Radiosity

Alexis Angelidis Graphics Lab - Otago University 2003

-

Greatly inspired by: - Radiosity & Global Illumination, F.X. Sillon & C. Puech - SIGGRAPH'93 Education Slide Set

Lecture outline

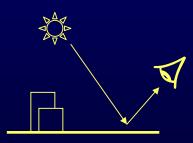
Introduction

- Preliminaries
- Radiosity equation
- Solving the equation
- Optimization
- Extensions
- Conclusion

Cornell University Program of Computer Graphics

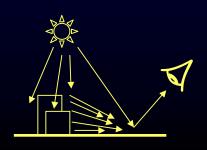
Introduction

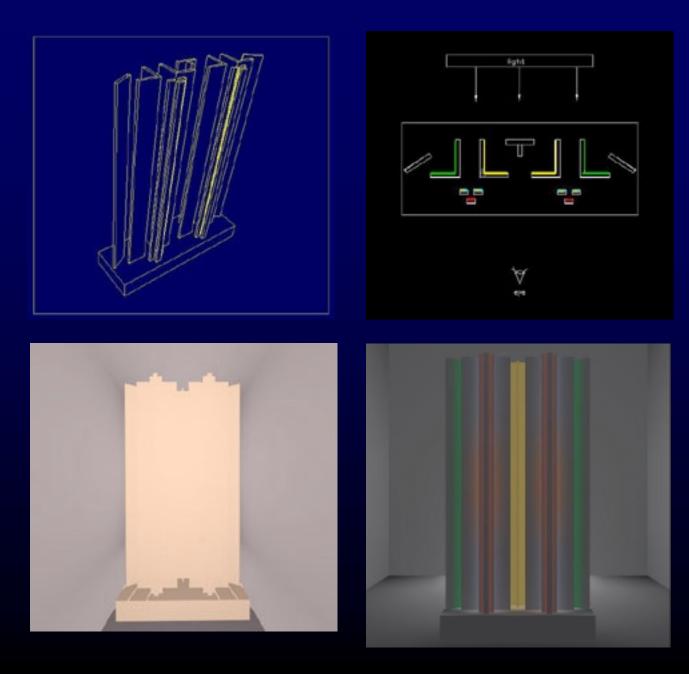
- Local illumination:
 - source of illumination = light



• Global illumination:

– source of illumination = any object





Lecture outline

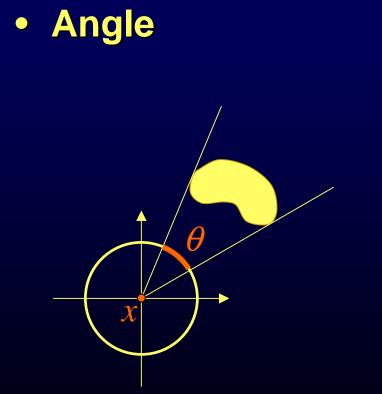
- Introduction
- Preliminaries
 - Radiosity equation
 - Solving the equation
 - Optimization
 - Extensions
 - Conclusion

Cornell University Program of Computer Graphics

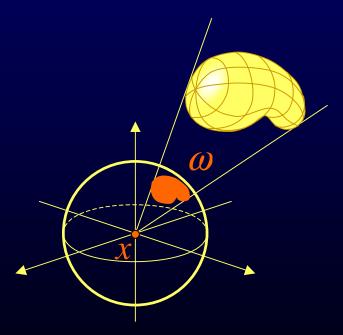
What quantities are we dealing with?

Solid angle

What is the 'size' of an object from a point?



Solid angle



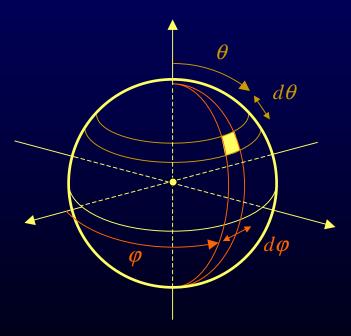
unit circle $\equiv 2\pi$ radians

unit sphere $\equiv 4\pi$ steradians (sr)

Solid angle

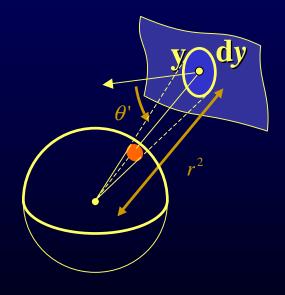
How is it related to other units?

• Solid angle in spherical coordinates



$$d\omega = \sin\theta d\phi d\theta$$

• Solid angle subtended by area dy

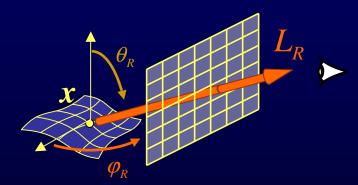


 $dy\cos\theta'$ $d\omega =$

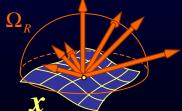
Radiance & Radiosity

What is the relevant quantity for light?

• Radiance $L_R(x, \theta_R, \varphi_R)$



• Radiosity B(x)



$$B(x) = \int_{\Omega_R} L_R(x, \theta_R, \varphi_R) \cos\theta_R d\omega_R$$

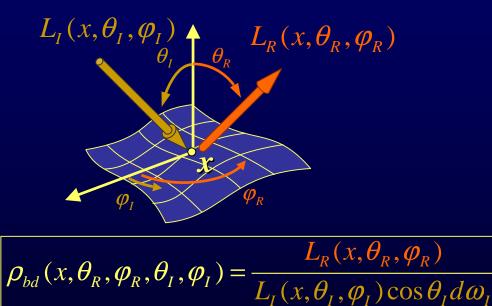
• Ideal diffuse reflector case:

$$L_{R}(x,\theta_{R},\varphi_{R}) \equiv L_{R}(x) = \frac{1}{\pi}B(x)$$

BRDF & DHRF

How are described surfaces?

BRDF (Bidirectional Reflectance Distribution Function)



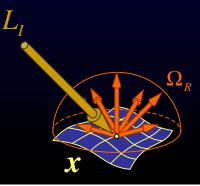
• Ideal diffuse reflector case:

$$\rho_{bd}(x,\theta_R,\varphi_R,\theta_I,\varphi_I) \equiv \rho_{bd}(x) = \frac{1}{\pi}\rho_{dh}(x)$$

 $\rho_{dh}^{R}(x) \in [0,1]$ $\rho_{dh}^{G}(x) \in [0,1]$ $\rho_{dh}^{B}(x) \in [0,1]$ $\equiv \text{`color of surface'}$ $\rho_{dh}^{B}(x) \in [0,1]$

• **DHRF** (Directional Hemispherical Reflectance Function)

$$\rho_{dh}(x,\theta_R,\varphi_R) = \frac{\int_{\Omega_R} L_R(x,\theta_R,\varphi_R) \cos\theta_R d\omega_R}{L_I(x,\theta_I,\varphi_I) \cos\theta_I d\omega_I}$$



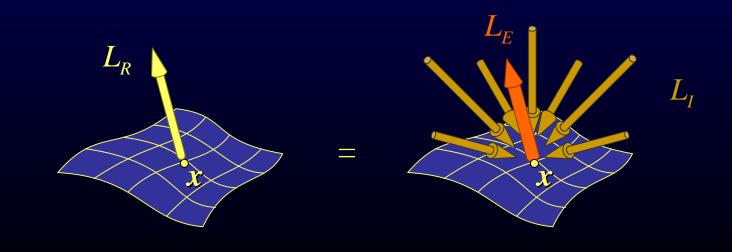
Lecture outline

- Introduction
- Preliminaries
- Radiosity equation
 - Solving the equation
 - Optimization
 - Extensions
 - Conclusion

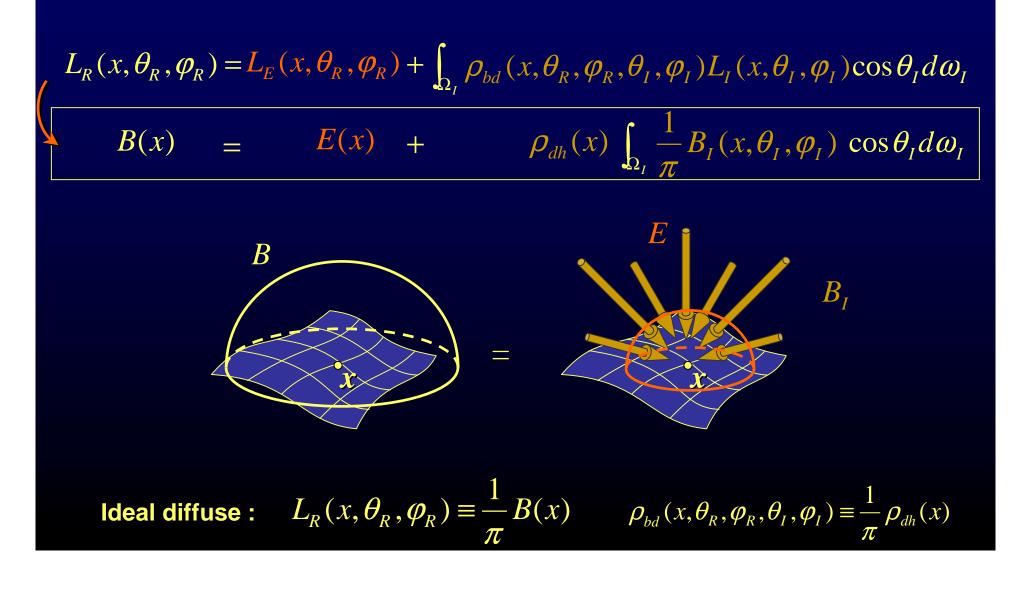
Cornell University Program of Computer Graphics

Global Illumination Equation

How can it lead to the Radiosity Equation?

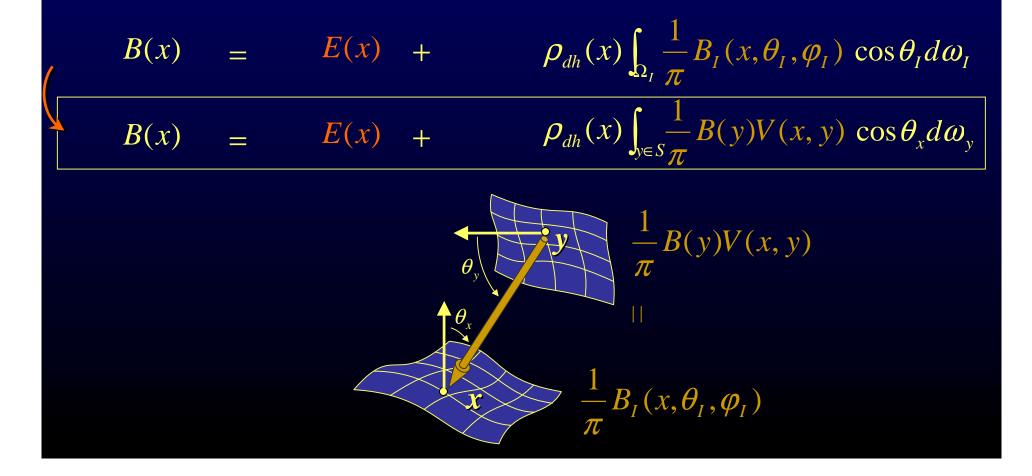


Ideal diffuse reflectors Equation



Introducing Visibility

Can we replace the 'incoming radiosity' terms?



Discrete Radiosity Equation

 $B(x) = E(x) + \rho_{dh}(x) \int_{y \in S} \frac{1}{\pi} B(y) V(x, y) \cos \theta_x d\omega_y$

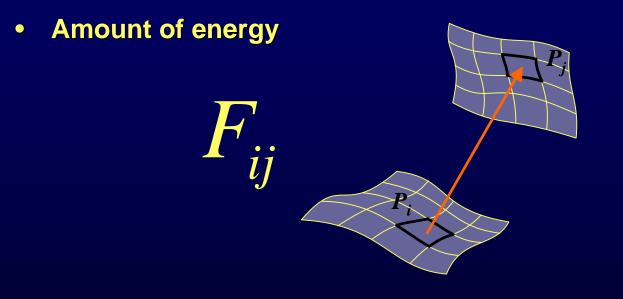
 $B(x) = E(x) + \rho_i \sum_{j=1}^N B_j \int_{y \in P_j} \frac{1}{\pi} V(x, y) \cos \theta_x d\omega_y$ $B_i = \frac{1}{A_i} \int_{x \in P_i} B(x) \qquad E_i = \frac{1}{A_i} \int_{x \in P_i} E(x)$

Radiosity Equation

• Discrete formulation

$$B_{i} = E_{i} + \rho_{i} \sum_{j=1}^{N} B_{j} \frac{1}{A_{i}} \int_{x \in P_{i}} \int_{y \in P_{j}} \frac{V(x, y) \cos \theta_{x} d\omega_{y}}{\pi}$$
Radiosity Equation
$$B_{i} = E_{i} + \rho_{i} \sum_{j=1}^{N} B_{j} F_{ij}$$
• Solving radiosity :
$$- \text{ compute form factors} - \text{ solve } N \text{ equations}$$

Form Factors

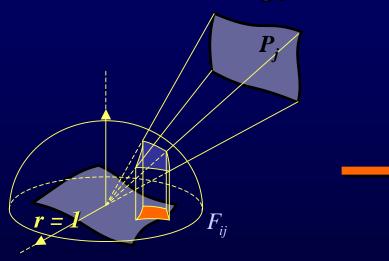


• Property

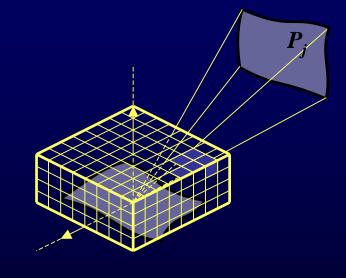
$$A_i F_{ij} = A_j F_{ji}$$

Form Factors

• Nusselt's analogy



• Hemi-cube



SIGGRAPH'93 Education Slide Set

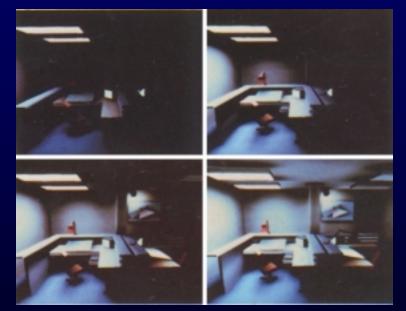
 $F_{ij} =$

 ΔF

 $\frac{1}{A_i} \int_{x \in P_i} \int_{y \in P_j} \frac{V(x, y) \cos \theta_x d\omega_y}{\pi}$ $\frac{V(x, y)\cos\theta_{x}d\omega_{y}}{\pi}$ $F_{ij} pprox$ $y \in P_i$

Lecture outline

- Introduction
- Preliminaries
- Radiosity equation
- Solving the equation
 - Optimization
 - Extensions
 - Conclusion



Cornell University Program of Computer Graphics

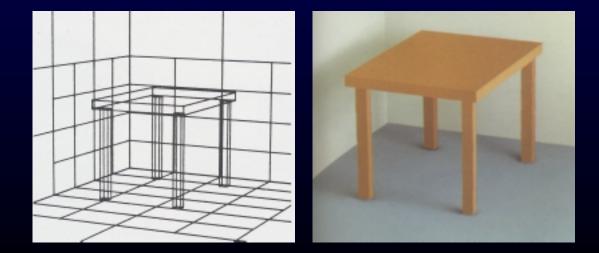
Radiosity Equation

$$B_i = E_i + \rho_i \sum_{j=1}^N B_j F_{ij}$$

Solving the equation

4 famous methods for solving the 'classic' radiosity

- Matrix inversion
- Jacobi relaxation
- Gauss-Seidel relaxation (gathering)
- Southwell relaxation (shooting)



Matrix inversion

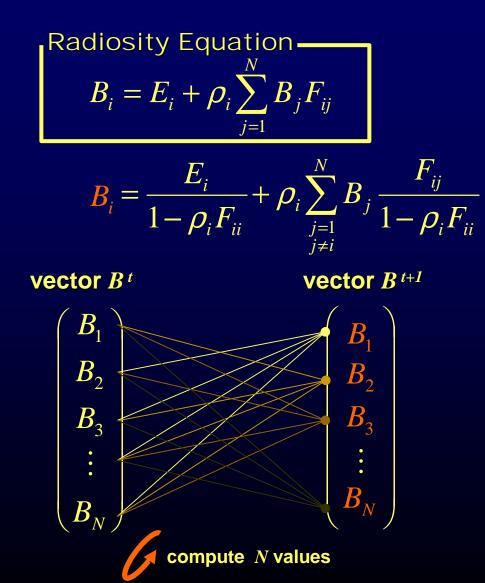
 $B_{i} = E_{i} + \rho_{i} \sum_{j=1}^{N} B_{j} F_{ij}$ $B_{i} - \rho_{i} \sum_{j=1}^{N} B_{j} F_{ij} = E_{i} \qquad i \in [1, N]$ $\begin{pmatrix} 1 - \rho_{1} F_{11} & -\rho_{1} F_{12} & \cdots & -\rho_{1} F_{1N} \\ -\rho_{2} F_{21} & 1 - \rho_{2} F_{22} & \vdots \\ \vdots & \ddots & \vdots \\ -\rho_{N} F_{NN} & \cdots & \cdots & 1 - \rho_{N} F_{NN} \end{pmatrix} \begin{pmatrix} B_{1} \\ B_{2} \\ \vdots \\ B_{N} \end{pmatrix} = \begin{pmatrix} E_{1} \\ E_{2} \\ \vdots \\ E_{N} \end{pmatrix}$

MB = E

Invert M

Drawbacks: all form factors required / no intermediate solution

Jacobi relaxation



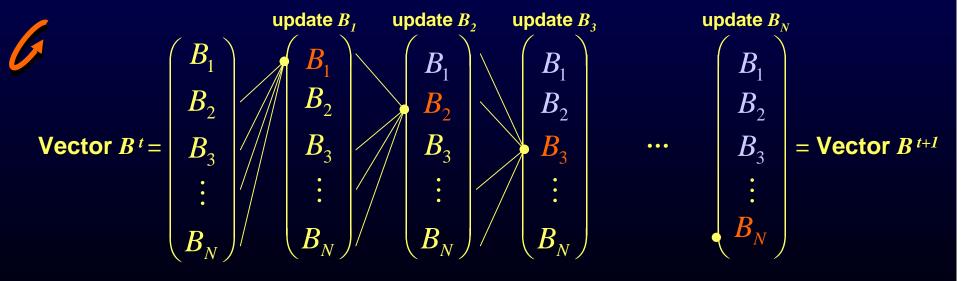
Drawbacks: all form factors required / two vectors *B*^t and *B*^{t+1} required

Gauss-Seidel relaxation

Radiosity Equation

$$B_i = E_i + \rho_i \sum_{j=1}^N B_j F_{ij}$$

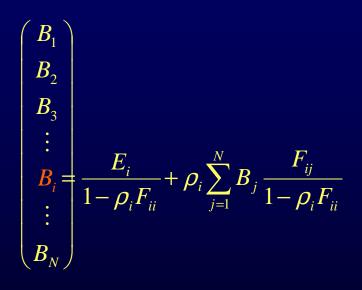
$$\mathbf{g}_{i} = \frac{E_{i}}{1 - \rho_{i}F_{ii}} + \rho_{i}\sum_{\substack{j=1\\j\neq i}}^{N} B_{j}\frac{F_{ij}}{1 - \rho_{i}F_{ii}}$$

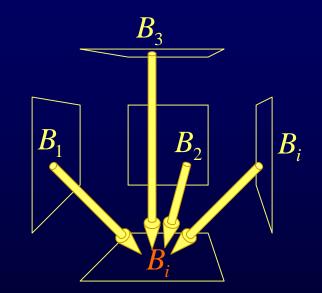


Drawbacks: all form factors are required for one <u>complete</u> iteration Advantages: only one storage vector required / faster convergence than Jacobi

Gauss-Seidel relaxation

• Why is it called <u>Gathering</u>?





Southwell relaxation

• Idea: distribute the residual energy of the patch of most residual energy, P_i

Radiosity Equation
$$B_i = E_i + \rho_i \sum_{j=1}^N B_j F_{ij}$$

$$A_i B_i = A_i E_i + \rho_i \sum_{j=1}^N A_j B_j F_{ji}$$

Energy Equation —
$$\boldsymbol{\beta}_i = \boldsymbol{\varepsilon}_i + \boldsymbol{\rho}_i \sum_{j=1}^N \boldsymbol{\beta}_j F_{ji}$$

Posiduals energy

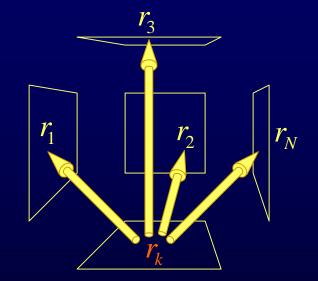
1.
$$k = \arg \max_{k} (r_{k})$$

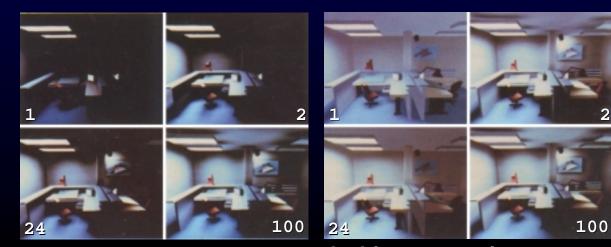
 $r_{i} = \mathcal{E}_{i} - \beta_{i} + \rho$
2. $r_{i\neq k} + = \frac{\rho_{i}F_{ik}}{1 - \rho_{k}F_{kk}}r_{k}, \quad r_{k} = 0$
3. $\beta_{k} = \frac{\mathcal{E}_{k}}{1 - \rho_{k}F_{kk}} + \rho_{i}\sum_{\substack{j=1\\j\neq k}}^{N} \beta_{j}\frac{F_{jk}}{1 - \rho_{k}F_{kk}}, \quad B_{i} = \frac{\beta_{i} + r_{i}}{A_{i}}$

Southwell relaxation

• Why is it called <u>Shooting</u>?

$$r_{i\neq k} + = \frac{\rho_i F_{ik}}{1 - \rho_k F_{kk}} r_k$$
$$r_k = 0$$

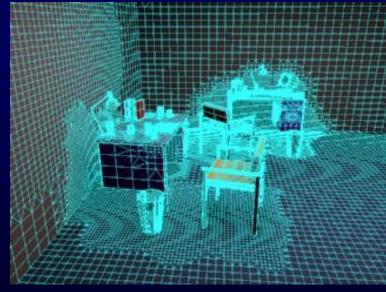




Ambient correction

Lecture outline

- Introduction
- Preliminaries
- Radiosity equation
- Solving the equation
- Optimization
 - Extensions
 - Conclusion

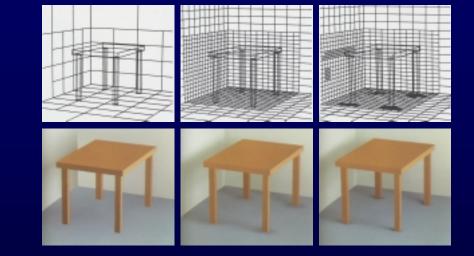


F. Sillion

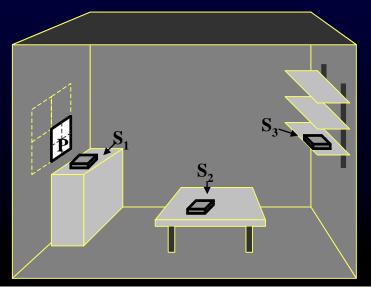
Optimizing

Sampling tradeoff

- too coarse: ugly solution
- too fine: time consuming

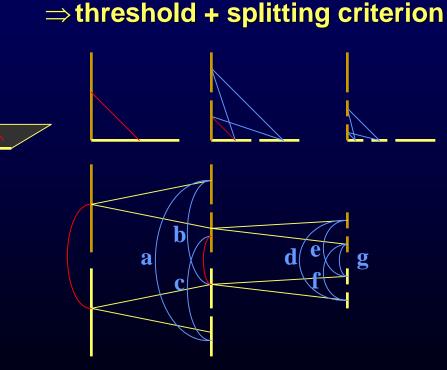


• The necessity to emit energy at different levels:



Hierarchical Radiosity

- Allow exchanges at different levels
- Links between two hierarchical patches:



Gathering radiosity for a patch P_i:

- 1. Compute gathered radiosities B_G for patch P_i and its subpatches
- 2. Update the radiosities B of the tree (bidirectionnal sweep)

Decreasing tolerance

(Blocks are breaking)

F. Sillion

Importance

• View dependent refinement

Radiosity solution

Importance solution

Superposition, in yellow

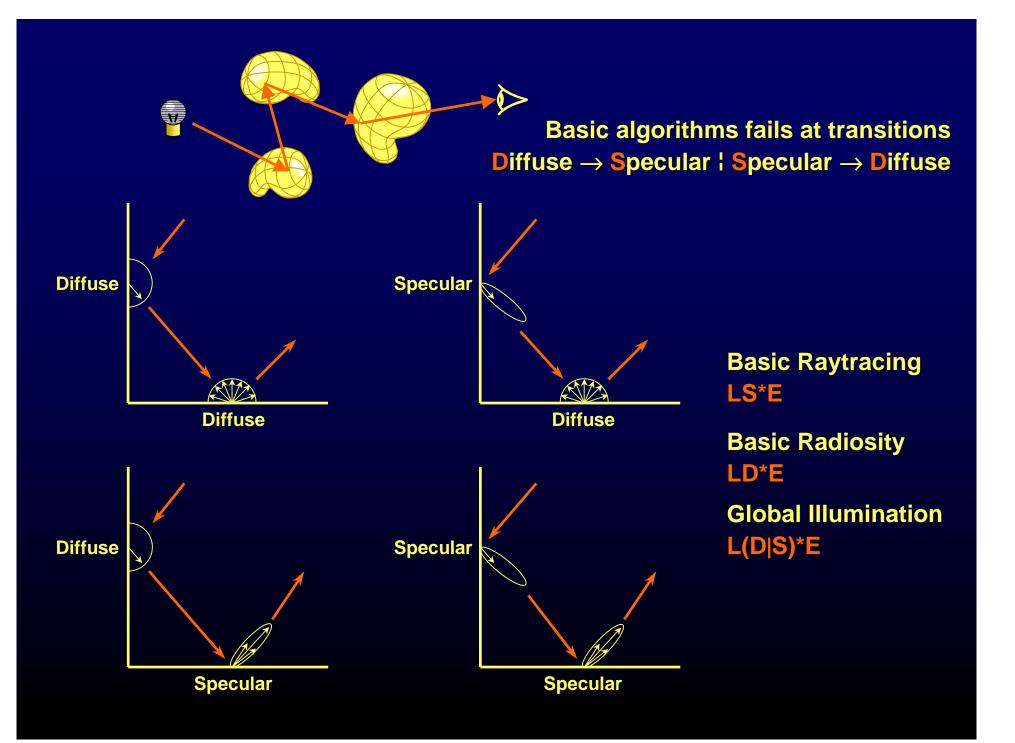
Importance Equation

$$I_i = R_i + \sum_{j=1}^N \rho_j F_{ji} I_j$$

Lecture outline

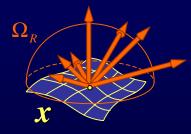
- Introduction
- Preliminaries
- Radiosity equation
- Solving the equation
- Optimization
- Extensions
 - Conclusion

F. Sillion

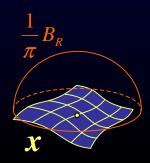


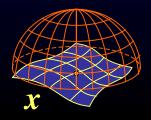
Directional radiosity

• Global Illumination:



• Radiosity: radiance is constant Directional radiosity : radiance is piecewise constant

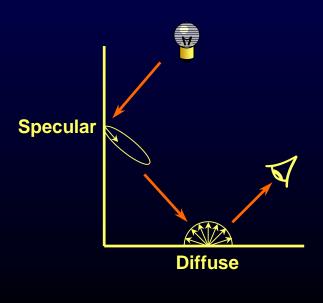




Two-pass approach

- Two-pass approach
 - 1. Radiosity: LD*E
 - 2. Raytracing LDS*E

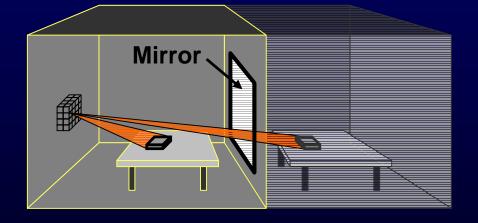
• Limitation: misses LS*DE

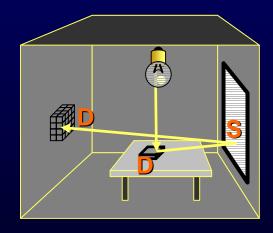


Complete* two-pass approach

(* Ideal diffuse & ideal specular surfaces)

 Two-pass approach with extended form factors Idea: Include D→ S* → D in the first pass





For the eyes

