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Abstract

Parametric-surface tessellation is one of the most important algorithms for CAGD applications. This paper

presents a new parametric-surface tessellation method based on degree reduction: (1) a given parametric surface (or

NURBS surface) of degrees (p; q) is decomposed into a set of Bezier surfaces, (2) the Bezier surfaces are converted into a
set of bilinear surfaces by applying consecutive stepwise degree reduction processes combined with adaptive

subdivision—in each degree reduction step, a Bezier surface is adaptively subdivided until the approximation error from

degree reduction is smaller than the corresponding step tolerance, (3) the bilinear surfaces are converted into a

triangular net. The proposed method guarantees the resulting piecewise-planar approximant to deviate from

the original parametric surface within a pre-defined tolerance, and to form a ‘‘topologically’’ water-tight triangular net.

r 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Parametric-surface tessellation, one of the most basic

algorithms for CAGD applications such as CG, CAD/

CAM, CAE, etc., is the process in which a given

parametric surface is approximated as a piecewise-

planar approximant within a pre-defined tolerance.

There have been many studies about parametric-

surface tessellation, which can be roughly categorized

into two as follows: (1) uniform sampling and (2)

adaptive sampling. In uniform sampling methods [1–3],

the parameter domain of the surface is ‘‘uniformly’’

divided with the grid size (i.e., parametric increment)

computed based on 2nd derivative-bound estimation of

the surface [1,3–5] so that the resulting approximant

deviates from the original surface within a given

tolerance. Uniform sampling methods are fast, however,

produce too many triangles more than needed because

the estimated 2nd derivative bounds are dependent of the

most highly curved region (i.e., over-estimated). Adaptive

sampling methods produce a piecewise-planar approx-

imant from a parametric surface by repetitively applying

‘‘error check’’ and ‘‘subdivision’’. If the maximum

deviation (or approximation error) of each planar

segment from the corresponding parametric surface

segment exceeds pre-defined tolerance, the parametric

surface segment is subdivided into half or quarter.

According to approximation-error calculation method,

there can be three categories of adaptive sampling as

follows: (1) 2nd derivative-bound (2DB) method, (2)

control-point derivation (CP-deviation) method, and (3)

point-on-surface derivation (POS-deviation) method. The

approximation error calculated by using 2DB methods

[5,6] is ‘‘inevitably’’ over-estimated, and it leads the

resulting approximant to have ‘‘unnecessarily’’ excess

triangles. CP-deviation methods [7–9] estimate the max-

imum deviation by calculating the maximum distance

between the control net of the parametric surface (Bezier

or B-spline surface) and the corresponding planar

segment. CP-deviation methods guarantee the resulting

approximant deviates from a given parametric surface

within a pre-defined tolerance in virtue of the convex-hull
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property of Bezier and B-spline surfaces. However, CP-

deviation methods also have the same problem—the

resulting approximant has excess triangles because of the

over-estimation of the maximum deviation. POS-devia-

tion method [10] is to sample points from a parametric

surface segment and to calculate distances between the

sampled points and the corresponding planar segment,

and finally to take the maximum value among them.

Unfortunately, there have been little theoretical back-

grounds related to sampling density for the resulting

approximant to meet a pre-defined tolerance.

To be presented in the paper is a new parametric-

surface tessellation method, which is extended from our

recent study [11]—the parametric-curve polygonization

method based on degree reduction. The proposed method

consists of following steps: (1) a given parametric surface

is decomposed into a set of Bezier surfaces, (2) each

Bezier surface is converted into a set of bilinear surfaces

by applying consecutive stepwise degree reduction

processes combined with adaptive subdivision, (3) all

the bilinear surfaces are converted into a triangular net.

The proposed method guarantees the resulting piecewise-

planar approximant to deviate from the original para-

metric surface within a pre-defined tolerance, and to form

a ‘‘topologically’’ water-tight triangular net.

The organization of the paper is as follows: summar-

ized in Section 2 is the parametric-curve polygonization

method based on degree reduction, which is extended to

a surface tessellation in Section 3. Illustrative examples

are given in Section 4 followed by discussions and

conclusions in Section 5.

2. Parametric-curve polygonization

The overall procedure of the parametric-curve poly-

gonization method proposed by Bae et al. [11] is shown

in Fig. 1a. A given parametric curve (commonly,

NURBS curve) of degree p is decomposed into a set of

Bezier curves. The Bezier curves are converted into a set

of line segments by applying successive p � 1 stepwise

degree reduction steps. A given pre-defined tolerance (e)
is distributed to each degree reduction step, and in each

step, the degrees of parametric-curve segments are

reduced within the corresponding step tolerance (ei)

combined with adaptive subdivision (see Fig. 1b).

Consequently, the resulting piecewise-linear approxi-

mant (or a set of line segments, i.e., polygon), of which

the approximation error does not exceed the pre-defined

tolerance, is obtained.

Now, let us consider the maximum error calculation

for adaptive subdivision in each degree reduction step.

The stepwise degree reduction of a Bezier curve of

degree p

CðtÞ ¼
Xp

i¼0

Bi;pðtÞPi ð1Þ

is finding the control points f %Pig of a Bezier curve of

degree p � 1

%CðtÞ ¼
Xp�1
i¼0

Bi;p�1ðtÞ %Pi: ð2Þ

There are two well-known ‘‘recursive’’ extrapolation

formulas as follows [12]:

%P
I
0 ¼ P0; %P

I
i ¼

Pi � ai
%P
I
i�1

1� ai

; i ¼ 1;y; p � 1; ð3aÞ

%P
II
p�1 ¼ Pp;

%P
II
i ¼

Piþ1 � ð1� aiþ1Þ %P
II
iþ1

aiþ1
; i ¼ p � 2;y; 0; ð3bÞ

where ai ¼ i=p: Bae et al., chose the midpoint-blending
type stepwise degree reduction algorithm [12] for the
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Fig. 1. Basic idea of parametric-curve polygonization: (a) overall procedure and (b) adaptive subdivision.
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unique solution as given by

%Pi ¼

%P
I
i for i ¼ 0;y; r

%P
II
i for i ¼ r þ 1;y; p � 1

( )
if p is even;

%P
I
i for i ¼ 0;y; r � 1

1

2
ð %PI

i þ %P
II
i Þ for i ¼ r

%P
II
i for i ¼ r þ 1;y; p � 1

8>>><
>>>:

9>>>=
>>>;

if p is odd;

8>>>>>>>>><
>>>>>>>>>:

ð4Þ

where r ¼ ðp � 1Þ=2
� �

: The midpoint-blending method is
much easier to implement than the algorithms based on

best approximation [13–16] or non-linear optimization

[17,18]. Moreover, it provides a simple explicit (para-

metric) approximation error function as follows [19]:

eðtÞ ¼ 8CðtÞ � %CðtÞ8

¼
Brþ1;pðtÞ Prþ1 �

1

2
ð %PI

r þ %P
II
rþ1Þ


 if p is even;

1

2
ð1� arÞjBr;pðtÞ � Brþ1;pðtÞj 8 %P

I
r � %P

II
r 8 if p is odd:

8>><
>>:

ð5Þ

The maximum values of the error function can be

precisely calculated: the even-case error function has

one maximum at t ¼ 0:5; and odd-case error function

has two ‘‘equal’’ maximums at parameters satisfying

t2 � t þ ðp � 1Þ=4p ¼ 0:
Fig. 2 shows the step-by-step results of the para-

metric-curve polygonization method proposed by Bae

et al. for a cubic B-spline curve.

3. Extension to surface tessellation

The basic idea of the parametric-curve polygonization

method given in the previous section is simply extended

to a surface case, but some additional treatments are

necessary. First, the maximum approximation error

caused by stepwise degree reduction for a parametric

surface has to be calculated. Second, the parametric-

surface segment of degrees (1,1) obtained from stepwise

degree reduction processes, is not a ‘‘planar’’ segment,

but a ‘‘bilinear’’ surface. Hence, another approximation

step must be included. On the other hand, for some

applications, it is necessary to make a ‘‘water-tight’’

triangular net from the bilinear surface set.

3.1. Overall procedure

So far no ‘‘explicit’’ approximation error function

when the degrees of a parametric surface are reduced

from ðp; qÞ to ðp � 1; q � 1Þ has been known. Thus, we

use ‘‘one-directional’’ stepwise degree reduction. For

example, the u-directional degree of a parametric surface

is first reduced, and v-directional degree next, and u-

directional degree in turn, etc. Fig. 3 shows the overall

Fig. 2. Parametric-curve polygonization method based on stepwise degree reduction: (a) given cubic B-spline curve, (b) quadratic

Bezier curves, and (c) resulting piecewise-linear approximant.
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Fig. 3. Overall procedure of parametric-surface tessellation.
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procedure of the proposed parametric-surface tessella-

tion method.

As mentioned earlier, because a bilinear surface is not

planar, the two-phase approximation approach, which is

composed of the approximation of a Bezier surface to a

bilinear surface and that of a bilinear surface to

triangles, is used. Fig. 4 shows the two-phase approx-

imation of the proposed method compared with that of

Elber’s method [9] (for the sake of explanatory

simplicity, we assumed that the both sides of degrees

are the same, that is, p ¼ q). While Elber’s method uses

the CP-deviation method to estimate the maximum

deviation of each bilinear surface segment from a given

parametric surface, the proposed method uses the

accurate approximation error function of each u- and

v-directional stepwise degree reduction. In Elber’s, if the

maximum deviation estimated from two phases is

greater than pre-defined tolerance (ea þ eb > e), the

parametric surface segment is split. Whereas, in our

proposed method, pre-defined tolerance is distributed

into each degree reduction step so thatPp�1
i¼1 ðe

u
i þ ev

i Þ þ et ¼ e, and adaptive subdivision is

performed in each step with its corresponding step

tolerance.

3.2. Stepwise degree reduction for surface case

Based on the ‘‘notational’’ symmetry of parameters of

a Bezier surface (more strictly, tensor-product surface),

we will consider only one parameter, u:

The u-directional stepwise degree reduction of a

Bezier surface of degrees (p; q)

Sðu; vÞ ¼
Xp

i¼0

Xq

j¼0

Bi;pðuÞBj;qðvÞPi;j ð6Þ

is finding the control points f %Pi;jg of a Bezier surface of
degrees (p � 1; q)

%Sðu; vÞ ¼
Xp�1
i¼0

Xq

j¼0

Bi;p�1ðuÞBj;qðvÞ %Pi;j : ð7Þ

By applying the midpoint-blending method to each row

of the control net of the Bezier surface, the new control

points are given as

%Pi;j ¼

%P
I
i;j for i ¼ 0;y; r

%P
II
i;j for i ¼ r þ 1;y; p � 1

8<
:

9=
;if p is even;

%P
I
i;j for i ¼ 0;y; r � 1

1

2
ð %PI

i;j þ %P
II
i;jÞ for i ¼ r

%P
II
i;j for i ¼ r þ 1;y; p � 1

8>>>><
>>>>:

9>>>>=
>>>>;
if p is odd;

8>>>>>>>>>><
>>>>>>>>>>:

ð8Þ

where r ¼ ðp � 1Þ=2
� �

and

%P
I
0;j ¼ P0;j ; %P

I
i;j ¼

Pi;j � ai
%P
I
i�1;j

1� ai

; i ¼ 1;y; p � 1;

ð9aÞ

Fig. 4. Two-phase approximation approach.
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%P
II
p�1;j ¼ Pp;j ;

%P
II
i;j¼

Piþ1;j � ð1� aiþ1Þ %P
II
iþ1;j

aiþ1
; i ¼ p � 2;y; 0; ð9bÞ

where ai ¼ i=p:
As similar to the curve case, the most important

advantage of using the midpoint-blending method is

that an explicit (parametric) approximation error func-

tion having a simple form is precisely given. Let #Sðu; vÞ
is the degree-elevated surface of degrees (p; q) from
%Sðu; vÞ as

#Sðu; vÞ ¼
Xp

i¼0

Xq

j¼0

Bi;pðuÞBj;qðvÞ #Pi;j ; ð10Þ

where f #Pi;jg are given by well-known degree elevation

formula as

#Pi;j ¼ ai
%Pi�1;j þ ð1� aiÞ %Pi;j ; i ¼ 0;y; p: ð11Þ

If p is even, the error function is derived as follows:

eðu; vÞ ¼ 8Sðu; vÞ � %Sðu; vÞ8 ¼ 8Sðu; vÞ � #Sðu; vÞ8

¼
Xp

i¼0

Xq

j¼0

Bi;pðuÞBj;qðvÞPi;j


�
Xp

i¼0

Xq

j¼0

Bi;pðuÞBj;qðvÞ #Pi;j


¼

Xq

j¼0

Bj;qðvÞ
Xp

i¼0

Bi;pðuÞðPi;j � #Pi;jÞ

" #


¼
Xq

j¼0

Bj;qðvÞ Brþ1;pðuÞðPrþ1;j � #Prþ1;jÞ
h i


¼ Brþ1;pðuÞ

Xq

j¼0

Bj;qðvÞðPrþ1;j � #Prþ1;jÞ




¼ Brþ1;pðuÞ
Xq

j¼0

Bj;qðvÞ Prþ1;j �
1

2
ð %PI

r;j þ %P
II
rþ1;jÞ

� �
 :
ð12Þ

To be remarkable in Eq. (12) is the error function

is ‘‘parameter-separable’’—letting *Pj 	 Prþ1;j � ð %PI
r;j þ

%P
II
rþ1;jÞ=2; the error function has the form of a scaled

3D-curve norm, which is the product of a scale function

sðuÞ and 3D-curve norm 8 *CðvÞ8; as follows:

eðu; vÞ ¼ Brþ1;pðuÞ
Xq

j¼0

Bj;qðvÞ *Pj


 	 sðuÞ 
 8 *CðvÞ8: ð13Þ

Obviously, the error function has the maximum value at

ðuM ; vM Þ where sðuÞ and 8 *CðvÞ8 have maximum values

independently as follows:

eðuM ; vM Þ 	 max
u;v

eðu; vÞ¼ max
u;v

sðuÞ 
 8 *CðvÞ8

¼ max
u

sðuÞ 
max
v

8 *CðvÞ8 	 sðuM Þ 
 8 *CðvM Þ8:

ð14Þ

Fig. 5 shows an example of u-directional degree reduc-

tion when p is 4. It is noticeable what to affect the

approximation error are only the differences of the

control points on the ðr þ 1Þth row of each control net of

Sðu; vÞ and #Sðu; vÞ:

Fig. 5. u-directional stepwise degree reduction of Bezier surface of degrees (4, 4).
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If p is odd, the similar result is obtained as follows:

eðu; vÞ ¼
Xq

j¼0

Bj;qðvÞ½Br;pðuÞðPr;j � #Pr;jÞ


þBrþ1;pðuÞðPrþ1;j � #Prþ1;jÞ�


¼

Xq

j¼0

Bj;qðvÞ
1

2
ð1� arÞðBr;pðuÞ

�
�Brþ1;pðuÞÞð %P

I
r;j � %P

II
r;jÞ

�
¼
1

2
ð1� arÞjBr;pðuÞ � Brþ1;pðuÞj

Xq

j¼0

Bj;qðvÞ½ð %P
I
r;j � %P

II
r;jÞ�




	
1

2
ð1� arÞjBr;pðuÞ � Brþ1;pðuÞj

Xq

j¼0

Bj;qðvÞ *Pj




	 sðuÞ 
 8 *CðvÞ8: ð15Þ

The above error function also has a parameter-separable

form: sðuÞ 	 ð1� arÞjBr;pðuÞ � Brþ1;pj=2 and 8 *CðvÞ8 	
8
Pq

j¼0 Bj;qðvÞ *Pj8 where *Pj 	 %P
I
r;j � %P

II
r;j : In the case, the

error function is affected by the differences of control

points on ‘‘two’’ rows of each control net of Sðu; vÞ and
#Sðu; vÞ as shown in Fig. 6.

3.3. Maximum deviation calculation

As noted earlier, the maximum value of the approx-

imation error function can be calculated by finding

maximum values of the scale function and 3D-curve

norm, independently. The scale function’s maximum

value is already known [19]; the even-case scale function

Brþ1;pðuÞ has the maximum at u ¼ 0:5; and odd-case

scale function ð1� arÞjBr;pðuÞ � Brþ1;pðuÞj=2 has two

maximums at the parameters satisfying u2 � u þ ðp �
1Þ=4p ¼ 0: Now, let us consider the calculation of the

maximum 3D-curve norm 8 *CðvM Þ8: Following two

approaches are applicable to adaptive subdivision: (1)

exact-value finding, and (2) practical-bound estimation.

To find the ‘‘exact’’ maximum value of 8 *CðvÞ8 can be

interpreted as the general point-projection problem,

which is searching for the parameter of *CðvÞ such that

the distance between the origin Oð0; 0; 0Þ and *CðvÞ is

maximized, or as finding maximum value of a single-

valued function (or non-parametric Bezier curve) of

degree 2q; f ðvÞ 	 8 *CðvÞ82 ¼ *CðvÞ 
 *CðvÞ which can be

obtained by applying the symbolic dot-product opera-

tion [20]. In general, these approaches require a kind of

numerical methods such as the Newton–Raphson

iteration [21], except q is extremely low. Thus, it is

important to take good ‘‘seed’’ parameters for reliable

convergence. Whereas, in a practical viewpoint, the

bounds of 8 *CðvM Þ8 based on the convex-hull property of
(refined) control polygon [1,3] can be useful—they give

somewhat over-estimated values, but are fast and stable.

3.4. Subdivision strategy

In each degree reduction step, when the degree of a

Bezier surface does not be reduced along one parameter

direction within the corresponding step tolerance, the

Bezier surface is split in half along the same direction.

And the degree reduction is applied to the split surfaces

again. In this way, we can obtain the degree-reduced

Bezier surfaces meet the step tolerance (we call this

subdivision strategy binary subdivision).

3.5. Tolerance distribution

How to distribute the pre-defined tolerance to

subsequent stepwise degree reduction processes is very

important to the performance of the proposed method.

Bae et al. [11] suggested the exponential step-tolerance

method—as the degree reduction step increases, the step

Fig. 6. u-directional stepwise degree reduction of Bezier surface of degrees (3, 3).
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tolerance increases with a given ratio. For a surface case,

the relations between the step tolerances are given

as ev
i ¼ feu

i ; eu
iþ1 ¼ cev

i ; eu
iþ1 ¼ ðfcÞeu

i ; ev
iþ1 ¼ ðfcÞev

i ;
f;cX1: Fig. 7 shows the schematic diagram of the

exponential step-tolerance method. By some arithmeti-

cal manipulations, the explicit formulas for the each step

tolerance are derived as follows (see Appendix A for

details):

eu
i ¼

ðeu
rest;i � etÞðfc� 1Þ

ð1þ fÞfðfcÞp�i � 1g
; ð16aÞ

ev
i ¼

ðev
rest;i � etÞðfc� 1Þ

cð1þ fÞfðfcÞq�i�1 � 1g þ fc� 1
; ð16bÞ

where eu
rest;i and ev

rest;i are available tolerances for

subsequent degree reduction steps, which are calculated

based on the cumulative approximation error of each

intermediate Bezier surface as eu
rest;i ¼ e�

Pi�1
j¼1ðe

u
j þ ev

j Þ
and ev

rest;i ¼ e� f
Pi�1

j¼1ðe
u
j þ ev

j Þ þ eu
i g: Fig. 8 shows the

results of the first-phase approximation of the proposed

method with different c values (with f ¼ 1); the abscissa

is c; which varies from 1 to 32, and the ordinate is the

ratio of the number of bilinear surfaces produced by the

proposed method with the corresponding c; to the

number of bilinear surfaces produced by Elber’s

method. The test surface is an automatic-gearshift knob

surface (see Fig. 13a), which is a bicubic B-spline surface

(60mm 30mm 100mm). We can observe that the

exponential step-tolerance method (c > 1) gives better

results than the uniform step-tolerance method

[15,16,22] ðc ¼ 1Þ in view of both ‘‘economics’’ and

‘‘accuracy’’. In the other words, the accurate approx-

imations of the early steps pay back—the resulting

triangular-net has less triangles, and is more close to the

original parametric surface. On the other hand, we can

also find that the proposed method generates less

bilinear surfaces than Elber’s method if a proper c
value is chosen, and works comparatively better as the

pre-defined tolerance is smaller.

3.6. Triangular-net construction

When converting bilinear surfaces into a set of

triangles, the special attention should be paid to make

a water-tight triangular net with no internal cracks for a

wide range of applications. Peterson [8] suggested a

simple crack prevention method as shown in Fig. 9, but

which does not provide a ‘‘topologically’’ valid water-

tight triangular net.

For the case, we present a new crack prevention

method. If a bilinear surface adjacent to one along a

boundary edge like patch A in Fig. 10a, it is diagonally

split into two triangles. And if not (see patch B and C in

Fig. 10a), split into four triangles with the center point

of the patch evaluated at (0.5, 0.5) (see Fig. 10b), then

triangles are refined as shown in Fig. 10c.

When a bilinear surface Bðu; vÞ is converted into two

or four triangles, the maximum approximation errors [9]

are given as follows (see Fig. 11).

eM ;2 ¼
1

4
maxfdistðP1;1;PðP0;0;P1;0;P0;1ÞÞ;

distðP0;0;PðP1;1;P0;1;P1;0ÞÞg; ð17aÞ

eM;4

¼ 1

8
max

distðP1;0;PðP0;0;Pc;P0;1ÞÞ; distðP1;1;PðP0;0;Pc;P0;1ÞÞ;

distðP1;1;PðP1;0;Pc;P0;0ÞÞ; distðP0;1;PðP1;0;Pc;P0;0ÞÞ;

distðP0;1;PðP1;1;Pc;P1;0ÞÞ; distðP0;0;PðP1;1;Pc;P1;0ÞÞ;

distðP0;0;PðP0;1;Pc;P1;1ÞÞ; distðP1;0;PðP0;1;Pc;P1;1ÞÞ

8>>><
>>>:

9>>>=
>>>;
;

ð17bÞ

Fig. 7. Schematic diagram of exponential step-tolerance method.
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where P is the plane on which three 3D points in its

parenthesis are, and Pc is the center point on the bilinear

surface sampled at (0.5, 0.5).

For splitting into two triangles, there exist two sets of

two triangles, and the set of triangles whose the

maximum approximation error calculated with

Eq. (17a) is smaller, is selected as a part of the resulting

triangular net.

4. Illustrative examples

Fig. 12 shows an example of the proposed parametric-

surface tessellation method. The parametric surface to

be tessellated in Fig. 12a is a ‘‘nautilus-shell’’

shaped bicubic B-spline surface (310mm
270mm 80mm), which is designed by using a

‘‘logarithmic spiral’’ whose the curvature (or radius

of curvature) is monotonically changed. Figs. 12b

and c are the resulting piecewise-planar approximants

with the pre-defined tolerances 2.0 and 1.0 (mm),

respectively. The computation time was 6.379 and

Fig. 9. Crack prevention method proposed by Peterson.
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Fig. 8. First-phase approximation test.

Fig. 10. Water-tight triangular net construction with proposed crack prevention method.
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Fig. 11. Conversion of bilinear surface into triangles.
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10.675 (s), respectively (measured on a 800MHz Intels

Pentium III processor).

Another example is given in Fig. 13: a given bicubic

B-spline surface, which is an automatic-gearshift knob

surface (60mm 30mm 100mm), is converted into

water-tight triangular net with the pre-defined tolerances

1.0 and 0.1 (mm), respectively (computation time was

0.580 and 2.554 (s), respectively).

5. Discussion and conclusions

The proposed parametric-surface tessellation method

is extended from our previous work [11]—parametric-

curve polygonization whose the basic idea is that a

piecewise-linear approximant satisfying a pre-defined

tolerance can be obtained by combining stepwise degree

reduction with adaptive subdivision. To extend the

curve-case result to a surface case, the one-directional

stepwise degree reduction strategy is introduced. By

applying the midpoint-blending type stepwise

degree reduction to each parameter direction of the

surface, the approximation error function is factorized

into a function of u and a function of v; and the

maximum error can be easily calculated because the

problem of a surface (error function) becomes that of a

curve. For converting each parametric surface of

degrees (1, 1), so called bilinear surface, into planar

segments (i.e., triangles), Elber’s results [9] are adopted,

and for constructing a water-tight triangular net, a

simple crack prevention method is proposed.

One of the distinct characteristics of the proposed

method is a kind of ‘‘multi-step’’ approximation.

Namely, the resulting approximant is ‘‘recursively’’

approximated to a given parametric surface. Thus, the

resulting triangular-net deviates from a given parametric

surface within a pre-defined tolerance, but the vertices of

it are not on the original surface (so, the term

‘‘approximant’’ was used instead of ‘‘interpolant’’ in

the paper). Also, in the multi-step approximation, the

Fig. 12. Parametric-surface tessellation of nautilus-shell shaped surface: (a) bicubic B-spline surface, resulting piecewise-planar

approximants with pre-defined tolerance, (b) 2.0, and (c) 1.0.

Fig. 13. Parametric-surface tessellation of gearshift-knob surface: (a) bicubic B-spline surface, resulting piecewise-planar approximants

with pre-defined tolerance, (b) 1.0, and (c) 0.1.
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pre-defined tolerance has to be distributed to each step,

and it can cause the unwanted waste of the available

tolerance. Thus, the proposed method uses the exact

calculation of the maximum deviation of approximants

and the exponential step-tolerance strategy with proper

ratios ðf;cÞ to compensate the problem.

Further work can be how to determine the optimal

values of the ratios ðf;cÞ for the exponential step-

tolerance method, which is expected to relate to a size

ratio of the parametric surface to be tessellated and the

pre-defined tolerance.
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Appendix A. Exponential Step-tolerance Calculation

The available tolerance for ith u-directional stepwise

degree reduction is to be distributed into the step

tolerances for subsequent ðp � iÞ degree reduction steps

and tolerance for the conversion of a bilinear surface

into triangles as follows:

eu
rest;i ¼

Xp�1
j¼i

ðeu
j þ ev

j Þ þ et ¼ ð1þ fÞ
Xp�1
j¼i

eu
j þ et

¼ ð1þ fÞ
Xp�i�1

j¼0

ðfcÞjeu
i þ et

¼ eu
i ð1þ fÞ

Xp�i�1

j¼0

ðfcÞj þ et

¼ eu
i ð1þ fÞ

ðfcÞp�i � 1

fc� 1
þ et: ðA:1Þ

Similarly,

ev
rest;i ¼ ev

i þ
Xq�1

j¼iþ1

ðeu
j þ ev

j Þ þ et

¼ ev
i þ cð1þ fÞ

Xq�1
j¼iþ1

ev
j�1 þ et

¼ ev
i þ cð1þ fÞ

Xq�2
k¼i

ev
k þ et

¼ ev
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Xq�i�2
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ðfcÞkev
i þ et

¼ ev
i þ ev

i cð1þ fÞ
Xq�i�2

k¼0

ðfcÞk þ et

¼ ev
i þ ev

i cð1þ fÞ
ðfcÞq�i�1 � 1

fc� 1
þ et: ðA:2Þ
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