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Abstract 

 

Constructing a CAD model from a physical model plays a key role in some product- 

development processes. To be presented is an “indirect” method of fitting NURBS-surfaces for 

rotational-freeform shapes: 1) Cloud-of-points data representing a rotational-freeform shape are 

transformed into an orthogonal-coordinate (spherical- or cylindrical-) system, 2) a single-valued B-

spline surface is fitted to the transformed data, and 3) the resulting B-spline surface is converted to a 3D 

NURBS-surface by applying a symbolic-product operation with a quadratic NURBS base-geometry. 

Compared to the existing “direct” fitting methods, the proposed method has some distinctive 

advantages: It provides a natural means to parameterization, enables to recover “exact” NURBS 

geometry when the cloud-of-points data represent a “true” surface-of-revolution, and allows an easy 

point-membership classification for NURBS-bounded solid objects. 

By combining with a “robust” local-coordinate system estimation method based on the 

general-quadric surface approximation for cloud-of-point data “arbitrarily” located in 3D space, the 

proposed method was successfully embedded to a research-purposed reverse engineering software, as 

one component of the surface fitting engine. In consequence, reverse engineering process becomes more 

efficient – the numbers of parametric surfaces and secondary-surface operations are reduced, and user 

interaction is also reduced. The proposed method can be used for an “intuitive” scientific visualization of 

empirical data acquired from spherical or cylindrical experiment set-ups. The basic idea of the proposed 

method – a rotational-freeform curve (or surface) can be interpreted as a product of a base geometry and 

a scale function – can be applied to some special shape (mechanical cam, pressure vessel, etc.) design. 
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1. Introduction 

  

 Physical models play a key role in some product-development processes. When designing an 

aesthetic product, physical models (made of clay or chemical wood) are employed for aesthetic evaluation 

[Yama1993]. Sometimes, designers start with existing products when designing a new product shape, 

which is known as (shape) reverse engineering [Vara1997]. In “custom-design” of sports wear and shoes, 

which is becoming quite popular, human body serves as a physical model. In these cases, the physical 

model is digitized to obtain cloud-of-points data (COP-data) and then a mathematical CAD model is 

constructed from the COP-data. 

 In order to construct a parametric surface from COP-data, a pair of parameter values have to be 

assigned first to each data point. This parameterization operation is critical to the quality of the fitted 

surface [Ma1995], but is not a trivial task for a rotational-freeform shape that one-to-one maps to a sphere 

or cylinder.   

 To be presented is an “indirect” method of fitting NURBS surface from COP-data representing 

a rotational-freeform shape, which provides a natural means to parameterization. The proposed method 

consists of three phases: 1) COP-data representing a rotational-freeform shape are transformed into an 

orthogonal- (spherical- or cylindrical-) coordinate system, 2) a single-valued B-spline surface of degree 

(p, q) is fitted to the transformed data, and 3) the single-valued B-spline surface is converted to a 

(parametric) NURBS surface by applying a symbolic-product operation [Pieg1997] with a NURBS base-

geometry. 

 The NURBS-surface fitting method to be proposed enables to recover exact NURBS geometry 

for a true surface-of-revolution when the COP-data represent a “true” surface-of-revolution shape (which 

includes sphere and cylinder) [Pieg1987][Pieg1991]. There have been various proposed methods for 

fitting sphere/cylinder [Luka1997] and surface-of-revolution shapes [Pott1998a][Pott1998b][Lai2000]. 

These “specialized” methods are efficient only when we know that the COP-data on hand represent a 

sphere, cylinder or surface-of-revolution shape.  

 When the fitted NURBS-surface becomes a face of a NURBS-bounded solid object, the single-

valued B-spline surface may be used as a point-membership classifier. Namely, a 3D point to be classified 

is transformed into the orthogonal-coordinate system of the fitted NURBS surface, and its “range” value 
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is compared against the single-valued B-spline surface. Point-membership classification for a general 

NURBS-bounded solid object is not a trivial operation [Niel1993]. Point-membership classification for 

rotational freeform shapes has been studied quite extensively by Sanchez-Reyes [Sanc1990][Sanc1991] 

[Sanc1992][Sanc1994]. The Sanchez-Reyes’ method, which uses a sinusoidal-spline function as the basis 

function, is similar to the method proposed in this study and may be used as a NURBS-surface fitting 

method for a sphere-like shape (but not for cylinder-like shape because its single-valued function is not a 

tensor-product surface). 

 The organization is as follows: described in Chapter 2 is a NURBS-curve fitting method using 

polar-coordinate transform, which is the core procedure for the NURBS-surface fitting methods to be 

presented in Chapter 3. Also presented in Chapter 3 are special treatments including closed surfaces and 

pole degeneracy problem. As a main use of the proposed method, (shape) reverse engineering application 

is considered in Chapter 4 where the estimation of a local-coordinate system is especially focus on. Other 

applications including special shape designs and scientific visualization are given in Chapter 5. Finally, 

Chapter 6 closes this dissertation with discussions and conclusions. 
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2. NURBS-curve Fitting 

  

 The NURBS-curve fitting method, which becomes the core part of the NURBS-surface fitting 

method of Chapter 3, is based on polar-coordinate transformation of 2D points representing a circle-like 

curve (i.e., rotational-freeform curve). 

 

2.1  Basic Idea 

 Let )sin,( θθ(cos)θ =B  denote a unit circle centered at the origin of a xy-coordinate system, 

then a rotational-freeform curve )(θC  on the xy-plane may be expressed as the product of )(θB  and a 

single-valued function )(θF  as follows: 

  )sin)(,cos)(()()())(),(( θθθθθθθθ FFFyx == B()θ =C  (2.1) 

where the unit circle )(θB  is called a (trigonometric) base circle. A construction for the above 

relationship is illustrated in Figure 2.1. 
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(a)       (b) 

Figure 2.1. (a) Single-valued function in polar-coordinate system and (b) its corresponding 2D parametric 

curve in xy-coordinate system 

 

  A sequence of 2D points )},{(}{ kkk yx=Ψ  representing a rotational-freeform curve may be 

fitted to the curve )(θC  in Equation (2.1) as follows: 
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1)  is converted into a polar-coordinate point-sequence }{ kΨ )},{(}{ kkk r θ=Θ

)

 

}{Θ θ2)  is fitted to a single-valued B-spline function k (Fr =  

)(θF3)  is converted to a 2D curve )(θC  using Equation (2.1). 

 By replacing the trigonometric base-circle )(θB  in Equation (2.1) with a NURBS base-circle 

, we can obtain a NURBS curve . However, for this replacement to work properly, we need a 

parameter-synchronization between θ and u. Because the NURBS base-circle  may consist of four 

rational-quadratic Bezier curves (RQB-curves) [Till1983][Pieg1995] and it does not have a uniform 

flow rate [Faro1991] unlike the trigonometric base-circle 

)(uB )(uC

)(uB

)(θB . Now, this study presents a NURBS-

curve fitting procedure using polar-coordinate transform. 

 

2.2  Polar NURBS-curve Fitting Procedure 

 The overall procedure for fitting a 2D NURBS-curve from a sequence of 2D points representing 

a rotational-freeform curve, consists of five steps: 1) polar-coordinate transform, 2) base-circle 

construction, 3) curve-parameter synchronization, 4) single-valued B-spline curve fitting, and 5) NURBS-

curve construction. 

 

Step 1. Polar-coordinate Transform 

 A sequence of points { )},{(} kkk yx=Ψ

)},{(}{ kkk r

 in 2D Cartesian coordinates are converted into a 

polar-coordinate point-sequence θ=Θ  as follows: 
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Step 2. Base-circle Construction 

 A base circle  having an arc angle of )(uB se θθ −  is easily obtained by using the square-

based method [Till1983][Pieg1995], where a full circle having the arc angle of π2  is defined by four 
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rational-quadratic Bezier curves (RQB-curves).  
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where  are B-spline basis functions of degree 2;  and {  are the weights and control 

points of , respectively.   

)}({ 2, uNi

)(uB

}{ iw }ib

  Shown in Figure 2.2 is a sequence of 2D Cartesian-coordinate points  inside an angle 

range of 

}{ kΨ

],[ es θθ , where the base circle  consists of three RQB-curves since the arc angle is less 

than 3π/2 (but larger than π). Observe that the control polygon of the base circle  is also shown in 

the figure. 
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y

o
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Figure 2.2. Base-circle construction for 2D data points 

 

Step 3. Curve-parameter Synchronization 

 The synchronized-parameter value  of the base circle  for a polar-coordinate point ku )(uB

),( kkk r θ=Θ  corresponds to the intersection point between  and the line joining the origin and the 

2D Cartesian-coordinate point  depicted in Figure 2.3.  

)(uB

),( kkk yx=Ψ
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Figure 2.3. Geometric construction for parameter synchronization (i.e., finding ) ku

  

 To find ku  at the intersection-point,  is first decomposed into individual RQB-curves 

 for  corresponding to the angle range  as follows:  
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where )}({ 2, ηiB  are Bernstein polynomials of degree 2;  and {  are the weights and control 

points of each RQB-curve , respectively; a local parameter 

}{ j
iw }jib

)(ηjB η  for each RQB-curve  is 

defined as 

)(ηjB

 )()( j
s

j
e

j
s uuuu −−=η ; . (2.5) ],[ j

e
j

s uuu∈

 Then, the local-parameter value kη  for a polar-coordinate point  within the angle range  

may be obtained from the following relation: 
kΘ ],[ j

e
j

s θθ

   (2.6) )()sin,(cos ηθθ j
kk B=

A solution to Equation (2.6) is given by [Blan1996] 
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where  is the weight of the middle control point of the RQB-curve . Finally, the synchronized-

parameter value  for Θ  belonging to  is obtained from the following equation: 

w )(ηjB

ku k )(ηjB

   (2.8) j
sk

j
s

j
ek uuuu +−= η)(

In practice, an RQB-curve is defined over a unit interval so that , , in which case 

Equation (2.8) reduces to 

ju j
e = 1−= ju j

s

)1( −+= ju kk η . 

 Shown in Figure 2.4a is a construction for finding kη  corresponding to the intersection point 

between  and the line joining the coordinate origin and . The relation between )(1 ηB kΨ kη  and kξ  

is depicted in Figure 2.4b. 
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(a)      (b) 

Figure 2.4. Geometric construction for local-parameter synchronization (i.e., finding kη ) 

 

Step 4. Single-valued B-spline Curve Fitting 

 A single-valued B-spline curve  of degree p (usually )(uF 3=p ) is fitted to the parameter-

synchronized points  by using standard fitting methods [deBo1978][Fari1988] 

[Choi1991][Pieg1995][Hosc1993]. 
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Step 5. NURBS-curve Construction 

 At the final step, a (parametric) NURBS curve is constructed from the single-valued B-spline 

curve  by applying a symbolic-product operation [Pieg1997] with the NURBS base-circle . 

Namely, from  we have 

)(uF )(uB

)()()( uuFu BC =
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 (2.10) 

where  are B-spline basis functions of degree )}({ 2, uN pi + 2+p ;  are weights, and {  are 

control points of the NURBS curve , respectively. For the details, refer to the Appendix A. The 

above NURBS-curve construction concept is illustrated in Figure 2.5, where the degree of  is 3 

and that of the resulting NURBS-curve is 5. 
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Figure 2.5. NURBS-curve construction via symbolic-product operation  

 

 If the 2D Cartesian-coordinate point-sequence  represents a true circle of radius , the }{ kΨ R
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single-valued B-spline curve will become a constant line, namely, RuF =)( . In this case, the degree of 

 is zero (i.e., )(uF 0=p ) and that of the resulting NURBS-curve becomes 2. That is,  

becomes a true circle of radius R. 

)()( uRu BC =

 

 9



3. NURBS-surface Fitting  

  

 The procedure for fitting a NURBS surface from cloud-of-points (COP) data, is similar to the 

curve-fitting procedure given in the previous chapter, and consists of five steps: 1) orthogonal-coordinate 

transform, 2) base-geometry construction, 3) surface-parameter synchronization, 4) single-valued B-

spline surface fitting, and 5) NURBS-surface construction. A rotational-freeform shape (i.e., sphere-like 

or cylinder-like shape) may be one-to-one mapped to a sphere or a cylinder: When the shape is more 

naturally mapped to a sphere, a spherical NURBS-surface is fitted from the COP-data. 

 

3.1  Spherical NURBS-surface Fitting Procedure 

Step 1. Spherical-coordinate Transform 

 The COP-data {({ =  representing a sphere-like shape are converted into 

spherical-coordinate points 

)},,} kkkk zyxΨ

,,,{(}{ kkkk )}θφρ=Φ  as follows: 
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 (3.1) 

And, the angle ranges are computed as 

 }min{ ks φφ = ; }max{ ke φφ = ; }min{ ks θθ = ; }max{ ke θθ = . (3.2) 

 

Step 2. Base-sphere Construction 

 A unit sphere defined over the angle ranges ],[ es φφ  and [ ], es θθ  is chosen as the base sphere 

, which is a NURBS-surface consisting of up to (2×4) rational-quadratic Bezier patches (RQB-

patches) depending on arc angles 

),( vuB

se φφ −  and se θθ −  [Pieg1987]. 
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Step 3. Surface-parameter Synchronization 

 Similar to the curve-fitting case, finding the synchronized-parameter values of the base sphere 

 for a spherical-coordinate point ),( vuB ),,( kkkk θφρ=Φ

),( vu

ku k

) )(vC

 is equivalent to finding an intersection point 

between  and the line joining the origin and the 3D Cartesian-coordinate point 

. Since the base sphere B  is constructed by a surface-of-revolution method 

[Pieg1987], synchronized-parameter values  and v  can be calculated separately by using the curve-

parameter synchronization method (Step 3) described in Section 2.2. As depicted in Figure 3.1a,  is 

obtained from  and Ψ , where  is a NURBS base-circle on the xy-plane with an 

arc angle 

),( vuB

), kk zy

(C

se

,k(k x=Ψ

kv

)v 0,,(*
kkk yx=

θθ −

D

, and  is the projection point of  on the xy-plane. Once  is 

determined, another base circle  is defined as depicted in Figure 3.1b, and then,  is 

calculated from  and . 

*
kΨ

)(uD =

kΨ

),,( kkkk zyxΨ kv

ku),( kvuB

)(u

),,( kkkk zyx=Ψ
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),( vuB

)(vC

)0,,(*
kkk yx=Ψ
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),( vuB

),()( kvuu BD =
ku

 
(a)        (b) 

Figure 3.1. Geometric construction for parameter synchronization for spherical NURBS-surface fitting 

(i.e., finding  and  respectively) kv ku
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Step 4. Single-valued B-spline Surface Fitting  

 A single-valued B-spline surface  of degree (p, q) is now fitted to the parameter-

synchronized points  by using standard fitting methods [deBo1978][Fari1988] 

[Choi1991][Pieg1995][Hosc1993]. 
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  (3.4) 
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Step 5. NURBS-surface Construction 

 Finally, a (parametric) NURBS surface  is constructed from the single-valued B-spline 

surface  by applying a symbolic-product operation with the NURBS base-sphere . From 

, we can obtain the resulting NURBS surface 
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 (3.5) 

of degree ( , q ). For more details of above surface-case symbolic-production, see Appendix B. 2+p 2+

 Shown in Figure 3.2a is a bi-cubic B-spline surface (i.e., 3== qp ) for the parameter-

synchronized points , and shown in Figure 3.2b is the resulting NURBS-surface of 

degree (5, 5) obtained from NURBS-surface conversion.  

)},,{(}ˆ{ kkkk vuρ=Φ
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(a)        (b) 

Figure 3.2. NURBS surface obtained by spherical NURBS-surface fitting 

 

3.2  Cylindrical NURBS-surface Fitting Procedure 

 When the rotational-freeform shape is more naturally mapped to a cylinder, a cylindrical 

NURBS-surface is fitted to the COP-data. The procedure is basically the same as that of the spherical case 

described in Section 3.1.  

 First, 3D Cartesian-coordinate points )},,{(}{ kkkk zyx=Ψ  are transformed into cylindrical-

coordinate points )},,{(}{ kkkk zr θ=Χ  as  
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and a cylinder with unit radius is used as a base cylinder  which is a NURBS surface of degree 

(1, 2) over the angle range 

),( vuB

],[ es θθ  and height range . ]ez,[ sz
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 Surface-parameter synchronization is carried out as follows: As with the spherical case,  is obtained 

by using the curve-parameter synchronization method of Section 2.2 as depicted in Figure 3.3a, and  

is given by 

kv

ku

)()( seskk zzzzu −−=

}ˆ{ kΧ

),( vuS

. And then, a single-valued B-spline surface  is fitted to 

parameter-synchronized points  as with the spherical case. Finally, a 3D cylindrical 

NURBS-surface  is given by: 
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 (3.8) 

The resulting NURBS surface is constructed by using a “modified” symbolic-product operation, which is 

also derived in Appendix B. Shown in Figure 3.3b is the resulting NURBS-surface from the COP-data of 

Figure 3.3a. 
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(a)       (b) 

Figure 3.3. NURBS surface obtained by cylindrical NURBS-surface fitting 

 

 When the degrees of  are (p, q), it can be shown that the degrees of the resulting 

NURBS-surface  are ( ,

),( vuF

}1,max{p),( vuS 2+q

),vu

),( vuS

) (See Appendix B.2). For COP-data representing a true 

surface-of-revolution, the degrees of  would be (3, 0). Thus, the degrees of  are (3, 2). 

For a true cylinder shape, the degrees of  become (1, 2). Shown in Figure 3.4a are COP-data for a 

traditional Korean ceramic. The fitted NURBS-surface together with its control points for the COP-data 

of Figure 3.4a is shown in Figure 3.4c. Observe from the control points that the degrees of the resulting 

NURBS surface are (3,2). This is expected since the ceramic is a “true” surface-of-revolution surface. 

Now, the COP-data of Figure 3.4a are scaled down (0.75) along the y-direction to obtain a rotational-

freeform shape as shown in Figure 3.4b. The fitted NURBS surface of degrees (3,5) and its control points 

are shown in Figure 3.4d. 

(F ),( vuS
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Figure 3.4. NURBS surface fitting for traditional Korean ceramic 
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3.3  Special Treatments 
 

3.3.1 Closed Surfaces 

 When a “closed” surface is to be constructed, periodic B-spline basis functions have to be 

employed in the v-direction (corresponding to θ ) during the single-valued B-spline surface fitting stage. 

A “closed” single-valued B-spline surface )( ,~ vuF  in v-direction is given by [Park1996]   

  (3.9) 
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where ,121 ~~ +−+−−+− −=− jmjmjqjq FF
vvvv 11 ~~ −+++++ −=− jqjqjmjm vvvv

FF
; qj ,,1 K=  and , sq vv = em vv

F
=+1~  

(  and  are the v-directional start and end parameters of the base geometry, which corresponds to 

angle range [
sv ev

]2,0 π ). Because of the v-directional periodicity of ),(~ vuF , finding control points (or 

ordinates) }
~

{ , jif  is a kind of constrained fitting (See Appendix C) under following conditions:  

 1,, ~

~~
−+−= jqmiji ff

F
; 1,,0 −= qj K .  (3.10) 

  Once ),(~ vuF  is obtained, an additional step so called “clipping” is required before the 

NURBS-surface construction (Step 5) described in Section 3.1. A clipping step is for the conversion of a 

v-directionally “closed” single-valued B-splind surface ),(~ vuF  defined over the v-directional “periodic” 

knot vector in Equation (3.9), into an “open” single-valued B-spline surface  defined over both 

“non-periodic” or “clamped” knot vectors as given in Equation (3.4). A clipping operation uses multiple-

knot insertion with multiplicity  at the start and end parameters of base geometry so that the clipped 

 and base geometry  have the same v-directional parameter span  corresponding 

to angle range 

),( vuF

,[ sv

q

,vu),( vuF )(B

]

]ev

2,0[],[ πθθ =es .        

 Shown in Figure 3.5 is a closed NURBS-surface fitting example: (a) COP-data of a cylinder-

like part of a femur, , (b) the corresponding base cylinder , (c) parameter-synchronized 

cylindrical-coordinate points , (d) a v-directionally closed single-valued B-spline surface 

}{ kΨ ),( vuB

}ˆ{ kΧ ),(~ vuF  

fitted to , (e) a open single-valued B-spline surface  obtained by clipping }ˆ{ kΧ ),( vuF ),(~ vuF , and (f) 

 17



the resulting NURBS-surface constructed by applying a symbolic-product operation of  with 

. 
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Figure 3.5. Closed NURBS-surface fitting 
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3.3.2 Degeneracy at Pole 

 When fitting a closed spherical-NURBS surface, an additional treatment is required to solve the 

“degeneracy problem”, that is, to smoothly fill the “hole” near the pole (See Figure 3.6a).  

 The conditions for a level of geometric continuities at the degenerate point S  

corresponding to the pole of the base sphere  are: 

),( vus

),( vusB

1) for G  continuity: the collapse of the boundary of the surface to a single point, that is,  0

 ;  (3.11) *),( pS =vus

2) for G  continuity: the existence of a tangent plane, that is,  1

 *

),(),(
),(),(),( n

SS
SSn =

×
×

=
vuvu
vuvuvu

suvsu

suvsu
s  [Faux1981]; (3.12) 

3) for G  continuity: for the normal curvature to follow Euler formula [Wolt1992], that is, 2

  [doCa1976] (3.13) ψκψκψκ 22 sincos):,( mMs vu +=

where Mκ , mκ  are the maximum- and minimum-principal curvatures, respectively, and ψ  is 

the angle from maximum-principal direction on the tangent plane. However, Equation (3.13) is 

only met if the surface is locally a surface-of-revolution at the degenerate point [Sanc1994] – it 

is too restrictive to fit a NURBS surface to COP-data representing a general rotational-freeform 

shape.  

 

 One simple solution is to impose following control point (or ordinate) conditions when fitting a 

single-valued B-spline surface:  

 ;    (3.14a) 0,0,0 ff j = Fmj ,,1K=

 ;    (3.14b) jj ff ,0,1 = Fmj ,,0 K=

With above conditions, the resulting NURBS-surface has  continuity at the degenerate point while 

the normal vector at the point is  (See Appendix D.1). Namely, the tangent plane at the 

degenerate point is horizontal. Shown in Figure 3.6b is the NURBS surface satisfying the  continuity 

condition, which is fitted to COP-data of Figure 3.6a.  

1G

)1,0,0(=k
1G
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(a)      (b) 

Figure 3.6. COP-data of sphere-like part with degeneracy problem and resulting NURBS-surface with 

simple  continuity at degenerate point 1G

  

 Above simple solution with a horizontal tangent-plane condition at the degenerate point works 

well in almost cases. However, sometimes, it may generate a NURBS-surface having a “wiggle” around 

the degenerate point as shown in Figure 3.7.  
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Figure 3.7. Spherical NURBS-surface with wiggle around degenerate point 
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 Therefore, another solution is given here – to generate a “cap” surface smoothly being 

connected to an existing NURBS-surface  with a hole, while closing up the hole with a non-

horizontal tangent plane at the degenerate point.  

),( vuS

 To make a cap surface, first of all, it is required for the single-valued B-spline surface  

for  to be fitted over knot vectors  

),( vuF

),( vuS

  (3.15) 
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where 2)( esHq vvv +=+ , 2)( sejHj vvvv −+=+ ; 1,,1 −++= Hqqj K , 2/KH = , 1+−= qmK F  

( K  is assumed to be an even number). Whereas U  is an ordinary clamped-knot vector, V  is a 

special typed where the center knot  divides the parameter span in half, and the front part of knot 

spans are repeated periodically after .   

F F

Hqv +

Hqv +

 The procedure to construct a cap surface is composed of following four steps: 1) preparation of 

connecting curves, 2) determination of the degenerate point and its surface-normal vector, 3) connecting-

curve splitting, and 4) construction of a cap surface. 

 

Step 1. Preparation of Connecting Curves 

 Because of the periodicity of the v-directional knot spans (Refer to Equation (3.15)), it is 

possible to generate a plane curve (“connecting curve”) connects one column of the control polygon of 

 with its corresponding column on opposite side in the meridian section (or plane) depicted in 

Figure 3.8a. The connecting curves are Bezier curves of degree 5,  

),( vuS

 ; ∑
=

=
5

0
5, )()(

i

j
iij tBt cC 12,,0 −= Smj K . (3.16) 

For each connecting-curve to be smoothly connected to ,  continuity condition is imposed as 

follows (See Figure 3.8b): 

),( vuS 2G

 ),()0(),,()0(),,()0( jsuujjsujjsj uuu υβυαυ SCSCSC =′′=′= , (3.17a) 

 ),()1(),,()1(),,()1(
oppoppopp jsuujjsujjsj uuu υβυαυ SCSCSC =′′−=′=  (3.17b) 
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where qvq

k kjj ∑ = +=
1

υ ; 12,,0 −= Smj K , 2Sopp mjj +=  are the v-directional nodes [Ries1973] 

[Pieg1995] of . ),( vuS
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(a)       (b) 

Figure 3.8. Curves connect two columns of control polygon and continuity condition imposing for 

each connecting-curve 

2G

 

Step 2. Determination of Degenerate Point and Surface-normal Vector 

 First, let us find ,  minimize the sum of the squares of mean-deviations of connecting 

curves at , 

*α *β

5.0=t

 ∑
−

=

−=
12/

0

2)}5.0:,()5.0:,({),(
Sm

j
jE βαβαβα CC  (3.18) 

where  

 ,  (3.19a) ∑
=

=
5

0
5, ),()():,(
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−
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=
12/

0

):,(2):,(
Sm
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j

S

t
m

t βαβα CC .  (3.19b) 
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Differentiating Equation (3.18) with respect to α , β  and setting zero, that is, 0),( =∂∂ αβαE , 

0),( =∂∂ ββαE  yield optimal ,  (See Appendix D.2). Then, *α *β

 )5.0:,(),,( *** βαCp == zyx ppp , (3.20) 

and 

 nnn == ),,(*
zyx nnn    (3.21) 

where ( ) ( )∑∑ −

=

−

=
=

12

0

12

0
SS m

j j
m

j jj ϕϕ nn ; jjj nnn = ; )5.0()5.0( 1+′×′= jjj CCn , ),5.0(( jC′∠=ϕ  

. ))5.0(1+′jC

 

Step 3. Connecting-curve Splitting 

 Based on the deCasteljau algorithm [Boeh1984][deCa1986], each connecting-curve  is 

split at  into two Bezier curves, , . Next, the reversal of the parameter direction 

of  is done to march the parameter direction with that of a cap surface to be constructed in the 

following Step 4. Then, the first control point of each split curve is moved to the  for the G  

continuity, and the second point is also moved on the tangent plane,  for the 

 continuity. Finally, the third control point can be moved so that a fairness measure  is 

minimized [Kjel1983][Meie1987] (See Figure 3.9).  
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(a)       (b) 

Figure 3.9. Connecting curves: (a) before splitting and (b) after splitting and control-point repositioning 
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Step 4. Construction of Cap Surface 

 Let us note the curves split and modified in the previous step using homogenous coordinates as 

  (3.22) 
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ik

wk
i ww cc =  ({  are the weights of the control points of the boundary curve ). A 

cap surface can be written in the homogenous representation as 
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  (3.23) 

},,,,,,,,{

},,,,,,{

;)()(),(

12

12

12

1515

~

5

0 0

,
,2,5,

43421
KK

43421
K

43421
K

43421
K

++

++

++

++

= =
+

==

==

= ∑∑

q

eemq

q

ssSS

eessCS

i

m

j

wcap
jiqji

w
cap

vvvvvvVV

uuuuUU

vNuNvu

Scap

cap

S

sS

where  is the v-directional knot vector of S  (or the knot vector of the boundary curve 

). Because  is a tensor-product surface, there are the relation between Equations (3.22) 

and (3.23) as given by 

SV

)

),( vu

,( vusS ),( vuw
capS

 ; ∑
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jikqj
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i N
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,
,,

, )(~ sc υ Smk ,,0 K= , Smi ,,0 K=  (3.24) 

Above relations can be represented in a matrix equation C NS=  where , ,  are 

, 

C S N

)1()15( +×+ Sm )1()15( +×+ Sm , )1()1( +×+ SS mm  matrices. The control polygon {  is 

simply calculated by . 

}is ,
,

wcap
j

1−= NCS

 Shown in Figure 3.10 are the resulting surfaces (cap surface and adjacent surface) fitted to 

COP-data used in the fitting shown in Figure 3.7.  
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(a)     (b) 

Figure 3.10. Resulting surfaces of which degeneracy problem is resolved: (a) shaded image and (b) 

zoomed-in image for degenerate point and boundary between cap surface and adjacent surface   
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4. Reverse Engineering Application  

 

4.1  Introduction 

 Whereas “conventional” engineering transforms engineering concepts and models into real 

parts, “reverse” engineering transforms real parts into engineering concepts and models [Vara1997]. In 

CAD/CAM and CG applications, the term of “(shape) reverse engineering” is commonly used for 

designation of the process that converts measured “shape” data obtained from a real part into a computer 

model, as a narrow interpretation of the term.  

 Reverse engineering have been traditionally used in several areas: 1) aesthetic design, 2) copy 

production of existing parts, 3) special custom design, etc. Recently, the need of reverse engineering is 

rapidly increasing because: 1) customers’ respect is being transformed from functionality into design, and 

so, aesthetic surfaces are frequently used in the exterior design of industrial goods, 2) most of 

manufacturer offer effort to digitalize manufacturing information for high productivity, and 3) the 

requirement of 3D shapes in cultural industries including game, movie, advertisement, etc., is on the 

explosive increase. Also, advances in measuring technologies allow us to acquire “dense” measured data 

from real objects in reasonable time. Thus, to develop an efficient and “easy-to-use” reverse engineering 

software (RE S/W) is one of the needs of the times. 

 This Chapter is composed as follows: described in Section 4.2 is the overall process of reverse 

engineering. Given in Section 4.3 is how to apply the proposed NURBS-surface fitting method for COP-

data arbitrary positioned in 3D space, especially focusing on the estimation of a local-coordinate system. 

The architecture of the RE S/W in which the proposed NURBS surface-fitting procedure is embedded is 

presented in Section 4.4 followed by reverse-engineering based surface modeling examples in Section 4.5.  

 

4.2  Overall Process of Reverse Engineering  

 One of the most important characteristics of RE S/Ws is to actively utilize measured data with 

fine geometric details. For example, Imageware (former Surfacer) [Imag] provides various methods for 

generating section data, and ICEM Surf [ICEM] orthogonal-cross section (OCS) data. These section 

data are used in surface modeling as reference data for a generating curve, spine curve, surface boundary 
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curve, trimming curve, and so on. On the other hand, Krishnamurthy and Levoy [Kris1996] suggested a 

new surface-fitting pipeline where users paint boundary curves on “dense” and “irregular” polygonal 

mesh and fit a B-spline surface to each “segmented” polygonal patch. This boundary-curve painting 

technology is adopted by recently commercialized RE S/Ws, CySlice [CySl], RapidForm [Rapi], etc. 

Like above, by offering abilities to retrieve geometric information from measured data, RE S/Ws allows 

users (not even high-level experts of surface modeling) to reconstruct CAD models more quickly and 

easily than traditional curve-based CAD modelers.  

 Shown in Figure 4.1 is an overall process of reverse engineering, which consists of roughly four 

stages: 1) structured-data construction, 2) segmentation, 3) surface fitting, and 4) skin-surface modeling. 

The first stage is to construct an irregular polygonal mesh of arbitrary topology – so called a “triangular-

net” – from measured data. Because whole data of real object can be obtained from many range scans, the 

structured-data are constructed by applying registration [Besl1992][Chen1992][Zhan1994][Gosh1997], 

integration [Turk1994][Curl1996] and 3D triangulation [Hopp1992][Baja1995][Amen1998][Bern1999] 

technologies. The second stage is to divide the triangular-net into sub-triangular nets so that each 

segmented sub-triangular net can be fitted to a single parametric-surface. Although much research on 

“automatic” segmentation has been done (also in computer vision and image processing field), there are a 

few can be applied to reverse engineering [Besl1988][Sapi1995][Eck1996][Milo1997]. Because 

segmentation requires the understanding of surfaces and also a kind of creativity, recently it looks 

common to shift the responsibility of segmentation on to users by offering “easy-to-use” segmentation 

tools, for example, a curve-network painting tool [Kris1996]. The third stage is to fit a parametric surface 

to each segmented sub-triangular net and the forth stage to make a “skin” surface by applying secondary- 

surface operations to fitted surfaces, such as surface-surface intersection (SSI), blending, trimming, etc.  
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Figure 4.1. Overall process of reverse engineering  

 

 Segmentation and surface-fitting stages are inevitably connected to each other because the 

purpose of segmentation is to provide a sub-triangular net (or COP-data) appropriate to the surface-fitting 

method chosen by RE S/Ws. So far RE S/Ws have considered general B-spline surface methods, where 4-

sided base-surfaces (including a plane) are generated by user-interaction [Ma1995][Kris1996] or 

automatically [Eck1995] for the parameterization purpose. However, these kinds of surface-fitting 

methods are not appropriate for a (sub-) triangular-net (or COP-data) representing a rotational-freeform 

shape, where the triangular-net (or COP-data) has to be divided again into several 4-sided polygonal- 

patches and each polygonal-patch is fitted to a parametric surface respectively. 

 Therefore, how to apply the NURBS surface-fitting method proposed in Chapter 3 to reverse 

engineering is to be presented in the following sub-section. If the NURBS surface-fitting modules for 

rotational-freeform shapes is embedded in RE S/Ws, users can choose the surface fitting methods (general 

B-spline surface fitting methods or the proposed NURBS-surface fitting method) and perform the 

segmentation process according to the partial shape of the whole triangular-net. In consequence, it can be 

expected for surface modeling with the RE S/W to be more efficient – the numbers of surfaces and 

secondary-surface operations can be smaller and user’s interaction can be reduced, too.  

 

4.3  NURBS-surface Fitting Procedure for Reverse Engineering 

 The procedure to apply the NURBS-surface fitting method proposed in the previous Chapter, 

consists of following four steps: 1) local-coordinate system estimation, 2) local-coordinate transform, 3) 
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NURBS-surface fitting, and 4) global-coordinate transform of the NURBS surface.  

 

Step 1. Local-coordinate System Estimation  

 To apply the proposed NURBS-surface fitting method for reverse engineering, most of all, it is 

required to define a local Cartesian-coordinate system where the orthogonal coordinates are defined. 

Some studies dealt with finding the rotational axis of surfaces-of-rotation from COP-data [Elsa1996] 

[Pott1998a][Pott1998b][Lai2000], however, they are not appropriate for COP-data from general 

rotational-freeform shapes. On the other hand, the principal component analysis (PCA), which is widely 

used in the field of image processing and computer vision [Jain1989][Prat1991][Lay1996] (it is also 

known as Karhunen-Loeve transform), may be used to define a local-coordinate system. PCA works well 

for COP-data of the whole of a rotational freeform shape, but not for those of a part, because it finds the 

oriented-bounding box of COP-data [Gott1996] (PCA looks more appropriate for general B-spline surface 

fitting rather than the proposed NURBS-surface fitting method). The local-coordinate system estimation 

method to be presented is based on the general-quadric surface approximation. 

  A general-quadric surface is a 2nd degree algebraic surface as follows:  
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 The coefficients of Equation (4.1)  can be determined so that the quadric surface is fitted 

to given COP-data in the least-squares sense [Faug1986][Mars1992]. The fitted quadric surface may be 

classified into different types based on its coefficients [Levi1976][Zwil1996] as listed on Table 4.1. 

}{ iq
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Table 4.1. Quadric-surface classification table [Zwil1996] 

)( ur Q  )(Qr  )(Qd  k K Type of quadric surface Canonical form 

3 4 -   Real ellipsoid 1/// 222222 =++ czbyax  

3 4 + =  Imaginary ellipsoid 1/// 222222 −=++ czbyax  

3 4 + ≠  Hyperboloid of 1 sheet 1/// 222222 =−+ czbyax  

3 4 - ≠  Hyperboloid of 2 sheets 1/// 222222 −=−+ czbyax  

3 3  ≠  Real quadric cone 0/// 222222 =−+ czbyax  

3 3  =  Imaginary quadric cone 0/// 222222 =++ czbyax  

2 4 - =  Elliptic paraboloid 02// 2222 =++ zbyax  

2 4 + ≠  Hyperbolic paraboloid 02// 2222 =+− zbyax  

2 3  = ≠ Real elliptic cylinder 1// 2222 =+ byax  

2 3  = = Imaginary elliptic cylinder 1// 2222 −=+ byax  

2 3  ≠  Hyperbolic cylinder 1// 2222 =− byax  

2 2  ≠  Real intersecting planes 0// 2222 =− byax  

2 2  =  Imaginary intersecting planes 0// 2222 =+ byax  

1 3    Parabolic cylinder 022 =+ yx  

1 2   ≠ Real parallel planes 12 =x  

1 2   = Imaginary parallel planes 12 −=x  

1 1    Coincident planes 02 =x  

, ,  uu detd QQ ≡)(uu rankr QQ ≡)(

k : signs of non-zero eigenvalues of , K : signs of non-zero eigenvalues of , uQ Q

= : same, : opposite ≠

 

Among 17 types listed on Table 4.1, the following six types are relevant to the local-coordinate system 

estimation: real ellipsoid, hyperboloid of one sheet, hyperboloid of two sheets, real quadric cone, elliptic 

paraboloid, real elliptic cylinder (See Figure 4.2). Namely, when COP-data are fitted to one of the six 

quadric surface types, the local-coordinate system },,,{ kjio=ω  can be determined. 
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Figure 4.2. Six quadric surfaces relevant to local-coordinate system estimation: (a) real ellipsoid, (b) 

hyperboloid of one sheet, (c) hyperboloid of two sheets, (d) real quadric cone, (e) elliptic paraboloid, (f) 

real elliptic cylinder  

 

 The origin o  of the local-coordinate system can be obtained from the following relation: 

    (4.2) 0vxQ =+u2

In the case of 3=urank Q  (real ellipsoid, hyperboloid of one sheet, hyperboloid of two sheets, and real 

quadric cone), the origin is given by [Faug1986][Mars1992]: 

 vQo 1

2
1 −−= u   (4.3)  
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For  (elliptic paraboloid and real elliptic cylinder), the origin of the local coordinate is 

given by: 

2=urank Q

    (4.4) qpo ot+=

where , ,  can be referred to Appendix E.  p q ot

 The axes of the local coordinate system are related to the eigensystem of subdiscriminant 

matrix . There are three cases to assign the eigenvectors to .  uQ },,{ kji

 First, in the case of 2=urank Q  (elliptic paraboloid and real elliptic cylinder), the z-axis unit 

vector k  is set to the eigenvector having zero (smallest) eigenvalue. The length of each semi-axis of a 

real ellipsoid is reciprocal to the squares of corresponding eigenvalue [Pett1970]. Thus, the rotational 

axis of a surface-of-revolution shape becomes the eigenvector with zero (smallest) eigenvalue. 

 Second, in the case that 3=urank Q  and all the three eigenvalues have not the same sign 

(hyperboloid of one sheet, hyperboloid of two sheets, real quadric cone), the only one eigenvector having 

the opposite sign is assigned to k , which can work well as the rotational axis of a surface-of-revolution 

shape.  

 Finally, for a real ellipsoid, every eigenvector can be a candidate for k . In many cases, it is 

desirable to set k  to the eigenvector having the largest eigenvalue because it makes the shape near the 

degenerate point of the resulting NURBS surface natural.  

 The local-coordinate estimation method was applied to a set of COP-data obtained by “virtually 

digitizing” spheres and cylinders with different values of radius  (cylinders’ length is set to ). 

Random noises sampled from normal distribution  were added to the x-, y-, z-components of 

the COP-data points. Shown in Figure 4.3a are relative origin-estimation errors (in %) plotted against the 

normalized maximum noise 

R R2

),0( 2σN

RNM  (for sphere COP-data), where σ3=MN . The z-axis estimation 

errors  (in degrees) plotted against ze RNM  are shown in Figure 4.3b (for cylinder COP-data).  
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Figure 4.3. Empirical results of local-coordinate system estimation 
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Step 2. Local-coordinate Transform 

 Once the local-coordinate system is determined, the each point of COP-data is transformed 

from global coordinates  to local coordinates  using following relation (See Figure 4.4): kΨΩ
kΨω

 ; , )( TΨRΨ −= Ω
kk

ω

















•••
•••
•••

=
KkJkIk
KjJjIj
KiJiIi

R OoT −=  (4.5) 

where  denotes the global-coordinate system with  and Ω },,,{ KJIO ω  the local-coordinate system 

with },{ ,, kjio . 

kΨω
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j
i
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Figure 4.4. Global- and local-coordinate systems 

 

Step 3. NURBS-surface Fitting  

 By applying the NURBS-surface fitting method proposed in the Chapter 3, a spherical or 

cylindrical NURBS-surface is fitted to local 3D Cartesian-coordinate points .   }{ kΨω
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Step 4. Global-coordinate Transform of NURBS surface 

 Based on the well-known “affine-transform invariance” property [Pieg1995], the NURBS 

surface fitted in the local-coordinate system can be retransformed into the global-coordinate system by 

transforming each control-point from local coordinates  to global coordinates  using 

following relation:  
ji ,sω

ji,sΩ

   (4.6)  TsRs += −Ω
jiji ,

1
,

ω

  

 Shown in Figure 4.5 is an example of cylindrical NURBS-surface fitting for reverse 

engineering. Depicted in Figure 4.5a are given COP-data  and the quadric surface approximated 

having a general form as: 

}{ kΨΩ

  (4.7) 

0
009728.1443

216195.9447695.43971136.49
163925.0002311.0015879.0

045684.0574794.0808678.0),,( 222

=
+

−−+
−++
−+=

ZYX
ZXYZXY

ZYXZYXq

The type of the quadratic surface is a hyperboloid of one sheet ( 3)( =ur Q , 4)( =Qr , , 

, ). The estimated local-coordinate system 

023747.0)( =Qd

≠:k ≠:K ω  is determined as follows:  

  (4.8) 

0.995504) 0.003027,- (0.094667, 
0.006060), 0.999477, ,(-0.031771
0.094521),- 0.032202, (0.995002, 

,37.053139)- 38.352442, 2,(-35.02881

=
=
=
=

k
j
i
o

where k  is set to the eignevector whose its eigenvalue has the minus-sign alone.  
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Figure 4.5. Cylindrical NURBS-surface fitting for reverse engineering 

 

4.4  Reverse-engineering Software Development 

 The procedure of NURBS surface-fitting method using orthogonal-coordinate transform for 

reverse engineering presented in the previous sub-section is implemented as one component of the 

surface fitting engine for a “research-purposed” RE S/W whose the system architecture is shown in 

Figure 4.6 (the data flow in the system is given in Figure 4.7).  
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Figure 4.6. System architecture of RE S/W in which proposed NURBS-surface fitting procedure is 

embedded  
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Figure 4.7. Data flow in RE S/W  

 

4.5 Examples 

 Presented in this sub-section are examples of surface modeling for various kinds of COP-data 

with the RE S/W in which the proposed NURBS surface-fitting procedure is implemented. Shown in 

Figure 4.8a and Figure 4.8b are COP-data sampled from a hair-drier and the resulting CAD model, 

respectively. The “head” part of COP-data is fitted to NURBS surfaces by applying the proposed NURBS 

surface-fitting procedure: The “mouth” part, which is a true surface-of-revolution, was fitted to a 

cylindrical NURBS-surface, and the “occiput” part, which is a rotational-freeform shape (sphere-like 

shape) as depicted in Figure 4.8c, was fitted to a spherical NURBS-surface. The degenerate problem the 

closed spherical NURBS-surface fitting has was resolved with a cap surface as shown in Figure 4.8d.  
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(d)

(a) (b)

(c)  

Figure 4.8. Surface modeling for COP-data from hair-drier 

 

 Given in Figure 4.9a and Figure 4.9b are COP-data sampled from a humidifier and the resulting 

CAD model, respectively. The “body” surface is wholly constructed by applying the cylindrical NURBS-

surface fitting method (Observe the control net of the surface depicted in Figure 4.9d).  
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(d)

(a) (b)

(c)  

Figure 4.9. Surface modeling for COP-data from humidifier 

 

 Figure 4.10 shows the surface-modeling example for an outside rear-view mirror. Figure 4.10a 

and Figure 4.10b are COP-data and the resulting CAD model, respectively. Because both the “housing” 

and “bracket” surfaces were constructed as one NURBS surface, respectively, the final CAD model was 

obtained by applying only one secondary-surface operation (or trimming). Figure 4.10d shows the 

trimmed-surface boundary between two NURBS faces (or trimmed surface).  
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(d)

(a) (b)

(c)  

Figure 4.10. Surface modeling for COP-data from outside rear-view mirror 

 

 The proposed NURBS-surface fitting procedure can be applied to “realistic rendering” and/or 

“character modeling” purposed S/Ws [3dsM][Rhin]. The most standard modeling method provided by 

these kinds of S/Ws is as follows: 1) construction of a NURBS sphere or cylinder, 2) modification of the 

NURBS surface (sphere or cylinder before modification) by relocating the control points until users are 

satisfied with the resulting shape. The process is very tedious and time-consuming. If COP-data from 

physical maquettes can be imported to the S/W, the proposed NURBS-surface fitting procedure may 
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provide a good starting point for artistic works. Shown in Figure 4.11a are COP-data sampled from a 

teddy bear. The almost parts of the resulting 3D model are constructed by applying the proposed NURBS-

surface fitting procedure (See Figure 4.11b and Figure 4.11c). The “head” part of the teddy bear is 

composed of only one spherical NURBS-surface as shown in Figure 4.11d – it is very similar to the 

resulting surface modeled by the commercial S/Ws such as 3ds Max [3dsM] and Rhino [Rhin], etc.  

(d)

(a) (b)

(c)  

Figure 4.11. Surface modeling for COP-data from teddy bear 

When modifying the resulting NURBS-surface by relocating control points, a special consideration is 
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required. Because the resulting NURBS-surface has “mathematically” C0 continuity at the knots of 

NURBS base geometry (“geometrically” G1) – it is the characteristic of NURBS, for smooth shape 

modification, the control-points corresponding to these knot positions must be moved together with 

adjacent control-points so that the tangent-plane condition is kept. 
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5. Other Applications  

 

5.1  Mechanical-cam Design 

 A mechanical cam, one of the most “versatile” mechanical element, is used to transform one 

motion into another. Among various types of cams, a plate (or disk) cam and cylindrical cam with 

translating follower, which are the most commonly used, are conventionally designed in a polar-

coordinate system. The design of these kinds of the cam is how to synthesize a follower-displacement 

curve, )(θR , which is composed of the rise, dwell, and return periods (See Figure 5.1). With 

considerations of dynamics of cam motion, each rise- or return-curve segment has to be constrained under 

endpoint conditions (See the rise period in Figure 5.1):  

 ss RR =)(θ ; 0)( =′ sR θ ; 0)( =′′ sR θ  (5.1a) 

 ee RR =)(θ ; 0)( =′ eR θ ; 0)( =′′ eR θ  (5.1b) 

To satisfy above conditions, a polynomial function [Roth1956] or B-spline function [Ange1983] 

[MacC1988] is commonly employed for synthesis of )(θR .  
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)(θRr

sR

eR

Dwell Rise Dwell Return

sθ eθo θ

)(θRr

sR

eR

Dwell Rise Dwell Return

 

Figure 5.1. Follower-displacement curve 

 

 Once a follower-displacement curve is synthesized, so the shape of the plate or cylindrical cam 

is perfectly determined. However, there is one problem – how to express the shape of the cam in a 

Cartesian-coordinate system in the form of NURBS, which is the most standard curve or surface 
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representation for CAD/CAM/CAE systems. As so far, there have not been any solutions of the exact 

transformation. In this sub-section, an approximate approach is presented, which is based on the basic 

idea given in Section 2.1.  

 As mentioned earlier, it is impossible to obtain the 2D NURBS curve by applying the direct 

symbolic-product operation of )(θR  with the base circle  because the parameters, )(uB θ  and u , are 

not linearly related. For the curve and surface fitting presented in Chapter 2 and Chapter 3, respectively, 

so-called the parameter synchronization is introduced to solve the problem. However, for the problem of 

this sub-section, it cannot be done to re-parameterize )(θR  along . So, inversely, a NURBS base-

circle whose the flow rate is “almost” uniform is looked for.  

)(uB

 Blanc and Schlick [Blan1996] suggested a quartic NURBS-circle with its flow rate is almost 

uniform. This quasi-uniform NURBS circle )(~ θB  is composed of three, four, or six rational Bezier 

curves of degree 4, )}(~{ ηjB . Each rational Bezier curve having arc angle φ2  is given by: 
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where ,  are the weights and control points of the corresponding 

RQB-curve  having the same arc angle 

}1,,1{},,{}{ 210 wwwww jjjj
i ==

)(ηjB

}{ j
ib

φ2 , respectively.  

 First, let us consider how uniform the flow rate of the quasi-uniform arc is. Shown in Figure 5.2 

is the angle deviation of the quasi-uniform arc from a uniform arc, φηηξη 2)(~)( −=∆  where )(~
ηξ  is 

given by [Blan1996] 
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Figure 5.2. Angle deviation of quasi-uniform arc 

 

With comparison to ordinary RQB-arc on the same scale (See Figure 5.3), the uniformity of the quasi-

uniform arc is more noticeable – the ratio of the maximum-angle deviation of the ordinary RQB-arc to 

that of the quasi-uniform arc is more than hundreds. The ratios are about 250, 500, 1000 for the triangle-

based circle )322( πφ =  [Vers1975], square-based circle )22( πφ = , hexagon-based circle 

)32( πφ =  [Till1983], respectively.  
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Figure 5.3. Angle deviation: (a) quasi-uniform arc and (b) RQB arc 
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 The radial deviation of the NURBS curve obtained by a symbolic-product operation of 

)2( φηR  with a quasi-uniform circle )(~ ηB  is calculated approximately,  

 
)()2()2()}()2()2({

)2())(2()2())(~()(

ηφηφηηφηφη

φηηφηφηηξη

∆′=−∆′+≅

−∆+=−=∆

RRRR

RRRRR
 (5.4) 

Given a conversion tolerance ε , the number of the arc segments of which the quasi-uniform base-circle 

consists, can be calculated for successful conversion so that εηφη ≤∆′ )()2(R . Because 

≤ , once 
max

)(θR′  is calculated, the arc angle  

satisfies 

*2φ

maxmax
)()( θεη R′=∆ , can be obtained from the relation between φ  and 

max
)(η∆

)(

 shown in 

Figure 5.4. Then, the 2D NURBS curve of the cam is constructed from ~)(( θθC R) = θB  where )(~ θB  

is a base-circle composed of  *φπ  quasi-uniform arcs. 

max
)()2()()2()()2( ηφηηφηηφη ∆′∆′≤∆′ RRR
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Figure 5.4. Maximum angle deviation vs. arc angle  

  

Figure 5.5 gives an example of the construction of the 2D NURBS cam-profile.  
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Figure 5.5. Construction of 2D NURBS cam-profile  
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5.2  Pressure-vessel Design  

 Almost pressure vessels are designed in the form of sphere- or cylinder-like “shell” shapes for 

smooth pressure distribution. Shown in Figure 5.6 is an axisymmetric-cylindrical pressure vessel.  
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Figure 5.6. Axissymmetric-cylinder pressure vessel  

 

 To design the right (or left) side of wall is to find a single-valued function )(θR  from 

)},{( kk θκ  where kκ  is curvature. For the curvature to be continuous at points A , , following 

conditions are imposed when solving the nonlinear system [Fran1975][Ange1983].  

B

 ; ; RR =)0( 0)0( =′R 0)0( =′′R   (5.5a) 

 RR =)(π ; 0)( =′ πR ; 0)( =′′ πR  (5.5b) 

 Once )(θR  is obtained, the corresponding NURBS-curve (or surface) can be constructed by 

applying the conversion method suggested in Section 5.1.  
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5.3  Scientific Visualization 

 In much scientific and/or engineering research, spherical or cylindrical experimental set-ups are 

employed, and data in the form of single-valued functions ( )},,{( , lklkp θφ  or )},,{( , lklk zp θ ) are 

generated. These kinds of empirical data can be very effectively visualized by applying the proposed 

NURBS-surface fitting method. One example is shown in the Figure 5.7, which is “simulated” sound-

pressure distribution caused by a noise source (monopole).  
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Figure 5.7. Sound-pressure distribution 

 

 The noise source is located at arbitrary position near the origin, and sound pressure is measured at nm×  

grid points on the cylindrical microphone array. The sound-pressure distribution can be shown in the form 

of a NURBS surface 

 ),(}),({),( vudvuFsvu BS +⋅=   (5.6) 

where  is a single-valued function fitted to {(),( vuF )},,, lklk zp θ , s  and  are scale factors for 

satisfactory display.  

d
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6. Discussions and Conclusions 

  

 The proposed NURBS-surface fitting method may be dubbed as an “indirect” method because it 

differs from the existing “direct” methods where a 3D B-spline or NURBS surface is constructed 

“directly” from cloud-of-points data (COP-data). Whereas “general” methods for fitting NURBS surface 

from COP-data in the literature – Hoschek [Hosc1993] employed a circular spline and Laurent-Gengoux 

and Mekhilef [Laur1993] treated NURBS-surface fitting as a non-linear optimization problem – focus on 

determining the weights of NURBS control-points so that the extra degrees-of-freedom provided by the 

weights are best utilized, in the proposed method first a single-valued B-spline surface is fitted to the data 

transformed into orthogonal- (spherical- or cylindrical-) coordinate system and second the fitted surface is 

converted to a NURBS surface by applying a symbolic-product operation with a NURBS base-geometry.  

 The proposed method provides a natural means to assign parameter values to COP-data 

representing a “rotational-freeform” shape, and may be embedded in a laser scanner having a spherical- 

or cylindrical-kinematics structure (because the laser scanner generates range data in its orthogonal-

coordinate system). The proposed method enables to recover an “exact” NURBS surface for COP-data 

sampled from a “true” surface-of-revolution shape. In the proposed method the “real” fitting process is 

done in the form of a single-valued function, thus, the point inversion and approximation error calculation 

are trivial. The calculated approximation error is a kind of parametric error , which has the relation 

with geometric error (or 3D Euclidean distance)  as given by 
pe

ge ψcospg ee ≅  where ψ  is the angle 

between the surface-normal vector of the resulting NURBS surface and symbolic-product (or scaling) 

direction ( ),( θφB  for a sphere and )0,(θB  for a cylinder). Because geometric error cannot be greater 

than parametric error, if the single-valued function is approximated within the pre-defined tolerance, the 

resulting NURBS-surface is also satisfied with the tolerance. However, it is a somewhat conservative 

manner. Thus, for the resulting NURBS-surface to be fitted tighter, it can be possible to directly use the 

“approximately” estimated geometric error ( ψcosge pe≅ ) when the single-valued B-spline surface is 

fitted. On the other hand, because measured COP-data inevitably include noise, faring operation to the 

corresponding structured-data is essential before surface fitting. However, the repetitive application of 

difference fairing [Renz1982][Choi1998][Cho2001], which is one of the most widely used fairing 

methods, causes the shrinkage of the structured data. Thus, shrinkage avoidance is an important research 

issue related to fairing [Taub1995][Cho2000]. Whereas, if the fairing operation is performed in the 

orthogonal-coordinate system (before single-valued B-spline surface fitting), it does not cause the severe 
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shrinkage of the resulting NURBS-surface unlike the fairing “directly” performed in 3D Cartesian- 

coordinate system. Besides, the proposed method allows the NURBS surface to be stored as a single-

valued function and base geometry separately, which requires less memory and, more importantly, it 

allows an easier point-membership classification for NURBS-bounded solid objects. For the purpose of 

point-membership classification, a “general” B-spline surface representing a rotational-freeform shape 

can be “roughly” factorized into a single-valued B-spline surface and base geometry as follows: 1) a 

local-coordinate system },,,{ kjio=ω  for the B-spline surface  is estimated; 2)  is 

transformed into local-coordinate surface ; 3) a base geometry B  for  is 

constructed; 4) a single-valued surface is extracted as given by . However, 

above “rough” factorization cannot be directly applied to “precise” surface operations such as surface-

surface intersection (SSI), trimming, etc. because it does not consider any kind of parameter 

synchronization. 

),( vuSΩ

),( vuF

),( vuSΩ

),( vuSω),( vuSω ),( vu

),( vu BS • ),( vu=Ω

 By offering a “robust” local-coordinate system estimation method for COP-data “arbitrarily” 

located in 3D Cartesian space, the proposed method was successfully embedded to a research-purposed 

RE S/W, as one component of the surface fitting engine. In consequence, surface modeling with the RE 

S/W is more efficient – the numbers of surfaces and secondary-surface operations are reduced, and user 

interaction is also reduced. Besides, the proposed method can be used for an “intuitive” scientific 

visualization of empirical data acquired from spherical or cylindrical experiment set-ups. The basic idea 

of the proposed method – a curve (or surface) can be interpreted as a product of a base geometry and a 

scale function – can be applied to some special shape (mechanical cam, pressure vessel, etc.) design.  

 A major drawback of the proposed NURBS-surface fitting method is that the degrees of the 

resulting NURBS-surface are somewhat high. For example, if a bi-cubic B-spline surface is used in the 

single-valued surface fitting stage, the degrees of the spherical NURBS-surface are (5,5).  
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要 約 文 

 

NURBS Surface Fitting Using Orthogonal Coordinate Transform and 
Applications 

 

 

 실물모델로부터 CAD모델을 생성하는 작업은, 많은 제품개발과정에서 중요한 역할

을 하고 있다. 본 논문에서는 회전자유형상의 측정데이터에 대하여 다음과 같은 과정을 가

지는 “간접적인” NURBS곡면 생성방법을 제안한다: 1) 회전자유형상의 측정데이터에 대한 직

교좌표 (구면좌표 또는 원주좌표) 변환, 2) 좌표변환된 데이터에 대한 일가함수 (B-스플라인

함수) 생성, 3) 생성된 일가함수와 2차 NURBS기저형상과의 곱연산을 통한 3D NURBS곡면 

생성. 기존의 “직접적인” 곡면생성 방법에 비하여 본 논문에서 제안하는 방법은 다음과 같

은 특징적인 장점을 가지고 있다: 1) 회전자유형상의 측정데이터에 대한 자연스러운 매개변

수화 제공, 2) 실제 회전형상으로부터 측정된 데이터의 경우 정확한 회전형상을 나타내는 

NURBS곡면 생성, 3) NURBS곡면으로 구성된 입체에 대한 점구분 용이.  

 제안하는 NURBS곡면 생성방법은, 임의의 3D 공간상의 회전자유형상 측정데이터에 

대한 국소좌표계 정의 방법 (2차곡면 근사에 근거) 과 결합하여, 역공학소프트웨어의 곡면생

성엔진의 한 부분으로 성공적으로 구현되었으며, 그 결과, 회전자유형상을 포함하는 형상에 

대하여, 곡면 개수 및 이차곡면연산작업 감소, 사용자 개입의 감소 등을 통하여 보다 효율적

인 역공학프로세스를 기대할 수 있게 되었다. 또한, 제안하는 방법은 구면 또는 원주 형상의 

실험장치를 이용하여 측정한 실험데이터의 효과적인 시각화에 적합하다. 한편, 제안하는 방

법의 기본개념 즉, 회전자유곡선 (또는 곡면) 은 기저형상과 스케일 함수로 해석 가능하다는 

사실은, 캠 또는 압력용기 등의 특별한 형상설계에도 이용될 수 있다.  
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Appendix A. NURBS-curve Construction Using Symbolic-product 
Operation  

  

 A symbolic-product operation of a B-spline function and NURBS curve, is more efficient when 

the NURBS curve is represented using homogeneous coordinates [Pieg1997]. Thus, to construct a 

parametric NURBS-curve from , let the NURBS base-circle  be 

written in the form of a homogeneous representation as  

)()()( uuFu BC = ))(),(()( uYuXu =B

   (A.1) ))(),(),(()( uWuYuXu www =B

where , Y , ; , . 

Then, the homogeneous form of the resulting NURBS-curve can be obtained by applying the symbolic- 

product operations of a single-valued B-spline function  with the first two (non-rational) B-spline 

functions as  
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For the details of symbolic-product operation of two non-rational B-spline functions, see Appendix A.1. 

By applying a perspective mapping of  with respect to the origin, the resulting NURBS-curve is 

obtained in turn:  
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Appendix A.1 Symbolic-product Operation of Two Non-rational B-spline 
Functions 

 Given two non-rational B-spline functions 
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  The procedure of determining control points  is as follows: }{ kh

1) Decompose F  and  into Bezier functions {  and , respectively, 

using knot refinements with the distinct knot vector of ; 

)(u )(uG )}(uF b

HU

)}({ uGb

2) Compute the product of each paired Bezier functions (See Appendix A.2); 

3) Recompose the Bezier product functions into a B-spline form using a full knot vector of for 

degree , namely, qp +
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 Above procedure to find U  and { , is conceptually the same as Piegl and Tiller’s 

[Pieg1997], which is summarized more intuitively.  
H }kh

 

Appendix A.2 Symbolic-product Operation of Two Bezier Functions 

 Given two Bezier functions 
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of degree  and , respectively, the Bezier product function is given by [Faro1988][Elbe1993] 

[Pieg1997] 
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Appendix B. NURBS-surface Construction Using Symbolic-Product 
Operation 

  

 As similar to the curve case given in Appendix A, a symbolic-product operation of a single-

valued B-spline function  and NURBS base-geometry ),( vuF )),(),,(),,((),( vuZvuYvuXvu =B , is 

more efficient when the NURBS base-geometry (i.e., base sphere or cylinder) is in the form of a 

homogeneous representation,  

  (B.1) )),(),,(),,(),,((),( vuWvuZvuYvuXvu wwww =B

where , ,

, ; , , 

 for a spherical NURBS-surface fitting. The component functions for a cylindrical NURBS-

surface fitting, can be written in the similar form where  are substituted for all .  

∑ ∑= =
= B Bn

i

m

j
w

jiji
w xvNuNvuX

0 0 ,2,2, )()(),(

= =

B Bm

j
w

jiji zvNuN
0 0 ,2,2, )()( ∑ ∑=

n

i
vuW ),(

jiji zw ,,

∑ ∑= =
= B Bn

i

m

j
w

jiji
w yvNuNvuY

0 0 ,2,2, )()(),(

= =

B Bm

j jiji wvNuN
0 0 ,2,2, )()( jiji

w
ji xwx ,,, =

)}({ 1, uNi {

=),( vuZ w

jijij yw ,,=

)}(2 u

∑ ∑n

i
w

jiz , =

w
iy ,

,Ni

 The homogeneous form of the resulting NURBS-surface is given by  

  (B.2) )),(),,(),(),,(),(),,(),((),( vuWvuZvuFvuYvuFvuXvuFvu wwww =S

for the spherical NURBS-surface fitting, or  

  (B.3) )),(),,(),,(),(),,(),((),( vuWvuZvuYvuFvuXvuFvu wwww =S

for the cylindrical NURBS-surface fitting.  

 A symbolic-product operation of two non-rational “bi-variate” B-spline functions (let us denote 

 and ) can be performed by a simple extended procedure of the curve case given in 

Appendix A.1 as follows: 1) determine - and 

),( vuF ),( vuG

u v -directional knot vectors (U  and V ) for the 

resulting non-rational bi-variate B-spline function , respectively by Equations (A.4)-(A.7); 2) 

decompose  and  into bi-variate Bezier functions {  and {  using 

knot refinements with the distinct knot vectors of  and V ; 3) compute the product of the each 

paired Bezier functions (See Appendix B.1); 4) recompose the Bezier-product functions into a B-spline 

form using knot removal with U  and . The degrees of the resulting NURBS-surface are 

 for the spherical NURBS-surface fitting and 
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H HV

)2+,2( + qp (max{ +qp  for the cylindrical 

NURBS-surface fitting (See Appendix B.2). 
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Appendix B.1 Symbolic-product Operation of Two Bi-variate Bezier Functions 

 Given two bi-variate Bezier functions 
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Appendix B.2 Degrees of NURBS Surfaces  

 First, let us consider a spherical NURBS-surface fitting. A base sphere can be represented in a 

homogeneous form as Equation (B.1), where the degrees of the first three component functions, 

, , , are , , , respectively (because the base sphere is 

constructed by a surface-of-revolution method with respect to z-axis). Thus, the degrees of the first three 

product-component functions in Equation (B.2), , , , 

can be easily calculated as , 

),( vuX w ),( vuY w ),( vuZ w

( p

)2,0(

) (

)2,0(

)2

)0,2(

),( Xvu ),( vuF w ),(),( vuYvuF w ),(),( vuZvuF w

2, +q , +qp , )q,2( p + , respectively. Then, the degrees of the 

resulting NURBS surface are  

 )2,2(}),2,2max{},2,,(max{ ++=+++ qpqqqppp . (B.7) 

 On the other hand, the degrees of first three component functions in Equation (B.1) for a base 

cylinder, are , , , respectively, and the degrees of the first three functions in Equation )2,0( )2,0( )0,1(
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(B.3), , , , are ),(),( vuXvuF w ),(),( vuYvuF w ),( vuZ w )2,( +qp , )2,( +qp , , respectively. 

Therefore, the degrees of the resulting cylindrical NURBS-surface are given by:   

)0,1(

)2},1})0,2,2max{},1,,(max{ +=+ qq qp ,(max{+ pp  (B.8) 
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Appendix C. Constrained-surface Fitting  

  

 Assume that {{ = ; )},(} kkk vuFG Kk ,,0 K=  are given. We are to seek a single-valued B-

spline surface  
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 The unconstrained equations are written in a matrix form as 

   (C.3) FNG =

and constrained equations as 
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 If the sum of the numbers of above equations is the same as the numbers of degrees-of-freedom 

of , that is, ),( vuF )1)(1()1()1( ++=+++ FF mnLK , the given problem becomes a general 

interpolation problem as  

 FNG ~~
=   (C.5) 

where  
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If N~  is invertible, there is a unique solution as given by 

 GNF ~~ 1−=   (C.6) 

 On the other hand, if ( )1)(1()1()1 ++>+++ FF mnLK , the given problem becomes a 

constrained least-squares approximation to minimize the sum of squares of errors subject to constraints 
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where  is a column vector of Lagrange multipliers. Differentiating Equation (C.7) with respect to 

unknowns  and L , and setting zero yield two matrix equations 

L

F
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By substituting  (from Equation C.8a) into Equation (C.8b) if N  is 

invertible,  can be obtained if  is also invertible as follows:  
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Finally,  can be calculated by substituting Equation (C.9) into Equation (C.8a) as  F

 . (C.10) }])({})({[)( 1111 HGNNNCCNNCCGNNNF −−= −−−− TTTTTTT
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Appendix D. G-continuity Conditions at Degenerate Point 

 

Appendix D.1 Proof of Simple G1 Continuity Condition  

  With Equation (3.14a), the boundary values of the single-valued B-spline surface at the pole 

yield, 
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Then, the  continuity condition of Equation (3.11) becomes satisfied:  0G
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Then,  

  (D.4) )},(),({)},({),(),( 2 vuvuvuFvuvu suvsussuvsu BBSS ×=×

where  is in the direction of ),(),( vuvu suvsu BB × k , which makes the condition of Equation (3.12) for 

the  continuity be satisfied. 1G

 

Appendix D.2 Optimal Scale Factors to Find Degenerate Point and Surface-normal 
Vector  

 The derivatives of a pth degree Bezier curve C  at endpoints are easily 

obtained as: 
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=
p

i ipi tBt
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 )2)(1()1(),()1(,)1( 211 −−− +−−=′′−=′= pppppp ppp cccCccCcC  (D.5b) 

Simple arithmetic manipulations with using Equations (3.17) and (D.5) give the control points of 
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connecting curves  in terms of ∑=
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Then, the mean curve ∑ −

=
=

12

0
)()2()( Sm

j jS tmt CC  also can be expressed in terms of α , β  as follows: 

 ∑∑ ∑∑
=

−

=

−

= =

−

=








===

5

0

12

0
5,

12

0

5

0
5,

12

0

2)()(2)(2)(
i

m

j

j
i

S
i

m

j i

j
ii

S

m

j
j

S

SSS

m
tBtB

m
t

m
t ccCC ∑  (D.7) 

 The mean-deviations of connection curves at 5.0=t  in Equation (3.18) are   
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Now, Equation (D.8) is explicitly expressed in terms of α , β  as: 
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 Finally, the sum of the squares of Equation (D.9)  

 2
12

0
210 )(),( ∑

−

=

++=
Sm

j

jjjE βαβα AAA  (D.10) 

is minimized when 0=∂∂ αE , 0=∂∂ βE . Optimal-scale factors ,  can be calculated by 

solving following a matrix equation 
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Appendix E. Origin Estimation of Local-coordinate System for rank 
Qu= 2 

  

 Let A 2=  and b , then Equation (4.2) can be written in a matrix form as follows: uQ v−=

   (E.1) bxA =

 For , a general solution of Equation (E.1) is given by 2=Arank

 ;   (E.2) qpx t+= Rt∈

where  is a particular solution of p bxA = , and the unit vector  is a solution set of  ( p , 

 are calculated using the singular-value decomposition method [Pres1994]). In order to obtain the 

origin o of the local-coordinate system for the input COP-data ; 
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감 사 의 글 

 

본 논문이 완성되기까지 도와주신 모든 분들에게 감사의 말씀을 전합니다.  

 

최 병규 교수님은 CAD/CAM 분야에 대한 막연한 동경과 갈망만이 모두였던 저에

게 새로운 연구의 장을 허락하여 주셨고, 지난 6년간 각별한 관심으로 학문과 연구에 임하

는 자세와 방법을 가르쳐 주셨습니다. 또한, 본 논문을 진행하는데 있어서도 온갖 어려움이 

있을 때 마다 현명한 방향을 제시하여 주셨습니다. 교수님께서 몸소 실천하시는 열정적인 

생활 태도와 연구 자세를 언제까지나 기억하고 인생의 본보기로 삼겠습니다. 진심으로 감사

합니다.  

논문심사를 맡아 주신 염 봉진 교수님, 김 승우 교수님, 이 태억 교수님, 김 덕수 

교수님, 신 하용 교수님께 감사 드립니다. 교수님들의 깊이 있는 조언은 본 논문이 바른 방

향으로 나아갈 수 있는 든든한 길잡이가 되어 주었습니다.  

 

조 수경 선배님은 논리적인 사고와 유연한 대화로 학문적인 토론의 즐거움을 가르

쳐 주었습니다. 본 논문의 기본 개념 중 많은 부분은 조 수경 선배님과 함께한 수학적 검토 

끝에 도출되었습니다. 같이한 5년 동안의 수많은 분야의 질문과 대답은 언제 어디서나 꺼내

어 쓸 수 있는 귀중한 자산이 되리라고 생각합니다.  

유 석규 형님은 많은 시간과 노력을 들여 본 논문 4장의 곡면모델링 예제들을 만

들어 주었습니다. 또한, 많은 부분에 있어 저의 모지라는 부분을 자상히 챙겨 주었고, 연구

와 생활에 있어서의 어려움들을 극복해 나가는데 큰 힘이 되어 주었습니다.   

정 원형 씨는 본 논문 5장의 과학적 가시화 기능을 구현하여 주었습니다. 탁월한 

프로그래밍 실력은 그 동안의 연구 생활에 있어서 많은 도움이 되었습니다.  

 

연구실 생활을 같이 한 모두 – 김 대현 선배님, 한 관희 선배님, 박 정현 선배님, 

황 문호 선배님, 김 보현 선배님, 김 병희 선배님, 박 준철 선배님, 박 상철, 고 기훈 씨, 윤 

진민, 박 범철, 김 성철, 차 은성 씨, 유 남규, 양 병운, 정 구환, 서 정철, 정 창영 씨, 황 

현철, 황 동환, 김 종한, 류 호열, 임 정희, 김 혁래, 이 재원, 노 성철 – 에게 감사 드립니

다.  

정말 오랫동안 같은 길을 걸어 가며 의지할 수 있었던 경남과학고등학교 동기들, 

선배님들, 그리고 후배들에게 감사 드립니다. 낯선 땅에서 만나서 다양한 경험을 함께 하였

  



던 대학교 동아리 친구들, 선배님들, 그리고 후배들에게 감사 드립니다.  

10년이 넘도록 기쁨과 슬픔을 나누면서 사랑을 키워 왔던 이 은진에게도 감사 드

립니다. 거친 세상을 함께 헤쳐 나갈 절친한 친구이자 평생의 연구 동료입니다.  

마지막으로, 항상 지켜 보아 주시고 용기를 북돋아 주시는 집안 어른들과 친지들, 

언제나 저를 좋아하고 잘 따르는 동생 배 진형, 아낌없이 사랑해 주시는 부모님께 감사 드

립니다.  

 

위의 모두에게 쉽지 않게 이룬 이 작은 결실을 바칩니다.  
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