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Abstract

Constructing a CAD model from a physical model plays a key role in some product-
development processes. To be presented is an “indirect” method of fitting NURBS-surfaces for
rotational-freeform shapes: 1) Cloud-of-points data representing a rotational-freeform shape are
transformed into an orthogonal-coordinate (spherical- or cylindrical-) system, 2) a single-valued B-
spline surface is fitted to the transformed data, and 3) the resulting B-spline surface is converted to a 3D
NURBS-surface by applying a symbolic-product operation with a quadratic NURBS base-geometry.
Compared to the existing “direct” fitting methods, the proposed method has some distinctive
advantages: It provides a natural means to parameterization, enables to recover “exact” NURBS
geometry when the cloud-of-points data represent a “true” surface-of-revolution, and allows an easy

point-membership classification for NURBS-bounded solid objects.

By combining with a “robust” local-coordinate system estimation method based on the
general-quadric surface approximation for cloud-of-point data “arbitrarily” located in 3D space, the
proposed method was successfully embedded to a research-purposed reverse engineering sofiware, as
one component of the surface fitting engine. In consequence, reverse engineering process becomes more
efficient — the numbers of parametric surfaces and secondary-surface operations are reduced, and user
interaction is also reduced. The proposed method can be used for an “intuitive” scientific visualization of
empirical data acquired from spherical or cylindrical experiment set-ups. The basic idea of the proposed
method — a rotational-freeform curve (or surface) can be interpreted as a product of a base geometry and

a scale function — can be applied to some special shape (mechanical cam, pressure vessel, etc.) design.
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1. Introduction

Physical models play a key role in some product-development processes. When designing an
aesthetic product, physical models (made of clay or chemical wood) are employed for aesthetic evaluation
[Yamal993]. Sometimes, designers start with existing products when designing a new product shape,
which is known as (shape) reverse engineering [Varal997]. In “custom-design” of sports wear and shoes,
which is becoming quite popular, human body serves as a physical model. In these cases, the physical
model is digitized to obtain cloud-of-points data (COP-data) and then a mathematical CAD model is

constructed from the COP-data.

In order to construct a parametric surface from COP-data, a pair of parameter values have to be
assigned first to each data point. This parameterization operation is critical to the quality of the fitted
surface [Mal995], but is not a trivial task for a rotational-freeform shape that one-to-one maps to a sphere

or cylinder.

To be presented is an “indirect” method of fitting NURBS surface from COP-data representing
a rotational-freeform shape, which provides a natural means to parameterization. The proposed method
consists of three phases: 1) COP-data representing a rotational-freeform shape are transformed into an
orthogonal- (spherical- or cylindrical-) coordinate system, 2) a single-valued B-spline surface of degree
(p, q) is fitted to the transformed data, and 3) the single-valued B-spline surface is converted to a
(parametric) NURBS surface by applying a symbolic-product operation [Pieg1997] with a NURBS base-

geometry.

The NURBS-surface fitting method to be proposed enables to recover exact NURBS geometry
for a true surface-of-revolution when the COP-data represent a “true” surface-of-revolution shape (which
includes sphere and cylinder) [Pieg1987][Pieg1991]. There have been various proposed methods for
fitting sphere/cylinder [Lukal997] and surface-of-revolution shapes [Pott1998a][Pott1998b][Lai2000].
These “specialized” methods are efficient only when we know that the COP-data on hand represent a

sphere, cylinder or surface-of-revolution shape.

When the fitted NURBS-surface becomes a face of a NURBS-bounded solid object, the single-
valued B-spline surface may be used as a point-membership classifier. Namely, a 3D point to be classified

is transformed into the orthogonal-coordinate system of the fitted NURBS surface, and its “range” value



is compared against the single-valued B-spline surface. Point-membership classification for a general
NURBS-bounded solid object is not a trivial operation [Niel1993]. Point-membership classification for
rotational freeform shapes has been studied quite extensively by Sanchez-Reyes [Sanc1990][Sanc1991]
[Sanc1992][Sanc1994]. The Sanchez-Reyes’ method, which uses a sinusoidal-spline function as the basis
function, is similar to the method proposed in this study and may be used as a NURBS-surface fitting
method for a sphere-like shape (but not for cylinder-like shape because its single-valued function is not a

tensor-product surface).

The organization is as follows: described in Chapter 2 is a NURBS-curve fitting method using
polar-coordinate transform, which is the core procedure for the NURBS-surface fitting methods to be
presented in Chapter 3. Also presented in Chapter 3 are special treatments including closed surfaces and
pole degeneracy problem. As a main use of the proposed method, (shape) reverse engineering application
is considered in Chapter 4 where the estimation of a local-coordinate system is especially focus on. Other
applications including special shape designs and scientific visualization are given in Chapter 5. Finally,

Chapter 6 closes this dissertation with discussions and conclusions.



2. NURBS-curve Fitting

The NURBS-curve fitting method, which becomes the core part of the NURBS-surface fitting
method of Chapter 3, is based on polar-coordinate transformation of 2D points representing a circle-like

curve (i.e., rotational-freeform curve).

2.1 Basic Idea

Let B(@)=(cosé,sind) denote a unit circle centered at the origin of a xy-coordinate system,
then a rotational-freeform curve C(0) on the xy-plane may be expressed as the product of B(#) and a

single-valued function F(8) as follows:

C(0) = (x(0), y(0)) = F(0)B(8) = (F(0) cos b, F(0)sin ) (2.1)

where the unit circle B(&) is called a (trigonometric) base circle. A construction for the above

relationship is illustrated in Figure 2.1.

C(0)=F(6)B(0)
F(0)

S) 4

(a) (b)
Figure 2.1. (a) Single-valued function in polar-coordinate system and (b) its corresponding 2D parametric

curve in xy-coordinate system

A sequence of 2D points {¥,} ={(x,,»,)} representing a rotational-freeform curve may be

fitted to the curve C(€) in Equation (2.1) as follows:



1) {¥,} isconverted into a polar-coordinate point-sequence {@®,}={(r,,6,)}
2) {0O,} isfitted to a single-valued B-spline function r = F(6)

3) F(@) isconvertedtoa?2D curve C(f) using Equation (2.1).

By replacing the trigonometric base-circle B(6) in Equation (2.1) with a NURBS base-circle
B(u) , we can obtain a NURBS curve C(u). However, for this replacement to work properly, we need a
parameter-synchronization between € and u. Because the NURBS base-circle B(z) may consist of four
rational-quadratic Bezier curves (RQB-curves) [Till1983][Pieg1995] and it does not have a uniform
flow rate [Faro1991] unlike the trigonometric base-circle B(6). Now, this study presents a NURBS-

curve fitting procedure using polar-coordinate transform.

2.2 Polar NURBS-curve Fitting Procedure

The overall procedure for fitting a 2D NURBS-curve from a sequence of 2D points representing
a rotational-freeform curve, consists of five steps: 1) polar-coordinate transform, 2) base-circle
construction, 3) curve-parameter synchronization, 4) single-valued B-spline curve fitting, and 5) NURBS-

curve construction.

Step 1. Polar-coordinate Transform

A sequence of points {¥,}={(x,,»,)} in 2D Cartesian coordinates are converted into a

polar-coordinate point-sequence {@,}={(r,,6,)} as follows:

ne= X+ Yy
tan"'(y,/x,) if x, >0and y, 20

2.2)
0, =<r+tan”'(y,/x,) if x, <0

2z +tan” (y, /x,) if x, >0and y, <0

Step 2. Base-circle Construction

A base circle B(u) having an arc angle of 6, -6, is easily obtained by using the square-

based method [Till1983][Piegl1995], where a full circle having the arc angle of 2z is defined by four



rational-quadratic Bezier curves (RQB-curves).

ng

DN, w)wph,
B(u) = Up={u,, Uty sesll, Uy, U} (2.3)
— —
ZN[.’2 (”)Wi 2+1 241
i=0

where {N,,(u)} are B-spline basis functions of degree 2; {w,} and {b,} are the weights and control

points of B(u) , respectively.

Shown in Figure 2.2 is a sequence of 2D Cartesian-coordinate points {¥,} inside an angle
range of [0_,6,], where the base circle B(u) consists of three RQB-curves since the arc angle is less
than 37/2 (but larger than 1t). Observe that the control polygon of the base circle B(u) is also shown in

the figure.

Figure 2.2. Base-circle construction for 2D data points

Step 3. Curve-parameter Synchronization

The synchronized-parameter value u, of the base circle B(u) for a polar-coordinate point
O, =(r,,6,) corresponds to the intersection point between B(u) and the line joining the origin and the

2D Cartesian-coordinate point ¥, =(x,,y,) depicted in Figure 2.3.



Figure 2.3. Geometric construction for parameter synchronization (i.e., finding u, )

To find u, at the intersection-point, B(u) is first decomposed into individual RQB-curves

{B/(n)} for uelul/,u/] corresponding to the angle range [6/,0/] as follows:

2
2 B.(nwb]
B/()=4—— W =1, W =cos{(/-6))/2}, w]=1 (2.4)

Z Bi,Z €)) ij
i=0

where {B,,(n)} are Bernstein polynomials of degree 2; {w/} and {b/} are the weights and control
points of each RQB-curve B/(7), respectively; a local parameter n for each RQB-curve B/(7) is

defined as

n=—ul)/(u —ul); uelul,ull. (2.5)
Then, the local-parameter value 7, for a polar-coordinate point @, within the angle range [6/,6/]
may be obtained from the following relation:

(cos@,,sind,) =B’ (1) (2.6)

A solution to Equation (2.6) is given by [Blan1996]

Sk

tan

= 5 >
VI=w* +(1—w)tan 2&

2

& =6,-6] 2.7)



where w is the weight of the middle control point of the RQB-curve B’(7) . Finally, the synchronized-

parameter value u, for @, belongingto B’(7) is obtained from the following equation:
w, = (u/ —ul)n, +ul (2.8)
In practice, an RQB-curve is defined over a unit interval so that u/ =, u/ =j—1, in which case

Equation (2.8) reducesto u, =7, +(j—1).

Shown in Figure 2.4a is a construction for finding 7, corresponding to the intersection point
between B'(77) and the line joining the coordinate origin and W, . The relation between 7, and &,

is depicted in Figure 2.4b.

Coe .‘Pk:(xk’yk) b ,Tk:(xkayk)
[ [

(a) (b)

Figure 2.4. Geometric construction for local-parameter synchronization (i.e., finding 7, )

Step 4. Single-valued B-spline Curve Fitting

A single-valued B-spline curve F(u) of degree p (usually p=3) is fitted to the parameter-
synchronized points {(:) ={(r,u,)} by using standard fitting methods [deBol978][Faril988]
[Choil991][Pieg1995][Hosc1993].

F(u)zzsz(u)f;’ UF :{u.s-"”’usﬂuml’”"unF9ue"”’u¢z} (29)
=0 _— -

p+l p+l



Step 5. NURBS-curve Construction

At the final step, a (parametric) NURBS curve is constructed from the single-valued B-spline
curve F(u) by applying a symbolic-product operation [Pieg1997] with the NURBS base-circle B(u) .
Namely, from C(u) = F(u)B(u) we have

e
Z Ni,/)+2 (w)we,
Clu) =3 Ue =l Uty gty U, (2.10)
zNi,p+2 (”)Wz p+2+1 p+2+1
i=0

where {N, ,.,(u)} are B-spline basis functions of degree p+2; {w,} are weights, and {c,} are
control points of the NURBS curve C(u), respectively. For the details, refer to the Appendix A. The
above NURBS-curve construction concept is illustrated in Figure 2.5, where the degree of F(u) is 3

and that of the resulting NURBS-curve is 5.

F(u)

S\ 4

arrean_ Clu) = F(u)B(u)
=y e

Figure 2.5. NURBS-curve construction via symbolic-product operation

If the 2D Cartesian-coordinate point-sequence {¥,} represents a true circle of radius R, the



single-valued B-spline curve will become a constant line, namely, F(u)= R . In this case, the degree of
F(u) is zero (i.e., p=0) and that of the resulting NURBS-curve becomes 2. That is, C(u)=RB(u)

becomes a true circle of radius R.



3. NURBS-surface Fitting

The procedure for fitting a NURBS surface from cloud-of-points (COP) data, is similar to the
curve-fitting procedure given in the previous chapter, and consists of five steps: 1) orthogonal-coordinate
transform, 2) base-geometry construction, 3) surface-parameter synchronization, 4) single-valued B-
spline surface fitting, and 5) NURBS-surface construction. A rotational-freeform shape (i.e., sphere-like
or cylinder-like shape) may be one-to-one mapped to a sphere or a cylinder: When the shape is more

naturally mapped to a sphere, a spherical NURBS-surface is fitted from the COP-data.

3.1 Spherical NURBS-surface Fitting Procedure
Step 1. Spherical-coordinate Transform

The COP-data {¥,}={(x,,»,,z,)} representing a sphere-like shape are converted into
spherical-coordinate points {®,} ={(p,,9,,6,,)} as follows:

P =X+ V2

¢k=cos’1(zk/ x,f+y,f+z,f) (3.1
tan”'(y,/x,) if x, >0and y, >0

0, =<m+tan”'(y,/x,) if x, <0
27 +tan”'(y, /x,) if x, >0and y, <0

And, the angle ranges are computed as

¢, =min{g}; 4, =max{g,}; 6, =min{f,}; 6, =max{f,}. (3.2)

Step 2. Base-sphere Construction

A unit sphere defined over the angle ranges [¢,,¢4,] and [6,,6,] is chosen as the base sphere
B(u,v), which is a NURBS-surface consisting of up to (2x4) rational-quadratic Bezier patches (RQB-
patches) depending on arc angles ¢,—¢, and 6,—6, [Piegl987].

10



D N,@N,,()w, b,

=0 j=0
B(M,V): : m_: g >
N, ()N, ,(»)w,
i=0 j=0
Ug ={tty Uty th, Uyt U (3.3)
2+1 2+1

Step 3. Surface-parameter Synchronization

Similar to the curve-fitting case, finding the synchronized-parameter values of the base sphere
B(u,v) for a spherical-coordinate point ®, =(p,,¢,,6,) is equivalent to finding an intersection point
between B(u,v) and the line joining the origin and the 3D Cartesian-coordinate point
Y, =(x,,y,,z,) . Since the base sphere B(u,v) is constructed by a surface-of-revolution method
[Pieg1987], synchronized-parameter values #, and v, can be calculated separately by using the curve-
parameter synchronization method (Step 3) described in Section 2.2. As depicted in Figure 3.1a, v, is
obtained from C(v) and ¥, =(x,,»,.0), where C(v) is a NURBS base-circle on the xy-plane with an
arc angle 6, -6, , and ¥, is the projection point of W, (x,,»,,z,) on the xy-plane. Once v, is
determined, another base circle D(u) =B(u,v,) is defined as depicted in Figure 3.1b, and then, u, is

calculated from D(x) and ¥, .
Z A ) zZ A

wa 2
(x,{_,y,k,z_,{) l

B(u v)

RS (@mmy" CEEE R

(a) (b)
Figure 3.1. Geometric construction for parameter synchronization for spherical NURBS-surface fitting

(ie., finding v, and u, respectively)

11



Step 4. Single-valued B-spline Surface Fitting

A single-valued B-spline surface F'(u,v) of degree (p, q) is now fitted to the parameter-
synchronized points {(i)k}:{(pk,uk,vk)} by using standard fitting methods [deBo1978][Faril988]
[Choil991][Pieg1995][Hosc1993].

Fu)=3 SN, @N,,0/,:

i=0 j=0
UF = {ux"“auyaupﬂa"',unF9u39"'3u5}9 (34)
\ﬂ_—/ \ﬂ__/
p+l p+l
Ve =V Vs Vasse s Vi s Ve 5 Vo
| — [ —"
g+l g+l

Step 5. NURBS-surface Construction

Finally, a (parametric) NURBS surface S(u,v) is constructed from the single-valued B-spline
surface F(u,v) by applying a symbolic-product operation with the NURBS base-sphere B(u,v) . From
S(u,v) = F(u,v)B(u,v), we can obtain the resulting NURBS surface

ng Mg
Z Z Ni,p+2 (u)Nj,erz (V) Wi,jsl-!j
_ =0 j=0 )
S(u,v) =—-=- :
Z Z Ni,p+2 (u)Nj,erz (V) W,
i=0 j=0
US:{M’L{P”“""’“"S’M}: s)
p+2+1 P4+l
Vs = {M’V‘”z*l"”’vms’Ve""’ve}
q+2+1 q+2+1

of degree ( p+2,q+2). For more details of above surface-case symbolic-production, see Appendix B.

Shown in Figure 3.2a is a bi-cubic B-spline surface (i.e., p=q=3) for the parameter-
synchronized points {d) 3 =1{(p;,u;,v,)}, and shown in Figure 3.2b is the resulting NURBS-surface of

degree (5, 5) obtained from NURBS-surface conversion.
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(a) (b)
Figure 3.2. NURBS surface obtained by spherical NURBS-surface fitting

3.2 Cylindrical NURBS-surface Fitting Procedure

When the rotational-freeform shape is more naturally mapped to a cylinder, a cylindrical
NURBS-surface is fitted to the COP-data. The procedure is basically the same as that of the spherical case

described in Section 3.1.

First, 3D Cartesian-coordinate points {¥,}={(x,,y,,z,)} are transformed into cylindrical-

coordinate points {X,} ={(r,,0,,z,)} as

re=yX
tan"'(y,/x,) if x, >0and y, 20

0, =<m+tan”'(y,/x,) if x, <0 (3.6)
27 +tan” (y, /x,) if x, >0and y, <0

2k =%k

and a cylinder with unit radius is used as a base cylinder B(u,v) which is a NURBS surface of degree

(1, 2) over the angle range [6,,6,] and height range [z ,z,].
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Z N, )N, ,()w, b,

1
-0

j=0
B(M,V) =- lj my 5
Z Ni,l(u)Nj,Z ) Wi, (3.7
i=0 j=0
UB = {us’us’ue’ue}’ VB = {vs"”’vs’v2+l""’va’Ve’”.’Ve}
——— —— — —
1+1 1+1 2+1 2+1

Surface-parameter synchronization is carried out as follows: As with the spherical case, v, is obtained
by using the curve-parameter synchronization method of Section 2.2 as depicted in Figure 3.3a, and u,
is given by u, =(z, —z,)/(z, —z,). And then, a single-valued B-spline surface F(u,v) is fitted to
parameter-synchronized points {)A(,{} ={(r,,u,,v,)} as with the spherical case. Finally, a 3D cylindrical

NURBS-surface S(u,v) is given by:

Z z Ni,pﬂ (u)Nj,q+2 (V) Wi,js[,j
S(u,v) == :
N':IH'I (u)Nj,q+2 (V) W,"j

i

i=0 j=0
US :{usa"'sussupﬂﬂr--5”,,59”95'“5“@}9
— —
pH+l pH1+l
VS :{vs"”’vs’vq+2+l""’vm3’ve’”"ve}
— —

g+2+1 g+2+1

(3.8)

The resulting NURBS surface is constructed by using a “modified” symbolic-product operation, which is

also derived in Appendix B. Shown in Figure 3.3b is the resulting NURBS-surface from the COP-data of

Figure 3.3a.
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(a) (b)
Figure 3.3. NURBS surface obtained by cylindrical NURBS-surface fitting

When the degrees of F(u,v) are (p, q), it can be shown that the degrees of the resulting
NURBS-surface S(u,v) are (max{p,l},q+2) (See Appendix B.2). For COP-data representing a true
surface-of-revolution, the degrees of F(u,v) would be (3, 0). Thus, the degrees of S(u,v) are (3, 2).
For a true cylinder shape, the degrees of S(u,v) become (1, 2). Shown in Figure 3.4a are COP-data for a
traditional Korean ceramic. The fitted NURBS-surface together with its control points for the COP-data
of Figure 3.4a is shown in Figure 3.4c. Observe from the control points that the degrees of the resulting
NURBS surface are (3,2). This is expected since the ceramic is a “true” surface-of-revolution surface.
Now, the COP-data of Figure 3.4a are scaled down (0.75) along the y-direction to obtain a rotational-

freeform shape as shown in Figure 3.4b. The fitted NURBS surface of degrees (3,5) and its control points

are shown in Figure 3.4d.
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(d)

Figure 3.4. NURBS surface fitting for traditional Korean ceramic
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3.3 Special Treatments

3.3.1 Closed Surfaces

When a “closed” surface is to be constructed, periodic B-spline basis functions have to be
employed in the v-direction (corresponding to &) during the single-valued B-spline surface fitting stage.

A “closed” single-valued B-spline surface F (u,v) in v-direction is given by [Park1996]

F(M,V) = Zﬁ:i:Ni,p(u)Nj,q(V)z,jmodq;

i=0 j=0
U= {us,w,us,uml,...,unﬁ,ue,'--,ug}, (3.9)
—— (S —
p+l p+l
Ve= {vo,...,vq,vw,...,vmﬁ,vmﬁﬂ,...,vmﬁqﬂ}

where v v \J Vs J=L..,q and v =v_, v v

g—j+ "~ Vg—j = vmrffj+2 - mg—j+l > vmrj+j+1 _vmﬁJrj = Vq+j mg+l =Y.
(v, and v, are the v-directional start and end parameters of the base geometry, which corresponds to
angle range [0,27]). Because of the v-directional periodicity of F (u,v), finding control points (or

ordinates) {]71.’ ;4 is akind of constrained fitting (See Appendix C) under following conditions:

Foy = Fomgeya J=0ng—1. (3.10)

Once F (u,v) 1is obtained, an additional step so called “clipping” is required before the
NURBS-surface construction (Step 5) described in Section 3.1. A clipping step is for the conversion of a
v-directionally “closed” single-valued B-splind surface F (u,v) defined over the v-directional “periodic”
knot vector in Equation (3.9), into an “open” single-valued B-spline surface F(u,v) defined over both
“non-periodic” or “clamped” knot vectors as given in Equation (3.4). A clipping operation uses multiple-
knot insertion with multiplicity ¢ at the start and end parameters of base geometry so that the clipped
F(u,v) and base geometry B(u,v) have the same v-directional parameter span [v,,v,] corresponding

to angle range [6,,6,]=[0,27].

Shown in Figure 3.5 is a closed NURBS-surface fitting example: (a) COP-data of a cylinder-
like part of a femur, {¥,}, (b) the corresponding base cylinder B(u,v), (c) parameter-synchronized
cylindrical-coordinate points {Xk}, (d) a v-directionally closed single-valued B-spline surface F (u,v)

fitted to {Xk} , (e) a open single-valued B-spline surface F(u,v) obtained by clipping F (u,v), and (f)
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the resulting NURBS-surface constructed by applying a symbolic-product operation of F(u,v) with

B(u,v).

S(u,v)

s Y
I iy e S
S Sy B SRR
Sl 4

&)

o A

A

Figure 3.5. Closed NURBS-surface fitting
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3.3.2 Degeneracy at Pole

When fitting a closed spherical-NURBS surface, an additional treatment is required to solve the

“degeneracy problem”, that is, to smoothly fill the “hole” near the pole (See Figure 3.6a).

The conditions for a level of geometric continuities at the degenerate point S(u,,v)

corresponding to the pole of the base sphere B(u,,v) are:
1) for G° continuity: the collapse of the boundary of the surface to a single point, that is,
S(u,,v)=p"; (3.11)
2) for G' continuity: the existence of a tangent plane, that is,

n(u,,v) = el >XSu WV g 081 (3.12)
Su (ux > V) X Suv (ux > V)"

3) for G* continuity: for the normal curvature to follow Euler formula [Wolt1992], that is,

K(u,v:w) =k, cos’y+x, sin’y [doCal976] (3.13)
K l/l M m

where x,,, k, arethe maximum- and minimum-principal curvatures, respectively, and y is

the angle from maximum-principal direction on the tangent plane. However, Equation (3.13) is
only met if the surface is locally a surface-of-revolution at the degenerate point [Sanc1994] — it
is too restrictive to fit a NURBS surface to COP-data representing a general rotational-freeform

shape.

One simple solution is to impose following control point (or ordinate) conditions when fitting a

single-valued B-spline surface:

Jo,=Joos J=bmy (3.14a)
fi=foys J=0,,mp (3.14b)

With above conditions, the resulting NURBS-surface has G' continuity at the degenerate point while
the normal vector at the point is k =(0,0,1) (See Appendix D.1). Namely, the tangent plane at the
degenerate point is horizontal. Shown in Figure 3.6b is the NURBS surface satisfying the G' continuity
condition, which is fitted to COP-data of Figure 3.6a.
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(a) (b)
Figure 3.6. COP-data of sphere-like part with degeneracy problem and resulting NURBS-surface with

simple G' continuity at degenerate point

Above simple solution with a horizontal tangent-plane condition at the degenerate point works
well in almost cases. However, sometimes, it may generate a NURBS-surface having a “wiggle” around

the degenerate point as shown in Figure 3.7.

Figure 3.7. Spherical NURBS-surface with wiggle around degenerate point

20



Therefore, another solution is given here — to generate a “cap” surface smoothly being
connected to an existing NURBS-surface S(u,v) with a hole, while closing up the hole with a non-

horizontal tangent plane at the degenerate point.

To make a cap surface, first of all, it is required for the single-valued B-spline surface F(u,v)

for S(u,v) to be fitted over knot vectors

U, = {ul\,,...,us,uwl,...,unﬁ,,u‘,,...,ue},
S — (S —
p+l p+l (3 15)
Ve = gsee s Vos Vpurseos Vaurrsees Vo s Vesreevs Vo )
— — [ —
g+l g+1

where v, = (v, +v,)/2, V.=V, +(v,=v)/2; j=q+l,...q+H-1, H=K/2, K=m, —q+1
(K is assumed to be an even number). Whereas U, is an ordinary clamped-knot vector, V. is a
special typed where the center knot v, divides the parameter span in half, and the front part of knot

spans are repeated periodically after v, .

The procedure to construct a cap surface is composed of following four steps: 1) preparation of
connecting curves, 2) determination of the degenerate point and its surface-normal vector, 3) connecting-

curve splitting, and 4) construction of a cap surface.

Step 1. Preparation of Connecting Curves

Because of the periodicity of the v-directional knot spans (Refer to Equation (3.15)), it is
possible to generate a plane curve (“connecting curve”) connects one column of the control polygon of
S(u,v) with its corresponding column on opposite side in the meridian section (or plane) depicted in

Figure 3.8a. The connecting curves are Bezier curves of degree 5,
5 .
Cj(t)=ZBi’5(t)c{; Jj=0,...,mg/2-1. (3.16)
i=0

For each connecting-curve to be smoothly connected to S(u,v), G* continuity condition is imposed as

follows (See Figure 3.8b):

C,(0)=S(u,,0,),C/(0) = a8, (u,,0,),C(0) = fS,,(u,.v,), (3.17a)
C,(0)=8®u,.v, ),.C,()=-aS,(u,v, ).Ci(1)=fS,,@u,.v, ) (3.17b)
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where v, =ZZ:] vﬂk/q; Jj=0,...,mz/2-1, Jopp = j+mg/2 are the v-directional nodes [Ries1973]
[Pieg1995] of S(u,v).

(a) (b)
Figure 3.8. Curves connect two columns of control polygon and G continuity condition imposing for

each connecting-curve

Step 2. Determination of Degenerate Point and Surface-normal Vector

First, let us find ", £  minimize the sum of the squares of mean-deviations of connecting

curvesat t=0.5,

E(a, B) = mszf{cj(a, B:0.5) - Cla, B:0.5)1 (3.18)
where
C (. B:0= B (e (@ p). (3.19a)
Cla, p:1) = imsz/zflcj(oz, B:1). (3.19b)
Mg =0
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Differentiating Equation (3.18) with respect to «, S and setting zero, that is, 0E(a,f3)/0a=0,
OE(a, B)/0B =0 yield optimal ", B° (See Appendix D.2). Then,

P =(p,.p,.p.)=Ca,p :05), (3.20)
and

n' =(n,n,n)="n/q (3.21)

where i = (z:jf’lgpjﬁj )/ @fjgz’lgoj) oo =n /a0, =C05)xC),05) . p=4C05),
C,.(05).

Step 3. Connecting-curve Splitting

Based on the deCasteljau algorithm [Boeh1984][deCal986], each connecting-curve C,(¢) is
splitat ¢=0.5 into two Bezier curves, C;" (e, C’7 (#) . Next, the reversal of the parameter direction
of Cj’." "(t) is done to march the parameter direction with that of a cap surface to be constructed in the
following Step 4. Then, the first control point of each split curve is moved to the p° for the G’
continuity, and the second point is also moved on the tangent plane, n.x+n,y+n.z= n ep” for the
G' continuity. Finally, the third control point can be moved so that a fairness measure J{C"(t)}zdt is

minimized [Kjel1983][Meie1987] (See Figure 3.9).

,,,,,,,,

”,’/ fmmk“n,, IS IS
’ Cj (t)

(a) (b)

Figure 3.9. Connecting curves: (a) before splitting and (b) after splitting and control-point repositioning
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Step 4. Construction of Cap Surface

Let us note the curves split and modified in the previous step using homogenous coordinates as

~ 5
C/()=D N ()¢ k=0,...,myg;

=0 (3.22)
Uz =H{ug,..ugu,,...,u,}
| N —

5+1 5+1

where ¢ =(w, ¢, w,) ({w,} are the weights of the control points of the boundary curve S(u,,v)). A

cap surface can be written in the homogenous representation as

mg

5
S:;p (u,v) = Z Z Nis (u)Nj,q+2 v) Si‘;%)"‘/§

i=0 j=0
Us, =Us ={ug.ougu,,..ub, (3.23)
—_——— —— ——
5+1 5+1
VSW,, =Vs={v,,...,v,, NH,...,va,v(,,...,ve}
q+2+1 q+2+1

where V is the v-directional knot vector of S(u,v) (or the knot vector of the boundary curve
S(u,,v)). Because S! (u,v) is a tensor-product surface, there are the relation between Equations (3.22)

cap

and (3.23) as given by

T =SN, (0)S s k=0,0,mg, =0, mg (3.24)
j=0

Above relations can be represented in a matrix equation C=SN where C, S, N are
(S+Dx(mg+1) , S+Dx(mg+1), (mg+1)x(mg+1) matrices. The control polygon {s;7"} is

simply calculated by S=CN™".

Shown in Figure 3.10 are the resulting surfaces (cap surface and adjacent surface) fitted to

COP-data used in the fitting shown in Figure 3.7.
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(@) (b)

Figure 3.10. Resulting surfaces of which degeneracy problem is resolved: (a) shaded image and (b)

zoomed-in image for degenerate point and boundary between cap surface and adjacent surface
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4. Reverse Engineering Application

4.1 Introduction

Whereas “conventional” engineering transforms engineering concepts and models into real
parts, “reverse” engineering transforms real parts into engineering concepts and models [Varal997]. In
CAD/CAM and CG applications, the term of “(shape) reverse engineering” is commonly used for
designation of the process that converts measured “shape” data obtained from a real part into a computer

model, as a narrow interpretation of the term.

Reverse engineering have been traditionally used in several areas: 1) aesthetic design, 2) copy
production of existing parts, 3) special custom design, efc. Recently, the need of reverse engineering is
rapidly increasing because: 1) customers’ respect is being transformed from functionality into design, and
so, aesthetic surfaces are frequently used in the exterior design of industrial goods, 2) most of
manufacturer offer effort to digitalize manufacturing information for high productivity, and 3) the
requirement of 3D shapes in cultural industries including game, movie, advertisement, efc., is on the
explosive increase. Also, advances in measuring technologies allow us to acquire “dense” measured data
from real objects in reasonable time. Thus, to develop an efficient and “easy-to-use” reverse engineering

software (RE S/W) is one of the needs of the times.

This Chapter is composed as follows: described in Section 4.2 is the overall process of reverse
engineering. Given in Section 4.3 is how to apply the proposed NURBS-surface fitting method for COP-
data arbitrary positioned in 3D space, especially focusing on the estimation of a local-coordinate system.
The architecture of the RE S/W in which the proposed NURBS surface-fitting procedure is embedded is

presented in Section 4.4 followed by reverse-engineering based surface modeling examples in Section 4.5.

4.2 Overall Process of Reverse Engineering

One of the most important characteristics of RE S/Ws is to actively utilize measured data with
fine geometric details. For example, Imageware® (former Surfacer®) [Imag] provides various methods for
generating section data, and ICEM Surf® [ICEM] orthogonal-cross section (OCS) data. These section

data are used in surface modeling as reference data for a generating curve, spine curve, surface boundary
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curve, trimming curve, and so on. On the other hand, Krishnamurthy and Levoy [Kris1996] suggested a
new surface-fitting pipeline where users paint boundary curves on “dense” and “irregular” polygonal
mesh and fit a B-spline surface to each “segmented” polygonal patch. This boundary-curve painting
technology is adopted by recently commercialized RE S/Ws, CySlice® [CySl], RapidForm® [Rapi], efc.
Like above, by offering abilities to retrieve geometric information from measured data, RE S/Ws allows
users (not even high-level experts of surface modeling) to reconstruct CAD models more quickly and

easily than traditional curve-based CAD modelers.

Shown in Figure 4.1 is an overall process of reverse engineering, which consists of roughly four
stages: 1) structured-data construction, 2) segmentation, 3) surface fitting, and 4) skin-surface modeling.
The first stage is to construct an irregular polygonal mesh of arbitrary topology — so called a “triangular-
net” — from measured data. Because whole data of real object can be obtained from many range scans, the
structured-data are constructed by applying registration [Besl1992][Chen1992][Zhan1994][Gosh1997],
integration [Turk1994][Curl1996] and 3D triangulation [Hopp1992][Bajal995][Amen1998][Bern1999]
technologies. The second stage is to divide the triangular-net into sub-triangular nets so that each
segmented sub-triangular net can be fitted to a single parametric-surface. Although much research on
“automatic” segmentation has been done (also in computer vision and image processing field), there are a
few can be applied to reverse engineering [Besl1988][Sapil995][Eck1996][Milo1997]. Because
segmentation requires the understanding of surfaces and also a kind of creativity, recently it looks
common to shift the responsibility of segmentation on to users by offering “casy-to-use” segmentation
tools, for example, a curve-network painting tool [Kris1996]. The third stage is to fit a parametric surface
to each segmented sub-triangular net and the forth stage to make a “skin” surface by applying secondary-

surface operations to fitted surfaces, such as surface-surface intersection (SSI), blending, trimming, etc.
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Skin-surface

Segmentation Surface fitting .
modeling

Figure 4.1. Overall process of reverse engineering

Segmentation and surface-fitting stages are inevitably connected to each other because the
purpose of segmentation is to provide a sub-triangular net (or COP-data) appropriate to the surface-fitting
method chosen by RE S/Ws. So far RE S/Ws have considered general B-spline surface methods, where 4-
sided base-surfaces (including a plane) are generated by user-interaction [Mal995][Kris1996] or
automatically [Eck1995] for the parameterization purpose. However, these kinds of surface-fitting
methods are not appropriate for a (sub-) triangular-net (or COP-data) representing a rotational-freeform
shape, where the triangular-net (or COP-data) has to be divided again into several 4-sided polygonal-

patches and each polygonal-patch is fitted to a parametric surface respectively.

Therefore, how to apply the NURBS surface-fitting method proposed in Chapter 3 to reverse
engineering is to be presented in the following sub-section. If the NURBS surface-fitting modules for
rotational-freeform shapes is embedded in RE S/Ws, users can choose the surface fitting methods (general
B-spline surface fitting methods or the proposed NURBS-surface fitting method) and perform the
segmentation process according to the partial shape of the whole triangular-net. In consequence, it can be
expected for surface modeling with the RE S/W to be more efficient — the numbers of surfaces and

secondary-surface operations can be smaller and user’s interaction can be reduced, too.

4.3 NURBS-surface Fitting Procedure for Reverse Engineering

The procedure to apply the NURBS-surface fitting method proposed in the previous Chapter,

consists of following four steps: 1) local-coordinate system estimation, 2) local-coordinate transform, 3)
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NURBS-surface fitting, and 4) global-coordinate transform of the NURBS surface.

Step 1. Local-coordinate System Estimation

To apply the proposed NURBS-surface fitting method for reverse engineering, most of all, it is
required to define a local Cartesian-coordinate system where the orthogonal coordinates are defined.
Some studies dealt with finding the rotational axis of surfaces-of-rotation from COP-data [Elsal996]
[Pott1998a][Pott1998b][Lai2000], however, they are not appropriate for COP-data from general
rotational-freeform shapes. On the other hand, the principal component analysis (PCA), which is widely
used in the field of image processing and computer vision [Jain1989][Prat1991][Lay1996] (it is also
known as Karhunen-Loeve transform), may be used to define a local-coordinate system. PCA works well
for COP-data of the whole of a rotational freeform shape, but not for those of a part, because it finds the
oriented-bounding box of COP-data [Gott1996] (PCA looks more appropriate for general B-spline surface
fitting rather than the proposed NURBS-surface fitting method). The local-coordinate system estimation

method to be presented is based on the general-quadric surface approximation.

A general-quadric surface is a 2" degree algebraic surface as follows:

q(x,7,2)=x"Q,x+ Vv x+d =0;

q, Q4/2 q6/2 q; X (4.12)
Q, = q4/2 9, qS/Z,V: gs | d = ¢y, X=|y
q6/2 615/2 qs3 99 z
or
q(x,»,2)=X' QX =0;
q  44/2 q6/2 q7/2
‘14/2 9 %/2 ‘18/2 (4.1b)

Q= X =
q(,/z q5/2 qs q9/2

‘I7/2 ‘18/2 ‘19/2 910

— N e &

The coefficients of Equation (4.1) {g,} can be determined so that the quadric surface is fitted
to given COP-data in the least-squares sense [Faug1986][Mars1992]. The fitted quadric surface may be
classified into different types based on its coefficients [Levil976][Zwil1996] as listed on Table 4.1.
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Table 4.1. Quadric-surface classification table [Zwil1996]

rQ,)=rank Q,, d(Q,)=detQ,,

k : signs of non-zero eigenvalues of Q,, K : signs of non-zero eigenvalues of Q,

=:same, # :opposite

Among 17 types listed on Table 4.1, the following six types are relevant to the local-coordinate system
estimation: real ellipsoid, hyperboloid of one sheet, hyperboloid of two sheets, real quadric cone, elliptic

paraboloid, real elliptic cylinder (See Figure 4.2). Namely, when COP-data are fitted to one of the six

rQ,) | Q) | d(Q) | k | K | Type of quadric surface Canonical form

3 4 - Real ellipsoid x*/a*+y* b +20 /e’ =1
4 + = Imaginary ellipsoid x*a’+y* /b +z7 P =-1

3 4 4 * Hyperboloid of 1 sheet x*/a*+y*Ib*-z"/c* =1

3 4 - * Hyperboloid of 2 sheets x*/a*+y* /b —z*/c* =-1

3 3 # Real quadric cone x*la*+y*I1b* 2" /c* =0

3 3 = Imaginary quadric cone x*/a*+y* /b’ +2z°/c* =0

2 4 - = Elliptic paraboloid x*/a*+y* /b +2z=0

2 4 + # Hyperbolic paraboloid x*/a’—y* /b +2z=0

2 3 = | # | Real elliptic cylinder x*/a*+y*/b* =1

2 3 = | = | Imaginary elliptic cylinder x*/a*+y* /b’ =-1

2 3 * Hyperbolic cylinder x*/a* -y’ /b’ =1

2 2 # Real intersecting planes x*/a’=y*/b* =0

2 2 = Imaginary intersecting planes x*/a*+y* /b’ =0

1 3 Parabolic cylinder X +2y=0

1 2 # | Real parallel planes x* =1

1 2 = | Imaginary parallel planes xt=-1

1 1 Coincident planes x*=0

quadric surface types, the local-coordinate system @ = {o,1,j,k} can be determined.
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Figure 4.2. Six quadric surfaces relevant to local-coordinate system estimation: (a) real ellipsoid, (b)

hyperboloid of one sheet, (c) hyperboloid of two sheets, (d) real quadric cone, (e) elliptic paraboloid, (f)

real elliptic cylinder

The origin o of the local-coordinate system can be obtained from the following relation:

2Q,x+v=0 (4.2)

In the case of rank Q, =3 (real ellipsoid, hyperboloid of one sheet, hyperboloid of two sheets, and real
quadric cone), the origin is given by [Faug1986][Mars1992]:

0=——Q'v (4.3)
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For rank Q, =2 (elliptic paraboloid and real elliptic cylinder), the origin of the local coordinate is

given by:

o=p+t,q 4.4)

where p, q, ¢, can be referred to Appendix E.

o

The axes of the local coordinate system are related to the eigensystem of subdiscriminant

matrix Q, . There are three cases to assign the eigenvectors to {i, j,k} .

First, in the case of rank Q, =2 (elliptic paraboloid and real elliptic cylinder), the z-axis unit
vector k is set to the eigenvector having zero (smallest) eigenvalue. The length of each semi-axis of a
real ellipsoid is reciprocal to the squares of corresponding eigenvalue [Pett1970]. Thus, the rotational

axis of a surface-of-revolution shape becomes the eigenvector with zero (smallest) eigenvalue.

Second, in the case that rank Q, =3 and all the three eigenvalues have not the same sign
(hyperboloid of one sheet, hyperboloid of two sheets, real quadric cone), the only one eigenvector having
the opposite sign is assigned to k , which can work well as the rotational axis of a surface-of-revolution

shape.

Finally, for a real ellipsoid, every eigenvector can be a candidate for k. In many cases, it is
desirable to set k to the eigenvector having the largest eigenvalue because it makes the shape near the

degenerate point of the resulting NURBS surface natural.

The local-coordinate estimation method was applied to a set of COP-data obtained by “virtually
digitizing” spheres and cylinders with different values of radius R (cylinders’ length is set to 2R).
Random noises sampled from normal distribution N(0,0°) were added to the x-, y-, z-components of
the COP-data points. Shown in Figure 4.3a are relative origin-estimation errors (in %) plotted against the
normalized maximum noise N, /R (for sphere COP-data), where N, =30 . The z-axis estimation

errors e, (in degrees) plotted against N, /R are shown in Figure 4.3b (for cylinder COP-data).
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Figure 4.3. Empirical results of local-coordinate system estimation
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Step 2. Local-coordinate Transform

Once the local-coordinate system is determined, the each point of COP-data is transformed
from global coordinates

¥, tolocal coordinates “W, using following relation (See Figure 4.4):
iel ieJ ieK
“Y, =R("Y,-T); R=|jel jeJ jeK |, T=0-0 (4.5)
kel keJ keK
where Q denotes the global-coordinate system with

{0,1LJ,K} and o the local-coordinate system
with {o,1i,j,k}.

Figure 4.4. Global- and local-coordinate systems

Step 3. NURBS-surface Fitting

By applying the NURBS-surface fitting method proposed in the Chapter 3, a spherical or
cylindrical NURBS-surface is fitted to local 3D Cartesian-coordinate points {“¥,} .
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Step 4. Global-coordinate Transform of NURBS surface

Based on the well-known “affine-transform invariance” property [Pieg1995], the NURBS

surface fitted in the local-coordinate system can be retransformed into the global-coordinate system by

transforming each control-point from local coordinates “s,; to global coordinates Qs,.’ ; using

following relation:

Qs.’.. =R" s, +T (4.6)

Shown in Figure 4.5 is an example of cylindrical NURBS-surface fitting for reverse
engineering. Depicted in Figure 4.5a are given COP-data {®¥,} and the quadric surface approximated

having a general form as:

q(X,Y,Z)=0.808678 X* +0.574794 Y* —0.045684 Z*
+0.015879 XY +0.002311YZ —0.163925 ZX
+49.971136 X —43.447695Y —9.216195 Z 4.7)
+1443.009728
=0

The type of the quadratic surface is a hyperboloid of one sheet (#(Q,)=3, 7(Q)=4, d(Q)=0.023747,

k:#, K:#). The estimated local-coordinate system @ is determined as follows:

0 =(-35.028812,38.352442,-37.053139),
1=(0.995002, 0.032202, - 0.094521),
j=1(-0.031771,0.999477, 0.006060),

k =(0.094667,-0.003027,0.995504)

(4.8)

where k is set to the eignevector whose its eigenvalue has the minus-sign alone.

35



i .
by b h
i ul

e

il
=
i
ol

HpR bt
R i
g H

)
3

|

(c) (d)

Figure 4.5. Cylindrical NURBS-surface fitting for reverse engineering

4.4 Reverse-engineering Software Development

The procedure of NURBS surface-fitting method using orthogonal-coordinate transform for
reverse engineering presented in the previous sub-section is implemented as one component of the
surface fitting engine for a “research-purposed” RE S/W whose the system architecture is shown in

Figure 4.6 (the data flow in the system is given in Figure 4.7).

36



Measured data

ASCII

COP-data operation
module

e —
COP-data <«

|

3D Triangulation

- Noise filtering
- COP-data editing

engine

Triangular-net operation
module

Surface fitting

- Fairing
- Reduction
- Curve-network construction

engine

!

Parametric surface <

Surface operation
module

- SSI
- Blending
- Trimming

Figure 4.6. System architecture of RE S/W in which proposed NURBS-surface fitting procedure is

embedded
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Figure 4.7. Data flow in RE S/W

4.5 Examples

Presented in this sub-section are examples of surface modeling for various kinds of COP-data
with the RE S/W in which the proposed NURBS surface-fitting procedure is implemented. Shown in
Figure 4.8a and Figure 4.8b are COP-data sampled from a hair-drier and the resulting CAD model,
respectively. The “head” part of COP-data is fitted to NURBS surfaces by applying the proposed NURBS
surface-fitting procedure: The “mouth” part, which is a true surface-of-revolution, was fitted to a
cylindrical NURBS-surface, and the “occiput” part, which is a rotational-freeform shape (sphere-like
shape) as depicted in Figure 4.8c, was fitted to a spherical NURBS-surface. The degenerate problem the

closed spherical NURBS-surface fitting has was resolved with a cap surface as shown in Figure 4.8d.
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(b)

(d)

Figure 4.8. Surface modeling for COP-data from hair-drier

Given in Figure 4.9a and Figure 4.9b are COP-data sampled from a humidifier and the resulting
CAD model, respectively. The “body” surface is wholly constructed by applying the cylindrical NURBS-
surface fitting method (Observe the control net of the surface depicted in Figure 4.9d).
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(b)

(d)

Figure 4.9. Surface modeling for COP-data from humidifier

Figure 4.10 shows the surface-modeling example for an outside rear-view mirror. Figure 4.10a
and Figure 4.10b are COP-data and the resulting CAD model, respectively. Because both the “housing”
and “bracket” surfaces were constructed as one NURBS surface, respectively, the final CAD model was
obtained by applying only one secondary-surface operation (or trimming). Figure 4.10d shows the

trimmed-surface boundary between two NURBS faces (or trimmed surface).
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(© (d)

Figure 4.10. Surface modeling for COP-data from outside rear-view mirror

The proposed NURBS-surface fitting procedure can be applied to “realistic rendering” and/or
“character modeling” purposed S/Ws [3dsM][Rhin]. The most standard modeling method provided by
these kinds of S/Ws is as follows: 1) construction of a NURBS sphere or cylinder, 2) modification of the
NURBS surface (sphere or cylinder before modification) by relocating the control points until users are
satisfied with the resulting shape. The process is very tedious and time-consuming. If COP-data from

physical maquettes can be imported to the S/W, the proposed NURBS-surface fitting procedure may
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provide a good starting point for artistic works. Shown in Figure 4.11a are COP-data sampled from a
teddy bear. The almost parts of the resulting 3D model are constructed by applying the proposed NURBS-
surface fitting procedure (See Figure 4.11b and Figure 4.11c). The “head” part of the teddy bear is
composed of only one spherical NURBS-surface as shown in Figure 4.11d — it is very similar to the

resulting surface modeled by the commercial S/Ws such as 3ds Max® [3dsM] and Rhino® [Rhin], efc.

(@) (b)

© (d)

Figure 4.11. Surface modeling for COP-data from teddy bear

When modifying the resulting NURBS-surface by relocating control points, a special consideration is
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required. Because the resulting NURBS-surface has “mathematically” C° continuity at the knots of
NURBS base geometry (“geometrically” G') — it is the characteristic of NURBS, for smooth shape
modification, the control-points corresponding to these knot positions must be moved together with

adjacent control-points so that the tangent-plane condition is kept.
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5. Other Applications

5.1 Mechanical-cam Design

A mechanical cam, one of the most “versatile” mechanical element, is used to transform one
motion into another. Among various types of cams, a plate (or disk) cam and cylindrical cam with
translating follower, which are the most commonly used, are conventionally designed in a polar-
coordinate system. The design of these kinds of the cam is how to synthesize a follower-displacement
curve, R(0), which is composed of the rise, dwell, and return periods (See Figure 5.1). With
considerations of dynamics of cam motion, each rise- or return-curve segment has to be constrained under

endpoint conditions (See the rise period in Figure 5.1):
R(@@)=R,; R(,)=0; R'(6,)=0 (5.1a)

R@,)=R.; R(0,)=0; R'(6,)=0 (5.1b)

To satisfy above conditions, a polynomial function [Roth1956] or B-spline function [Angel983]

[MacC1988] is commonly employed for synthesis of R(8).

R@
R —
Dwell Rise Dwell Return
>
o o o o

s e

Figure 5.1. Follower-displacement curve

Once a follower-displacement curve is synthesized, so the shape of the plate or cylindrical cam
is perfectly determined. However, there is one problem — how to express the shape of the cam in a

Cartesian-coordinate system in the form of NURBS, which is the most standard curve or surface
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representation for CAD/CAM/CAE systems. As so far, there have not been any solutions of the exact
transformation. In this sub-section, an approximate approach is presented, which is based on the basic

idea given in Section 2.1.

As mentioned earlier, it is impossible to obtain the 2D NURBS curve by applying the direct
symbolic-product operation of R(#) with the base circle B(u) because the parameters, € and u, are
not linearly related. For the curve and surface fitting presented in Chapter 2 and Chapter 3, respectively,
so-called the parameter synchronization is introduced to solve the problem. However, for the problem of
this sub-section, it cannot be done to re-parameterize R(€) along B(u). So, inversely, a NURBS base-

circle whose the flow rate is “almost” uniform is looked for.

Blanc and Schlick [Blan1996] suggested a quartic NURBS-circle with its flow rate is almost
uniform. This quasi-uniform NURBS circle ﬁ(é’) is composed of three, four, or six rational Bezier

curves of degree 4, {ﬁf (7m7)} . Each rational Bezier curve having arc angle 2¢ is given by:

4 ~ .

> B, () W/b]
B/ () = =— (5.2)

ZB,',4(77)"T’1]

i=0

2 2

%j:l’wlj:1zwaawf=wﬁaj=lzwa,%{=l;
5iop o Potwbl & @’bi+2w(+atbi+a’h & bi+wb]
0T l+w 7 2’ +a’w+w) e 1+ TTa T

B 4-2cos’(¢/5)+cos(g/5)
 —1+8cos’(¢/5)—4cos(¢/5)

where {w/} ={w/,w/,w{}={l,w,1}, {b/} are the weights and control points of the corresponding

RQB-curve B’(7) having the same arc angle 24, respectively.

First, let us consider how uniform the flow rate of the quasi-uniform arc is. Shown in Figure 5.2
is the angle deviation of the quasi-uniform arc from a uniform arc, A(7y)= 5 (n)—2¢n where E (n) is

given by [Blan1996]
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o\ 71 s(m)sin ¢ )
s(m=2tn [1 —s(17)(1-cos ¢)j’

an+(-a)n?
1-2(1-a)p+2(1-a)p?

(5.3)

s(n) =

A1) (x107™)

Figure 5.2. Angle deviation of quasi-uniform arc

With comparison to ordinary RQB-arc on the same scale (See Figure 5.3), the uniformity of the quasi-
uniform arc is more noticeable — the ratio of the maximum-angle deviation of the ordinary RQB-arc to
that of the quasi-uniform arc is more than hundreds. The ratios are about 250, 500, 1000 for the triangle-
based circle (2¢=27/3) [Vers1975], square-based circle (2¢=7x/2) , hexagon-based circle
(2¢ = /3) [Till1983], respectively.
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The radial deviation of the NURBS curve obtained by a symbolic-product operation of

R(2¢n) with a quasi-uniform circle ]~3(77) is calculated approximately,

[ARG| = |[RE ()~ R2gm)| =[R2 + AGH) - RCgn)
= [{RQ2¢n) + R'2pmA@m)} — RQ24m)| = R 2pAG7)

(5.4)

Given a conversion tolerance ¢, the number of the arc segments of which the quasi-uniform base-circle
consists, can be calculated for successful conversion so that |R’(2¢77)A(77)| <& . Because

[R'2¢mAGm)| < |R' Qem|Am)| < [R'Com|AG)| .
= 5/ |R'(¢9)|mX , can be obtained from the relation between ¢ and |A(77)|max shown in

, once |R’(0)|max is calculated, the arc angle 2¢

satisfies |A(77)
Figure 5.4. Then, the 2D NURBS curve of the cam is constructed from C(0) = R(H)]NB(H) where ]NB(H)

is a base-circle composed of \_ﬂ'/ ¢*J quasi-uniform arcs.

1.5+
‘A(U) max
(x107%)
1.04
0.5+
0.0 T T T T T T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0

¢ (x7/3)

Figure 5.4. Maximum angle deviation vs. arc angle

Figure 5.5 gives an example of the construction of the 2D NURBS cam-profile.
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5.2 Pressure-vessel Design

Almost pressure vessels are designed in the form of sphere- or cylinder-like “shell” shapes for

smooth pressure distribution. Shown in Figure 5.6 is an axisymmetric-cylindrical pressure vessel.

Figure 5.6. Axissymmetric-cylinder pressure vessel

To design the right (or left) side of wall is to find a single-valued function R(6) from
{(x,,6,)} where x, is curvature. For the curvature to be continuous at points 4, B, following

conditions are imposed when solving the nonlinear system [Fran1975][Ange1983].

RO)=R; R'(0)=0; R"(0)=0 (5.5a)
R(r)=R; R(z)=0; R"(7)=0 (5.5b)

Once R(O) is obtained, the corresponding NURBS-curve (or surface) can be constructed by

applying the conversion method suggested in Section 5.1.
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5.3 Scientific Visualization

In much scientific and/or engineering research, spherical or cylindrical experimental set-ups are
employed, and data in the form of single-valued functions ({(p,,,#;.6,))} or {(p,,.0;,z,)}) are
generated. These kinds of empirical data can be very effectively visualized by applying the proposed
NURBS-surface fitting method. One example is shown in the Figure 5.7, which is “simulated” sound-

pressure distribution caused by a noise source (monopole).

Figure 5.7. Sound-pressure distribution

The noise source is located at arbitrary position near the origin, and sound pressure is measured at mxn
grid points on the cylindrical microphone array. The sound-pressure distribution can be shown in the form

of a NURBS surface

S(u,v)y={s-F(u,v)+d}B(u,v) (5.6)

where F(u,v) is a single-valued function fitted to {(p,,,0,,z,)}, s and d are scale factors for

satisfactory display.
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6. Discussions and Conclusions

The proposed NURBS-surface fitting method may be dubbed as an “indirect” method because it
differs from the existing “direct” methods where a 3D B-spline or NURBS surface is constructed
“directly” from cloud-of-points data (COP-data). Whereas “general” methods for fitting NURBS surface
from COP-data in the literature — Hoschek [Hosc1993] employed a circular spline and Laurent-Gengoux
and Mekhilef [Laur1993] treated NURBS-surface fitting as a non-linear optimization problem — focus on
determining the weights of NURBS control-points so that the extra degrees-of-freedom provided by the
weights are best utilized, in the proposed method first a single-valued B-spline surface is fitted to the data
transformed into orthogonal- (spherical- or cylindrical-) coordinate system and second the fitted surface is

converted to a NURBS surface by applying a symbolic-product operation with a NURBS base-geometry.

The proposed method provides a natural means to assign parameter values to COP-data
representing a “rotational-freeform” shape, and may be embedded in a laser scanner having a spherical-
or cylindrical-kinematics structure (because the laser scanner generates range data in its orthogonal-
coordinate system). The proposed method enables to recover an “exact” NURBS surface for COP-data
sampled from a “true” surface-of-revolution shape. In the proposed method the “real” fitting process is
done in the form of a single-valued function, thus, the point inversion and approximation error calculation
are trivial. The calculated approximation error is a kind of parametric error e, , which has the relation
with geometric error (or 3D Euclidean distance) e, as given by e, =e,cosy where y is the angle
between the surface-normal vector of the resulting NURBS surface and symbolic-product (or scaling)
direction (B(¢,8) for a sphere and B(6,0) for a cylinder). Because geometric error cannot be greater
than parametric error, if the single-valued function is approximated within the pre-defined tolerance, the
resulting NURBS-surface is also satisfied with the tolerance. However, it is a somewhat conservative
manner. Thus, for the resulting NURBS-surface to be fitted tighter, it can be possible to directly use the
“approximately” estimated geometric error (e, =e,cosy ) when the single-valued B-spline surface is
fitted. On the other hand, because measured COP-data inevitably include noise, faring operation to the
corresponding structured-data is essential before surface fitting. However, the repetitive application of
difference fairing [Renz1982][Choil998][Cho2001], which is one of the most widely used fairing
methods, causes the shrinkage of the structured data. Thus, shrinkage avoidance is an important research
issue related to fairing [Taub1995][Cho2000]. Whereas, if the fairing operation is performed in the

orthogonal-coordinate system (before single-valued B-spline surface fitting), it does not cause the severe

52



shrinkage of the resulting NURBS-surface unlike the fairing “directly” performed in 3D Cartesian-
coordinate system. Besides, the proposed method allows the NURBS surface to be stored as a single-
valued function and base geometry separately, which requires less memory and, more importantly, it
allows an easier point-membership classification for NURBS-bounded solid objects. For the purpose of
point-membership classification, a “general” B-spline surface representing a rotational-freeform shape
can be “roughly” factorized into a single-valued B-spline surface and base geometry as follows: 1) a
local-coordinate system @ = {o,i,j,k} for the B-spline surface “S(u,v) is estimated; 2) “S(u,v) is
transformed into local-coordinate surface “S(u,v); 3) a base geometry B(u,v) for “S(u,v) is
constructed; 4) a single-valued surface is extracted as given by F(u,v)="S(u,v)eB(u,v). However,
above “rough” factorization cannot be directly applied to “precise” surface operations such as surface-
surface intersection (SSI), trimming, etc. because it does not consider any kind of parameter

synchronization.

By offering a “robust” local-coordinate system estimation method for COP-data “arbitrarily”
located in 3D Cartesian space, the proposed method was successfully embedded to a research-purposed
RE S/W, as one component of the surface fitting engine. In consequence, surface modeling with the RE
S/W is more efficient — the numbers of surfaces and secondary-surface operations are reduced, and user
interaction is also reduced. Besides, the proposed method can be used for an “intuitive” scientific
visualization of empirical data acquired from spherical or cylindrical experiment set-ups. The basic idea
of the proposed method — a curve (or surface) can be interpreted as a product of a base geometry and a

scale function — can be applied to some special shape (mechanical cam, pressure vessel, efc.) design.

A major drawback of the proposed NURBS-surface fitting method is that the degrees of the
resulting NURBS-surface are somewhat high. For example, if a bi-cubic B-spline surface is used in the

single-valued surface fitting stage, the degrees of the spherical NURBS-surface are (5,5).
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Appendix A. NURBS-curve Construction Using Symbolic-product
Operation

A symbolic-product operation of a B-spline function and NURBS curve, is more efficient when
the NURBS curve is represented using homogeneous coordinates [Piegl997]. Thus, to construct a
parametric NURBS-curve from C(u)= F(u)B(u) , let the NURBS base-circle B(u) = (X (u),Y(u)) be

written in the form of a homogeneous representation as

B"(u) = (X" (), Y" (u), W (u)) (A

where  X"(u) = Zj:ﬂo No,w)x! Y (u) = Z,n:o N,w)y  W(u)= Z:Ijo N ,)w, ; X' =wx Ly =wy,
Then, the homogeneous form of the resulting NURBS-curve can be obtained by applying the symbolic-
product operations of a single-valued B-spline function F(u) with the first two (non-rational) B-spline

functions as

C" () = (F)X " (), F)Y" (), W ()) . (A2)

For the details of symbolic-product operation of two non-rational B-spline functions, see Appendix A.1.
By applying a perspective mapping of C"(u) with respect to the origin, the resulting NURBS-curve is

obtained in turn:

C(u) = H{C" ()} = H{(F @)X " (u), F@)Y" (u),W (u))}
Fu)X"(u) Fu)Y"(u)
) [ W W
= F(u)B(u)

j= (F @)X (u), F ()Y () (A3)

Appendix A.1 Symbolic-product Operation of Two Non-rational B-spline
Functions

Given two non-rational B-spline functions
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(A4)

(A.5)

of degree p and g, respectively, the symbolic product of them is also a non-rational B-spline function

ny

Hu)=) N, @h (A.6)
k=0
of degree p+g¢ over the knot vector
Uy =W s W Wy itsee s W, 5 Wosee s W,
| S
prq+l p+q+1 (A7)
=U,vU,
where
UF ={U e U Uy Uy Uy Uy Uy gy U}
S —
(p+D+q my+q me+q (p+h+q
UG = Vs Vo Vs s Vi s Ve Vs Vs,V
(g+D+p m+p mi+p (g+D)+p
The procedure of determining control points {#,} is as follows:
1) Decompose F(u) and G(u) into Bezier functions {F’(u)} and {G"(u)}, respectively,
using knot refinements with the distinct knot vector of U, ;
2) Compute the product of each paired Bezier functions (See Appendix A.2);
3) Recompose the Bezier product functions into a B-spline form using a full knot vector of for

degree p+q, namely,
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A

Uy =W, s W W s Wit s Wi s Wi ey W, W (A.8)
e s b NN

pq+l g ptq prg+l

4) Remove all knots of US=U, -U,,.

Above procedure to find U, and {4}, is conceptually the same as Piegl and Tiller’s

[Pieg1997], which is summarized more intuitively.

Appendix A.2 Symbolic-product Operation of Two Bezier Functions

Given two Bezier functions

F =38, ) (A.9)
Gu) = ZB Wse, (A.10)

of degree p and ¢, respectively, the Bezier product function is given by [Farol988][Elbe1993]
[Pieg1997]

H@) =3B, ()b, (A11)

min(p,k) l k_l
h, = 118, k=0,....,p+q.

- l:ma%qu) p + q
k

where
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Appendix B. NURBS-surface Construction Using Symbolic-Product
Operation

As similar to the curve case given in Appendix A, a symbolic-product operation of a single-
valued B-spline function F(u,v) and NURBS base-geometry B(u,v) = (X(u,v),Y(u,v),Z(u,v)), is
more efficient when the NURBS base-geometry (i.e., base sphere or cylinder) is in the form of a

homogeneous representation,

B"(u,v)=(X"(u,v),Y" (u,v),Z" (u,v),W(u,v)) (B.1)

where X"(u,v)=) " ;_”jo NN, x! Y v =" j’jo NN,y . Z"uyv) =
Z:’:BOZ:’;ON[,Z(u)N,/’z(v)Z;wvf ’ W(W):foo :’:oNf,z(”)Ni,z(V) Wij 5 X S WX Vi S WY
z" =w, z, . for a spherical NURBS-surface fitting. The component functions for a cylindrical NURBS-

i [

surface fitting, can be written in the similar form where {N,,(u)} are substituted for all {N,(u)}.

The homogeneous form of the resulting NURBS-surface is given by

S"(u,v) =(F(wu,v) X" (u,v), F(u,v)Y"(u,v), F(u,v)Z" (u,v),W(u,v)) (B.2)

for the spherical NURBS-surface fitting, or

8" (u,v) = (F(u, V)X " (u,v), F(u, V)Y" (u,v), Z" (u,v), W (u, v)) (B.3)
for the cylindrical NURBS-surface fitting.

A symbolic-product operation of two non-rational “bi-variate” B-spline functions (let us denote
F(u,v) and G(u,v)) can be performed by a simple extended procedure of the curve case given in
Appendix A.l as follows: 1) determine u - and v -directional knot vectors (U, and V, ) for the
resulting non-rational bi-variate B-spline function H(u,v), respectively by Equations (A.4)-(A.7); 2)
decompose F(u,v) and G(u,v) into bi-variate Bezier functions {F’(u,v)} and {G"(u,v)} using
knot refinements with the distinct knot vectors of U, and V¥, ; 3) compute the product of the each
paired Bezier functions (See Appendix B.1); 4) recompose the Bezier-product functions into a B-spline
form using knot removal with U, and V, . The degrees of the resulting NURBS-surface are
(p+2,9+2) for the spherical NURBS-surface fitting and (max{p,l},g+2) for the cylindrical
NURBS-surface fitting (See Appendix B.2).
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Appendix B.1 Symbolic-product Operation of Two Bi-variate Bezier Functions

Given two bi-variate Bezier functions

F(u,v)= i i Bi’pF (u)Bl.,qF ) flj (B.4)

i=0 j=0

P dc
Gu,v)=Y > B, WB,, (Mg, (B.5)
i=0 j=0
of degree (p,,q,) and (ps,q;), respectively, the bi-variate Bezier-product function is given by
[Faro1988][Elbe1993][Pieg1997]

PrtpPe 4rtde

Hw,v)= >, Y B, .,.B,, .. Mh, (B.6)

k=0 I=0

(ij( Pc j[QFJ( qc j
min(py.k) min(g,l) l k _ l ] l _ ]
hk,l = Z Z /i

i=max(0,k—pg) j=max(0,/-q5;) (pF + pG ][q[: + qu l
k /

k=0,....,pr+pg, [=0,...,9;: +q;-

where

O k=il=j>

Appendix B.2 Degrees of NURBS Surfaces

First, let us consider a spherical NURBS-surface fitting. A base sphere can be represented in a
homogeneous form as Equation (B.1), where the degrees of the first three component functions,
X"(w,v), Y'(u,v), Z"(u,v), are (0,2), (0,2), (2,0), respectively (because the base sphere is
constructed by a surface-of-revolution method with respect to z-axis). Thus, the degrees of the first three
product-component functions in Equation (B.2), F(u,v)X"(u,v), Fu,v)Y"(u,v), Fu,v)Z"(u,v),
can be easily calculated as (p,q+2), (p,g+2), (p+2,q), respectively. Then, the degrees of the
resulting NURBS surface are

(max{p, p, p+2},max{g+2,q+2,9})=(p+2,9g+2). (B.7)

On the other hand, the degrees of first three component functions in Equation (B.1) for a base

cylinder, are (0,2), (0,2), (1,0), respectively, and the degrees of the first three functions in Equation
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(B3), Fu,X"w,v), FunY"wv), Z"uyv), ae (p,q+2), (p.g+2), (10), respectively.
Therefore, the degrees of the resulting cylindrical NURBS-surface are given by:

(max{p, p,I},max{g +2,q + 2,0}) = (max{p,l},q +2) (B.8)
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Appendix C. Constrained-surface Fitting

spline surface

ng Mg

Fu,v)=Y > N, N, f,,

i=0 j=0

of degrees (p,q) over knot vectors U, and V. under the constraints
ng Mg

H =3¢ fi,: 1=0,.,L.

i=0 j=0

The unconstrained equations are written in a matrix form as

G=NF

and constrained equations as

H=CF
where
No,p(”o)No,q(Vo) NO,p(uO)Nm[.,q(VO) Nlr},p(MO)NO,q(VO)
N = : : ’ :
NU,p(”K)No,q(VK) NO,p(uK)Nm[.,q(VK) : Nn,.p(”K)No,q(VK)
C(()),o ngmr C,(,)f o0 C,(y), -
c-| : . X . . . X ,
Co 7 Com T Cua T Cu,
Joo
f;),mF GO ho
F=| ! |, G=|:! |, H=
fm,.—,() GK hL
_an,m,.- i
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' Nn,,,p(uK)Nm“.q(vK)

Assume that {G,}={F(u,,v,)}; k=0,...,K are given. We are to seek a single-valued B-

(C.1)

(C.2)

(C.3)

(C.4)

Nn} > (uo)Nmf a ()

>



If the sum of the numbers of above equations is the same as the numbers of degrees-of-freedom
of F(u,v), that is, (K+1)+(L+1)=(n.+1)(m.+1) , the given problem becomes a general

interpolation problem as

G=NF (C.5)

where

F=N"'G (C.6)

On the other hand, if (K+1)+(L+1)>(n.+1)(m,+1), the given problem becomes a

constrained least-squares approximation to minimize the sum of squares of errors subject to constraints
(G-NF)'(G-NF)+L'(CF-H) (C7N
where L is a column vector of Lagrange multipliers. Differentiating Equation (C.7) with respect to
unknowns F and L, and setting zero yield two matrix equations
N'NF+C'L=N'G (C.8a)
CF=H (C.8b)
By substituting F=(N"N)"(N'G-C’L) (from Equation C.8a) into Equation (C.8b) if N'N is
invertible, L can be obtained if C(N"N)"'C” is also invertible as follows:

L={C(N'N)"'C" " {C(N"N)'N'G - H} (C.9)

Finally, F can be calculated by substituting Equation (C.9) into Equation (C.8a) as

F=(N"N)'[N'G-C"{C(N'N)'C"} "{C(N"N)'N'G - H}]. (C.10)
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Appendix D. G-continuity Conditions at Degenerate Point

Appendix D.1 Proof of Simple G' Continuity Condition

With Equation (3.14a), the boundary values of the single-valued B-spline surface at the pole
yield,

Fuon) = 3N, 00y, = 2N, 0 fog = oo 2N, ()= o (0.1)

Then, the G° continuity condition of Equation (3.11) becomes satisfied:

S(u,,v)=F(u,,v)B(u,,v)= fo’ok (D.2)
Another constraints given by Equation (3.14b) yields,

meop N
Zp ”(V) ~( = 0,)=0 (D.3a)

Jj=0 p+1

& PgN,,,(v)

=0 (u,m _ul)(vj+q+1 _V/+1)

F,(u,v)= (fl,j+1_f0,j+1_f1,j+fo,j):0 (D.3b)

Then,
S, (u,,v) xS, (u,,v) = {F(u,,v)}*{B, (u,,v) x B, (u,,v)} (D.4)

where B, (u,,v)xB, (u,,v) is in the direction of k , which makes the condition of Equation (3.12) for

the G' continuity be satisfied.

Appendix D.2 Optimal Scale Factors to Find Degenerate Point and Surface-normal

Vector

The derivatives of a p” degree Bezier curve C(f)= Z B, ()¢, at endpoints are easily

obtained as:

C(0) =¢,, C'(0) = p(e, —¢,), C"(0) = p(p —1)(e, —2¢, +¢,) (D.52)
CH=c,.CM)=plc,-c,,),C'H=p(p-D(c, -2, +c, ;) (D.5b)

Simple arithmetic manipulations with using Equations (3.17) and (D.5) give the control points of
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connecting curves C,(7) = Zf:o B, s(®) ¢/ intermsof a, B as follows:
g =S(u,,0,)
¢/ =S(u,,v,)+(1/5as,(u,,v,) (D.6a)
¢ = S(u,,v,)+ 2/5as, (u,0,)+ (1/20) S, (u,,0))

¢/ =S(u,.v, )+(2/5)asS, v, )+(1/20)AS,, .0, )
¢} =S(u,.v, )+(1/5)aS,(u,.v, ) (D.6b)

¢; =Su,.v, )

Then, the mean curve C(t) = (2/m; )Z:ESHC ;(t) also can be expressed in terms of &, S as follows:
_ 2 mg/2-1 RS 2-1 5 ) 5 2 ms/Zfl_
CH=— 2C,(0="- % > Bsne/ =3 B0 — X (D.7)
ms 5% Mg %0 =0 =0 Ms =0

The mean-deviations of connection curves at #=0.5 in Equation (3.18) are

C,(@,$:0.5)=C,(a,3:0.5)~C,(ax, 3:0.5)

5 ] 2 mg/2-1 ) 5 ]
= ZBi,S(t) C‘,./ - ZC‘; = ZBi,S(t)él{
i=0 Mg j=o

i=0

(D.8)

where

¢ =878/ =8’ +(1/5)aS!, & =S’ +(2/5)aS! +(1/20) BS!

uu >

uu

¢] =S§™ +(2/5)a S +(1/20) S, ¢] =S" +(1/5)a S/, e =8 ;

S j r Qo _ Q
S/ = S(”SaU,-) -S Shw = S(us,z)jw )— S
Su/ = Su (us 91)]) - Su > S‘lj"”’ = Su (us’uj“pp ) - S;pp ’

Q) — _Q Qo <oy
Suu - Suu (us’Ui) Suu S V= Suu (uf’uj,;pp) - Suu

uu

_ 2 mg/2-1 _ 2 mg/2-1
S=— (uY’U_/) S =— ( s2Yj )
mg 5 mg o
2 mg/2-1 2 mg/2-1
Su:_ ZSM(MS,UI) 5 SMOPP__ u( 52 )
mg j=0 mg Jj=0
_ 2 mg/2-1 _ 2 mg/2-1
Suu = Z Suu (us ’ Uj) Suazfp = Suu (us ’ Ujupp )
mg oo Mg j=0



Now, Equation (D.8) is explicitly expressed in terms of «, f as:

C,(a,f:05)=A,+Ala+Alp (D.9)
where

AJ ={B,5(0.5)+B,5(0.5) + B, (0.5)}(S’ +§"),
Al =(1/5){B,5(0.5) +2B, (0.5} +S.™),
AJ =(1/20)B, (0.5)(S., +S!).

uu uu

Finally, the sum of the squares of Equation (D.9)

mg/2-1 ) }
E@,B)= Y (A} +Ala+AipB) (D.10)
j=0
is minimized when OE/da =0, 0E/0f=0. Optimal-scale factors a", f° can be calculated by

solving following a matrix equation

|:B]’1 B]’z :||:a:| ) _|:BO’] i| (Dll)
B,, B, | B B,

mg/2-1
j=0

where B, =>"""" Al eA/; k=012, [=12.
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Appendix E. Origin Estimation of Local-coordinate System for rank

Q=2

Let A=2Q, and b=-v,then Equation (4.2) can be written in a matrix form as follows:

Ax=b (E.1)

For rank A =2, a general solution of Equation (E.1) is given by

X=p+tq; terR (E.2)

where p is a particular solution of Ax=Db, and the unit vector q is a solution set of Ax=0 (p,
q are calculated using the singular-value decomposition method [Pres1994]). In order to obtain the
origin o of the local-coordinate system for the input COP-data {¥,}; k=1,...,N, t is determined so

that the following objective function is minimized:
- 2 - 2
f@O=2 (¥, —0) = (¥, ~(p+iq)} (E.3)
k=1 k=1
Thus, the value of ¢ satisfying df'(t)/dt =0 is obtained as follows:

1 N
t, —Wtrkz:;(‘l’k -p) (E.4)
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