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Abstract. The 3D evaluation of design shapes is an essential step in
product styling. Thus, physical models of final-stage design alternatives
have been made in tradition, and recently the effort to substitute them
with CAD models has been tried. Whereas, designers in the early phase
of the design-development stage where almost design concepts are de-
termined, still use raster-type 2D graphics S/Ws. It causes not only the
difficulty of evaluating 3D shapes but also the serious severance of a
digital dis-connectivity with downstream processes. This paper presents
a method of directly constructing 3D plane-symmetric freeform curves
with a sketch interface, as the first step of developing a sketch-based
3D-freeform shape creation S/W for designers. A curve drawn by the
designer within the see-through box in an arbitrary perspective view, is
simultaneously converted to a real space curve without the 3D ambiguity
problem except only special cases to be specified.

1 Introduction

As the customer’s respect to products is being transformed from functionality
to design, the importance of product styling is highly increasing in the whole
product-development process. The more aesthetic the style of products is, the
more important to evaluate 3D shapes of them before actual production become.
For the reason, making physical models made of clay, wood, resin, form urethane,
etc., is common in design studios [16]. However, physical models can not always
be used because they require a lot of money and time. Thus, recently, the effort
to substitute physical models with computer models using CAD S/Ws, has been
explored.

So far, this kind of endeavor has focused on only final (or semi-final) stage
design alternatives, and designers in the early phase of the design-development
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stage where most of design concept is fixed still uses raster-type 2D graphics
S/Ws. Although this kind of S/Ws enables designers 1) to rapidly generate
various ideas, 2) to flexibly hybridize existing styles, and 3) to sensuously express
virtual images in their minds, they have serious problems as follows: 1) the
difficulty of 3D evaluation, 2) no digital connectivity with downstream processes.

In this paper, as our first attempt to develop a direct 3D freeform-shape cre-
ation S/W allows the both of 3D evaluation and digital continuity, a method
of constructing 3D plane-symmetric freeform curves with a sketch interface is
given. The designer-drawn freeform curves symmetric to the center plane–
many products are plane symmetric including automobiles except little avant-
garde styles–are simultaneously converted to 3D space curves without causing
the 3D ambiguity in virtue of its strong constraint–the plane symmetry (a little
special viewing-situations in which our method does not work will be specified
in the context).

The method to be proposed has a great assumption that well-trained design-
ers can exactly express 3D shapes on a 2D plane based on design perspective.
Actually, professional industrial-designers practice and practice so that they can
sketch the accurate plane images of virtual 3D objects because sketch is not only
a means of presentation but also that of idea development [6]. We valued the
designer’s works based on design perspective as resultants from a pretty accurate
human graphics-rendering pipe line.

The organization of this paper is as follows: related work to the direct creation
of computer models including space curves will be given in Section 2. In Section
3, so-called a perspective 3D sketch scheme extended from the 2D sketch interface
proposed in our companion paper [1] is suggested. In Section 4, the overview of a
method converting 2D curves drawn in a perspective view to 3D curves is given,
and then the actual calculation procedure of finding 3D points from 2D points is
presented with special case treatments in Section 5. The software implementation
is given in Section 6 followed by discussions and conclusions in Section 7.

2 Related Work

We categorized research on direct 3D computer-model creations as following
three based on the user interface: 1) sketch-based methods, 2) suggestive methods,
and 3) VR-interface methods. Sketch-based methods have been mostly applied
to creating CSG-like models composed of simple primitives [7][15][17] where the
most interest was focused on the primitive recognition from a rough scribble,
and the topology reconstruction. There were little studies about directly creating
freeform-shapes: one is Teddy [11] for rounded freeform models, which, how-
ever, is not appropriate for product styling. A suggestive interface is to forecast
possible subsequent operations to be executed by users, and to gives action al-
ternatives [4][12]. It shows great possibility for creating simple polygon models,
but is limited for freeform-shapes. Recently, much research with 3D interfaces
(VR interfaces) has been done. However, VR techniques for the direct creation
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of freeform shapes looks still immature in a practical point of view (heavy equip-
ment, precision problem, etc.).

There are two representative studies about 3D space-curve creation: Cohen,
et al. [3] suggested a method by sketching a curve and its shadow curve on the
floor in a perspective view. Grossman, et al. [10] proposed the reverse way where
a depth plane (surface) is constructed first, and the curve drawn on orthographic
plane is projected on it.

3 Perspective 3D Sketch

The sketch interface proposed in this paper, perspective 3D sketch, is straight-
forwardly extended from the intuitive 2D sketch interface proposed in our com-
panion paper [1], which enables the designer to freely create accurate curves
intended by allowing repetitive scribbling (scribbles already drawn are spread
and grayed out as the number of them increases) and inducing the designer’s
adaptation. Shown in Fig. 1 is the flowchart of the perspective 3D sketch scheme.

3D Conversion Settlement2D Sketch
Box 
Positioning

Repetition

Scribbling

Repetition

Settlement

2D 
Curve

3D
Scribble

3D
Scribble 
Set

3D
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2D
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2D
Scribble 
Set

2D
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Fig. 1. Flowchart of perspective 3D sketch

The designer can choose an arbitrary perspective view by rotating the see-
through box provided as a reference unit for estimating the dimension of 3D
curves to be projected with it [6]. Then he/she draws a curve, c̃(t), on 2D image
plane (Fig. 2(a)). By repetition of the previous procedure, a set of 3D curves,
{ci(t)}, based on the designer’s adaptation are generated (Fig. 2(b)), and at last,
a final curve, c̄(t), is settled (Fig. 2(c)).

4 Conversion of 2D Curve to 3D

The pinhole-camera model widely used in computer graphics and machine vision
is composed of the optical center, e, and the retinal (or image) plane, ΠR [9].
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Fig. 2. Illustrative example of perspective 3D sketch

Between an arbitrary 3D point, p, and its projection point, p̃, there is a relation–
a kind of morphism–as written as:

p̃w = Hpw (1)

where H is the perspective projection matrix (rank(H) = 3), pw and p̃ware the
homogeneous coordinates of p and p̃, respectively.

In general, the inverse problem of perspective projection–finding p from p̃–is
an under determined problem, which has an infinite numbers of solutions. In this
study, the above 3D ambiguity is resolved by imposing the plane-symmetry con-
dition, and a unique solution can be calculated. Fig. 3 shows our system con-
figuration to be considered where q is the intersection point of the see-through
box and the optical ray passing through p̃ and p.
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Fig. 3. System configuration for inverse perspective projection

The overall procedure of converting a 2D curve drawn by the designer to a 3D
plane-symmetric freeform curve is as follows: 1) polygonizing a 2D parametric-
curve, 2) matching a 2D-point pair, 3) finding a 3D-point pair on see-through
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box, 4) finding a 3D-point pair looked for, and 5) creating a resulting 3D
parametric-curve.

4.1 Parametric-Curve Polygonization

Given a parametric 2D curve, c̃(t), is sampled, and 2D point set, {p̃i(x̃i, ỹi)}, is
obtained by the parametric-curve polygonization algorithm [5][13].

4.2 Matching 2D-point Pair

Using the 3-point perspective [6], generally used by industrial designers, a 2D-
point pair expected to symmetric to the center plane in 3D space, can be ac-
quired. First, the vanishing point, ṽ∞, is simply found by extending the edges
of the see-through box parallel to z-axis, and given point, p̃1 ≡ p̃i, is mapped
to its corresponding point, p̃2, by calculating the intersection point between a
line passing through p̃1 and ṽ∞, and c̃(t) (or its linear interpolant obtained by
polygonization) (see Fig. 4).

x

y

z

o

1
~p

2
~p

∞v~

Fig. 4. 2D-point pair matching using vanishing point

4.3 Finding 3D-point Pair on See-Through Box

Instead of directly finding 3D-space points, (p1,p2)–as mentioned earlier, it is
impossible to calculate them without the 3D ambiguity, their projection points
on see-through box, (q1,q2) are calculated from 2D points, (p̃1, p̃2), as follows
(see Fig. 5(a) and refer our viewing system configuration given in Fig. 3) : For
each 2D point, 1) finding two faces its optical ray pass through, 2) choosing the
face between them, on which its 2D image point is closer to the center for more
accurate calculation, 3) calculating two parameters of an affine combination in
the 2D space, (µ, η), using two corresponding vanishing points, and 4) obtaining
the 3D projection point on the see-through box using affine combination in the
3D space with the parameters previously calculated. For example, as shown
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in Fig. 5(b), between the two projection faces of p̃1–(F front
xy , F rear

yz ), F front
xy is

selected, and (µ, η) are calculated using two vanishing points, (ṽ
′
∞, ṽ

′′
∞), so that

p̃1 = (1 − µ)(1 − η)ṽ1 + µ(1 − η)ṽ2 + (1 − µ)ηṽ3 + µηṽ4 (2)

where {ṽ1, ṽ2, ṽ3, ṽ4} are the 2D image vertices of F front
xy . Then, the 3D projec-

tion point on F front
xy , q1, is acquired as:

q1 = (1 − µ)(1 − η)v1 + µ(1 − η)v2 + (1 − µ)ηv3 + µηv4 (3)

where {v1,v2,v3,v4} are the 3D vertices of F front
xy .
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Fig. 5. Finding 3D-point pair on see-through box using vanishing points

4.4 Finding 3D-point Pair in Space

Now, we can define two optical rays, (l1(t), l2(s)), from the optical center, e,
using (q1,q2) as follows:

l1(t) = e + t(q1 − e), (4)

l2(s) = e + s(q2 − e). (5)

The 3D points, p1 = l1(t∗) = (p1x, p1y, p1z) and p2 = l2(s∗) = (p2x, p2y, p2z),
which we want to find, must satisfy the center-plane symmetry condition. That
is, p1x = p2x & p1y = p2y & p1z = −p2z. Thus, a solution-parameter pair,
(t∗, s∗), can be obtained by solving a system of three linear equations as follows
(for more details, see Section 5):

t(q1x − ex) = s(q2x − ex), (6)

t(q1y − ey) = s(q2y − ey), (7)

ez + t(q1z − ez) = −ez − s(q2z − ez). (8)
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4.5 3D Parametric-Curve Creation

As the final step of converting a 2D curve to a 3D space curve, the approximation
of {pi(xi, yi, zi)} to a parametric curve such as B-spline (or Bezier) curve, c(t), is
performed by applying standard curve fitting methods [2][8][14] keeping a plane
symmetry.

5 Solving System of Linear Equations for Finding
3D-point Pair

As given in (6)˜(8), our inverse projection of a 2D-point pair to 3D points under
the plane-symmetry condition is an over-determined problem having two un-
knowns and three equations. Because of the pinhole-camera model assumption
(t, s > 0), the solution space is (t∗, s∗) ∈ (0,∞) × (0,∞). For most cases,
(t∗, s∗) can be simply determined by minimizing the sum of least-squares er-
rors, f = (NF − G)T (NF − G), where NF = G is the matrix form of (6)˜(8).
However, there exist special viewing conditions in which the proposed method
does not work. Thus, the analysis of these special cases will be followed with the
consideration of the number of equations.

First of all, let us consider the cases that one of three equations vanishes as
shown in Fig. 6. The case that only (6) vanishes, that is, q1x−ex ≈ 0 & q2x−ex ≈
0, {e,p1,p2,q1,q2} are all on the same plane parallel to the yz-plane (see Fig.
6(a)). In the case, it is possible to calculate (t∗, s∗) with remaining two equations.
Similarly, if (7) vanishes, the solution exists (Fig. 6(b)). However, when (8)
vanishes, that is, q1z−ez ≈ 0 & q2z−ez ≈ 0 & ez ≈ 0, {e,p1,p2,q1,q2} are all on
the xy-plane because p1x ≈ p2x & p1y ≈ p2y & p1z ≈ −p2z or p1 ≈ p2 & q1 ≈ q2.
Thus, there are an infinite numbers of solutions (Fig. 6(c)) (it is so called the
impossible-to-solve case).
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Fig. 6. Special cases only one equation vanishes

Now, let us consider the only one equation remains. They are all the
impossible-to-solve cases (see Fig. 7). If (6) and (7) vanish, {e,p1,p2,q1,q2}
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are all on the line parallel to the z-axis as shown in Fig. 7(a). If only (6) or
(7) remains, {e,p1,p2,q1,q2} are all on the same line parallel to the x-axis, or
y-axis (on the xy-plane or center plane), respectively.
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Fig. 7. Special cases only one equation remains

If all three of (6)˜(8) vanish, {e,p1,p2,q1,q2} are the coincident point (the
trivial-solution case).

In summary, there are seven special viewing-cases: one trivial-solution case,
four impossible-to-solve cases, and two possible-to-solve cases. In fact, four
impossible-to-solve cases can be re-categorized as following two: 1) the opti-
cal center is positioned on the center plane, and 2) the optical rays are parallel
to the z-axis.

For above possible-to-solve cases, (t∗, s∗) can be explicitly calculated. For the
case only (7) vanishes (q1x−ex �= 0 & q2x−ex �= 0 & q1y−ey ≈ 0 & q2y−ey ≈ 0),
by substituting t = (q2x − ex)/(q1x − ex) into (8), we can obtain the following
equation, s{(q1z − ez)(q2x − ex) + (q1x − ex)(q2z − ez)} = −2(q1x − ex)ez, and
then (t∗, s∗) except the case that the optical center is located at the infinite point
where (q1z − ez)(q2x − ex) + (q1x − ex)(q2z − ez) ≈ 0 (see Appendix A).

6 Implementation

A simple program for the proposed method is implemented as a Java Applet using
JavaTM 2 Platform Standard Edition (J2SETM) and Java 3DTM API as shown
in Fig. 8. For a pen-based user interface, WACOM IntuosTM2 tablet (9′′ × 12′′)
is used. Our Java Applet is available at http://vr.kaist.ac.kr/˜bae.

7 Discussions and Conclusions

In this paper, we proposed a method of constructing 3D plane-symmetric curves
using an intuitive sketch interface, which was inspired from a fact that a lot of in-
dustrial products have plane-symmetric forms. The designer can arbitrary choose
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Fig. 8. Software implementation: repetitive 3D scribbling and settled freeform
curve

a 3D perspective view, and draw a projected form of the curve intended. By rep-
etition of the perspective 3D sketch (visual feedback and behavioral adaptation
process), the designer can obtain the final form of a 3D space curve. Because of
the assumption of a plane-symmetry, the proposed method does not suffer the
3D ambiguity problem unlike general inverse-projection of converting 2D image
objects to 3D space objects (the exceptional viewing cases–only two–were ad-
dressed in Section 5). A prototype for the proposed method was made as simple
Java Applet program, and tested by a group of product designers.

One important point is that the proposed method is relies on the designer’s
accurate space sense. The assumption can be thought as reasonable remembering
that projective geometry, which computer graphics is based on, was started
from Renaissance painters’ effort to correctly reproduce the perspective effects
in images of the world that they were observing. Actually, many designers took a
great interest in our program, and agreed it has much possibility to be developed
as a powerful tool for design specialists.
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Appendix A: Optical Center at Infinite Point

Let us consider the equality, (q1z − ez)(q2x − ex)+ (q1x − ex)(q2z − ez) ≈ 0, when
only one equation, (7), vanishes as shown in Fig. 9(a). From the pinhole-camera
assumption (0 < t < ∞), (q1x −ex)(q2x −ex) > 0. Thus, (q1z −ez)(q2z −ez) < 0,
and there are two cases satisfying it: q2z < ez < q1z or q1z < ez < q2z. Without
the loss of generality, we can choose the case of q2z < ez < q1z (see Fig. 9(b)).
The modified form of the given equality can be written as (q1z −ez)/(q1x−ez) ≈
(ez − q2z)/(q2x − ex), and it means two triangles, (�e∗q∗

1r
∗
1,�e∗q∗

2r
∗
2), must be

have almost foldaway forms. Because the case now treated is one of the possible-
to-solve cases, e can not be positioned on the center plane or ez �= 0. Therefore,
ez → ±∞ or (t∗, s∗) = (∞,∞).
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Fig. 9. Optical center at infinite point
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