung dataset respectively. For computing the affinities, we set
the spatial standard deviation �

s

to be 1/125 of image diagonal, and the color variance �2
pl, �

2
pa,�2

pb to be 16⇥ the variance
within the neighborhood of p, and ✏ = 16. For bilateral filtering, we set the color variance to 0.05 and spatial variance to 3⇥
the downsampling rate. We use the default parameters for the DNCuts algorithm (i.e. three scales, decimation level two).



(a) (b) (c) (d)

Figure A5: (a) Input image 1. (b) Three smallest eigenvector images (excluding the all one vector) by DNcuts on down-
sampled image. In the eigenvector images, each of the R, G, and B channel stores a single eigenvector. (c) Upsampled three
smallest eigenvector images (4⇥ the result of DNcuts). (d) Closeups in two windows. Notice that the bilateral upsampling
ensures coherence between the feature map and image details.
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