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Abstract

Constructing a CAD model from a physical model plays a key role in some rapid product development processes. Presented in the paper is
a method of fitting NURBS surfaces for rotational freeform shapes: (1) cloud-of-points data (COP-data) representing a rotational freeform
shape are transformed into an orthogonal coordinate system, (2) a single-valued B-spline surface is fitted to the transformed data, and (3) the
resulting B-spline surface is converted to a 3D NURBS surface by applying a symbolic product operation with a quadratic NURBS base-
geometry. Compared to the existing ‘direct’ fitting methods, the proposed method has some distinctive advantages: it provides a natural
means to parameterization, enables to recover exact NURBS geometry when the COP-data represent a true surface-of-revolution, and allows
an easy point-membership classification for NURBS-bounded solid objects. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Physical models play a key role in some rapid product
development processes. When designing an aesthetic prod-
uct, physical models (made of clay or chemical wood) are
employed for aesthetic evaluation. Sometimes, designers
start with existing products when designing a new product
shape, which is known as shape reverse engineering [1]. In
‘custom-design’ of sports wear and shoes, which is becom-
ing quite popular, human body serves as a physical model.
In these cases, the physical model is digitized to obtain
cloud-of-points data (COP-data) and then a mathematical
CAD model is constructed from the COP-data.

Presented in the paper is an ‘indirect’ method of fitting
NURBS surface from COP-data representing a rotational
freeform shape that one-to-one maps to a sphere or cylinder.
In order to construct a parametric surface S(u, v) from COP-
data, a pair of parameter values have to be assigned first to
each data point. This parameterization operation is critical
to the quality of the fitted surface [2], but is not a trivial task
for a rotational freeform shape. Another issue in handling a
rotational freeform shape is how to recover exact NURBS
geometry when the COP-data represent a ‘true’ surface-of-
revolution shape (which includes sphere and cylinder) [3,4].
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Various methods have been proposed for fitting sphere/
cylinder [5] and surface-of-revolution shapes [6—8]. These
‘specialized” methods are efficient when we know that the
COP-data on hand represent a sphere, cylinder or surface-of-
revolution shape. Also proposed in the literature are methods
for fitting NURBS surface from general COP-data. Hoschek
[9] employed a circular spline and Laurent-Gengoux and
Mekhilef [10] treated NURBS surface fitting as a non-linear
optimization problem. These ‘general’ methods focus on
determining the weights of NURBS control points (so that
the extra degrees-of-freedom provided by the weights are
best utilized), but they are not quite suitable for COP-data
representing rotational freeform shapes.

In this paper, we propose a NURBS surface fitting
method for rotational freeform shapes that provides a
natural means to parameterization, enables to recover
exact NURBS geometry for a true surface-of-revolution,
and allows an easy point-membership classification for
NURBS-bounded solid objects. The proposed method
consists of three phases: (1) COP-data representing a rota-
tional freeform shape are transformed into an orthogonal
(spherical or cylindrical) coordinate system, (2) a single-
valued B-spline function of degree (p,q) is fitted to the
transformed data, and (3) the single-valued B-spline surface
is converted to a parametric NURBS surface by applying
a symbolic product operation [11] with a NURBS base-
geometry.
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Fig. 1. (a) A single-valued function in polar coordinates, and (b) its corre-
sponding 2D parametric curve in xy-coordinate system.

When the fitted NURBS surface becomes a face of a
NURBS-bounded solid object, the single-valued B-spline
surface may be used as a point-membership classifier.
Namely, a 3D point to be classified is transformed into the
orthogonal coordinate system of the fitted NURBS surface
and its ‘range’ value is compared against the single-valued
B-spline surface. Point-membership classification for a
general NURBS-bounded solid object is not a trivial opera-
tion [12]. Point-membership classification for rotational
freeform shapes has been studied quite extensively by
Sanchez-Reyes [13-16]. The Sanchez-Reyes’ method,
which uses a sinusoidal spline function as the basis function,
is similar to the method proposed in the paper and may be
used as a NURBS surface fitting method for a sphere-like
shape (but not for cylinder-like shape because its single-
valued function is not a tensor product surface).

The organization of the paper is as follows: described in
Section 2 is a NURBS curve fitting method using polar
coordinate transform, which is the core procedure for the
NURBS surface fitting methods to be presented in Section 3.
Also presented in Section 3 are special treatments and a
method for estimating local coordinate systems. Illustrative
examples are given in Section 4, and Section 5 closes the
paper with discussions and conclusions.

2. NURBS curve fitting procedure

The NURBS curve fitting method, which becomes the
core part of the NURBS surface fitting method of Section
3, is based on polar coordinate transformation of 2D points
representing a circle-like curve (i.e. rotational freeform
curve).

Fig. 2. Base circle construction for cross-sectional data points.

2.1. Basic idea

Let B(6) = (cos 6, sin 6) denote a unit circle centered at
the origin of a xy-coordinate system, then a rotational free-
form curve C(0) on the xy-plane may be expressed as a
product of B(6) and a single-valued function F(6) as
follows:

C(0) = (x(6),y(0)) = F()B(8) = (F(6)cos 6, F(6)sin 6)
ey

where the unit circle B(6) is called a (trigonometric) base
circle. A construction for the above relationship is shown in
Fig. 1.

A sequence of 2D points {(x,y;)} representing a rota-
tional freeform curve may be fitted to the curve C(0) in Eq.
(1) as follows:

1. {(x,yr)} is converted into a polar-coordinate point-
sequence {(ry, 6;)}.

2. {(ry, 6y} is fitted to a single-valued B-spline function
r= F(6).

3. F(6) is converted to a 2D curve C(0) using Eq. (1).

By replacing the trigonometric base-circle B(6) in Eq. (1)
with a NURBS base-circle B(u) we can obtain a NURBS
curve C(u). However, for this replacement to work properly,
we need a parameter-synchronization between 6 and u. The
NURBS base-circle B(z) may consist of four rational quad-
ratic Bezier curves (RQB-curves) [3] and it does not have a
uniform flow rate [17]. Now we present our NURBS curve
fitting procedure.

2.2. NURBS curve fitting procedure

The overall procedure for fitting a 2D NURBS curve from
a sequence of 2D points {(x, y;)} consists of five steps: (1)
polar coordinate transform, (2) base circle construction, (3)
parameter synchronization, (4) single-valued B-spline curve
fitting, and (5) NURBS curve construction.

Step 1: Polar coordinate transform

A sequence of points {(x,y;)} in 2D Cartesian coordin-
ates are converted into a polar-coordinate point-sequence
{(r, 6r)} as follows:

ry = w/X/% + y%,

tan ! (yk/xk)

Gk =3 @+ tan_l(yk/xk)

if x;, >0andy, =0 )
ika <0

27+ tan ' (y/xy) ifx; >O0andy, <0

Step 2: Base circle construction

A base circle B(u) having an arc angle of 6, — 0; is easily
obtained by using the square-based method [18,19], where a
full circle is defined by four RQB-curves. Shown in Fig. 2 is
a sequence of polar coordinate points {(ry, 6;)} inside an
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Fig. 3. Geometric construction for parameter synchronization (i.e. finding
M-

angle range of [6,, 0,], where the base circle B(u) consists of
three RQB-curves since the arc angle is less than 37/2 (but
larger than 7). Observe that the control polygon of the base
circle B(u) is also shown in the figure.

Step 3: Curve parameter synchronization

The synchronized parameter value u; of the base
circle B(u) for a polar-coordinate point (ry, 6;) corresponds
to the intersection point between B(u) and the line joining the
origin and the 2D-Cartesian point W (x;,y;). To find u; at
the intersection-point, B(u) is first decomposed into indivi-
dual RQB-curves {B/(n)} for u € [ul,u’]. Now, a local
parameter for each RQB-curve is defined as

= (o).

Then, the local parameter value m; for a polar-coordinate
point (ry, 6;) within the angle range [ 67, 6] may be obtained
from the following relation:

u e [u’s,uje] 3)

(cos 6, sin 6;,) = B/(n) 4
A solution to Eq. (4) is given by [20]

tan % )
Mk E=60—0, (5

VIi—wr+ (1 - w)tan%

where w is the weight of the middle control point of the RQB-
curve B/(7). Finally, the synchronized parameter value for
(ry, 0;) belonging to B/ (m) is obtained from the following
equation:

= (uh = ul)my + u] (©)

F(u)

In practice, an RQB-curve is defined over a unit interval so
thatu’, = j,ul = j — 1, in which case Eq. (6) reduces tou;, =
m+G—D.

Shown in Fig. 3(a) is a construction for finding the inter-
section parameter 7, between B'(7) and the line joining the
coordinate origin and W (x;,y;). The relation between 7,
and §; is depicted in Fig. 3(b).

Step 4: Single-valued B-spline curve fitting

A single-valued B-spline curve F(u) of degree p (usually
p=3) is fitted to the parameter-synchronized points
{(r,u;)} by using standard fitting methods [19,21-24].

Fo = 3 N,
i=0 (7)

Ur ={ug,...,ug s Up 1 ens Upps Uy ovvy Ue }
N — N —

p+1 p+1

Step 5: NURBS curve construction

At the final step, a parametric NURBS curve is constructed
from the single-valued B-spline curve F(u) by applying a
symbolic product operation [11] with the NURBS base circle
B(u). Namely, from C(u) = F(u)B(1) we have

Z Nip+2(Ww;P;
Cw = S——;
D Nipralww; (8)
i=0

UC = {MS""’
N, i’

Ug 7up+2+19~--7uncvue7-~-9ue }

pt2+1 pt2+1

where N, , ; »(u) is a B-spline basis function of degree p + 2, w;
is a weight, and P; is a control point of the NURBS curve C(u).
The above NURBS curve construction concept is illustrated in
Fig. 4, where the degree of F(u) is 3 and that of the resulting
NURBS curve is 5.

If the 2D point sequence {(x;, y;)} represents a true circle
of radius R, the single-valued B-spline curve will become a
constant line, namely, F(x) = R. In this case, the degree of
F(u) is zero (p = 0) so that the degree of the resulting
NURBS curve becomes 2. That is, C(u) = RB(u) becomes
a true circle of radius R.

C(u) = F(u)B(u)

=B

Fig. 4. NURBS curve construction via symbolic product operation.
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Fig. 5. Geometric construction for parameter synchronization for spherical
NURBS surface fitting (i.e. finding v; and u;).

3. NURBS surface fitting procedure

The procedure for fitting a NURBS surface from COP-
data is similar to the curve fitting procedure given in Section
2.2, and consists of five steps: (1) orthogonal coordinate
transform, (2) base geometry construction, (3) parameter
synchronization, (4) single-valued B-spline surface fitting,
and (5) NURBS surface construction. A rotational freeform
shape may be one-to-one mapped to a sphere or a cylinder:
when the shape is more naturally mapped to a sphere, a
spherical NURBS surface is fitted from the COP-data.

3.1. Spherical NURBS surface fitting

Step 1: Spherical coordinate transform
The COP-data {(x;,y,z;)} representing a sphere-like
shape are converted into spherical coordinate points

{(or> Pr» O)} as follows:
P = \/m i = cos ™! (Zk/\/m>,
ifx; >0andy, =0

tan~ ! (y/x;)
6 =17 +tan '(y/xy)  ifx, <O )

27+ tan ' (y/xy) ifx, >0andy, <0

Fig. 6. NURBS surface obtained by spherical NURBS surface fitting.

And, the angle ranges are computed as

¢g =min{¢y},  ¢pe = max{¢y},

6, = min{ 6},
0., = max{0,}.

Step 2: Base sphere construction

A unit sphere defined over the angle ranges [¢s, ¢.] and
[0, 6.] is chosen as the base sphere B(u,v), which is a
NURBS surface consisting of up to (2 X4) RQB patches
depending on arc angles ¢, — ¢, and 6, — 6, [3].

Step 3: Parameter synchronization

Similar to the curve fitting case, finding the synchronized
parameter values of the base surface B(u, v) for a spherical
coordinate point (py, ¢, ;) is equivalent to finding an inter-
section point between B(u, v) and the line joining the origin
and the 3D-Cartesian point W (x;, yi, ;). Since the base
sphere B(u,v) is constructed by a surface-of-revolution
method [3], synchronized parameter values u; and v; can be
calculated separately by using the curve parameter synchroni-
zation method (Step 3) described in Section 2.2. As depicted in
Fig. 5(a), v is obtained from C(v) and W} (x;, y;, 0), where
W/ (x4, Yk 0) is the projection point of W (x, Y, zx) on the xy-
plane and C(v) is a NURBS base circle on the xy-plane with an
arc angle 6, — 6,. Once vy is determined, another base circle
D(u) = B(u, v;) is defined as depicted in Fig. 5(b), and then, 1
is calculated from D(«) and W . (x, vk, 2x)-

Step 4: Single-valued B-spline surface fitting

A single-valued B-spline surface F(u,v) of degree (p, q)
is now fitted to the parameter-synchronized points
{(pr, ug, vi)} by using standard fitting methods [19,21-24].

ng mrp

Fu,v) = > NN, ,0f: j:
i=0 j=0

Up = {Ugs s tly s Upiyseens Uy Uy ovns Ue (10)
p+1l p+1

Vi = {Vsseiis Vg 5 Vgttsees Vinps Voo vevs Ve )
N e N, s

g+1 g+1

Step 5: NURBS surface construction

Finally, a parametric NURBS surface S(u,v) is con-
structed from the single-valued B-spline surface F(u,v) by
applying a symbolic product operation with the NURBS
base sphere B(u,v). That is, S(u, v) = F(u,v)B(u, v) having
a tensor product form of the NURBS curve in Eq. (8), where
the degrees of the resulting NURBS surface are (p + 2,9 +
2). Shown in Fig. 6(a) is a bi-cubic B-spline function (i.e.
p = q = 3) for the parameter-synchronized points and the
resulting NURBS surface of degree (5,5) obtained from
NURBS surface conversion is shown in Fig. 6(b).

3.2. Cylindrical NURBS surface fitting

When the rotational freeform shape is more naturally
mapped to a cylinder, a cylindrical NURBS surface is fitted
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Fig. 7. NURBS surface obtained by cylindrical NURBS surface fitting.

from the COP-data. The procedure is basically the same as
that of the spherical case described in Section 3.1.

First, 3D points {(xy, vy, z;)} are transformed into cylind-
rical coordinate points {(ry, 0, z;)} and a cylinder with unit
radius is used as a base cylinder B(u,v) which is a NURBS
surface of degree (1,2). Parameter-synchronization is carried
out as follows: as with the spherical case, v, is obtained by
using the curve parameter synchronization method of Section
2.2 as depicted in Fig. 7(a), and u;, is given by u, = (g —
z)/(ze — z5). And then, a single-valued bi-cubic B-spline
surface F(u,v) is fitted as with the spherical case. Finally, a
3D NURBS surface S(u, v) is given by:

s Mg

Z Z N i,3(M)Nj,5 (V)Wi, jPi, j
i=0 j=0
S(u,v) = —— ;
Z ZNLS(”)]V],S(V)WL j

i=0 j=0

D

Usg={ug,...ug SUZ L1y eens Upgs Uy nvy Ue I
N e’ N —
341 341

Vo= {Veseeur Vs s V515 eees Vings Voo oovs Ve |
— — N —

5+1 5+1

Shown in Fig. 7(b) is the resulting NURBS surface of degree
(3,5) for the COP-data of Fig. 7(a).

@

When the degrees of F(u,v) are (p,q), it can be shown
that the degrees of the resulting NURBS surface S(u, v) are
(max{p,1},qg +2). For COP-data representing a true
surface-of-revolution, the degrees of F(u,v) would be
(3,0). Thus, the degrees of S(u,v) are (3,2). For a true
cylindrical shape, the degrees of S(u, v) become (1,2).

3.3. Special treatments

When a ‘closed’ surface is to be constructed, periodic
B-spline basis functions [25] have to be employed in the
v-direction (corresponding to 6) of F(u,v) during the
single-valued B-spline surface fitting stage.

A special treatment is also required to solve the ‘degen-
eracy problem’ when fitting a spherical NURBS surface. In
order to smoothly fill the ‘hole’ near the pole of the base
sphere (see Fig. 8(a)), the following continuity conditions
must be imposed on the control points of the B-spline
function

fO,jsz,O; ]= 1,...,mF (12)

fl,j:fo,j; J=0,...,mp (13)

Shown in Fig. 8(b) is the resulting NURBS surface satisfy-
ing G' continuity condition.

3.4. Local coordinate system estimation

The proposed NURBS surface fitting method requires
that the COP-data in a global Cartesian coordinate system
be transformed to a local Cartesian coordinate system
where the orthogonal coordinates are defined. This in turn
requires a robust estimation of local coordinate system from
the original COP-data. For the purpose, principal com-
ponent analysis (PCA) [26,27], which is also known as
Karhunen—Loeve transform, is widely used in the field of
image processing and computer vision. PCA works well for
COP-data of the whole of a rotational freeform shape, but
not for those of a part because it finds the local coordinate
system defining the oriented bounding box of the COP-data.
Presented in this sub-section is a local coordinate system

(®

Fig. 8. Cloud-of-points data of sphere-like part with degeneracy problem and resulting NURBS surface with G' continuity at degenerate point.
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Fig. 9. Empirical results of local coordinate system estimation.

estimation method based on the least squares approxima-
tion method proposed by Faugeras and Hebert [28].

A general quadric surface is a second-degree algebraic
surface having the following matrix form:

X
q(x)szqu+vTx+d=0; x=|y|,
Z
g1 qal2 qel2 q7
Q. =492 q gs2|, vV=14s | d = qo
qel2 qs5/2 g3 99
(14

Quadric surface may be classified into different types based
on its coefficients [29,30] and the following six types are
relevant to local coordinate system estimation: real ellip-
soid, hyperboloid of one sheet, hyperboloid of two sheets,
real quadric cone, elliptic paraboloid, real elliptic cylinder.
Namely, when COP-data are fitted to one of the six quadric
surface types, its coordinate frame (i.e. z-axis vector k and

origin 0) can be uniquely determined from the subdis-
criminant matrix Q,. The z-axis vector K is set to the eigen-
vector having the smallest eigenvalue [31]. Thus, the
rotational axis of a surface-of-revolution shape becomes
the eigenvector with the smallest eigenvalue.

And, the origin o of the local coordinate system is deter-
mined from the following relation:

20x+v=0 (15)

In the case of rank Q, = 3 (real ellipsoid, hyperboloid of
one sheet, hyperboloid of two sheets, and real quadric cone),
the origin o is given by [28,32]

0= 30"y (16)

Forrank Q, = 2 (elliptic paraboloid and real elliptic cylinder),
the origin of the local coordinate is given by (see Appendix
A):

o=p+1nq (17)

The local coordinate estimation method was applied to a set
of COP-data obtained by ‘virtually digitizing’ spheres and
cylinders with different values of radius R (cylinders’ length
is set to 2R). Random noises sampled from normal distribu-
tion N(O, 0'2) were added to the x-, y-, z-components of the
COP-data points. Shown in Fig. 9(a) are relative origin
estimation errors (in %) plotted against the normalized
maximum noise Ny/R (for the sphere COP-data), where
Ny = 30. The z-axis estimation errors (in degrees) plotted
against Ny;/R are shown in Fig. 9(b) (for the cylinder COP-
data).

4. Illustrative examples

The proposed NURBS surface fitting methods were
applied to different types of COP-data. Shown in Fig.
10(a) are COP-data for a traditional Korean ceramic. Also
shown are the approximated quadric surface (real ellipse)
and the estimated local coordinate system (x-, y-axis are
arbitrarily chosen). The fitted NURBS surface together
with its control points for the COP-data of Fig. 10(a) is
shown in Fig. 10(c). Observe from the control points that
the degrees of the resulting NURBS surface are (3,2). This is
expected since the ceramic is a ‘true’ surface-of-revolution
shape. Now, the COP-data of Fig. 10(a) are scaled down
(0.75) along the y-direction to obtain a rotational freeform
shape as shown in Fig. 10(b). Also shown in Fig. 10(b) are
the approximated quadric surface and its local coordinate
system. The fitted NURBS surface of degrees (3,5) and its
control points are shown in Fig. 10(d).

Shown in Fig. 11(a) are COP-data for an auto-gearshift
knob obtained from a coordinate measuring machine
(CMM). The initial COP-data were split into two data sets
(defined on the same coordinate system of Fig. 11(a)): upper
(head) data and lower (neck) data. The ‘head’ COP-data
were fitted to spherical NURBS surface and the ‘neck’
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Fig. 10. NURBS surface fitting for traditional Korean ceramic.

COP-data to cylindrical NURBS surface, and then the two
NURBS surfaces are joined together as shown in Fig. 11(b).
In order to achieve G' continuity between the two surfaces,
the control points near the common boundary have to be
‘corrected’ (this is an important issue by itself, but will not
be discussed in this paper). A shaded image and facet model
(for rapid prototyping) of the joined NURBS surface are
shown in Fig. 11(c) and (d), respectively.

5. Discussions and conclusions

The proposed NURBS surface fitting method may be
dubbed as an ‘indirect’ method because it differs from the
existing ‘direct’” methods where a 3D B-spline surface is
constructed ‘directly’ from COP-data. The proposed method
provides a natural means to assign parameter values to
COP-data representing a rotational freeform shape, and
may be embedded in a laser scanner having a spherical or
cylindrical kinematics structure (because the laser scanner
generates range data in its orthogonal coordinate system).
The proposed method enables to recover an exact NURBS
surface for COP-data sampled from a true surface-of-
revolution shape. The proposed method allows the

(d

Fig. 11. Surface modeling for auto-gearshift knob data.

(©

NURBS surface to be stored as a single-valued function,
which requires less memory and, more importantly, it
allows an easier point-membership classification for
NURBS-bounded solid objects.

A major drawback of the proposed method is that the
degrees of the resulting NURBS surface are somewhat
high. For example, if a bi-cubic B-spline function is used
in the single-valued function fitting stage, the degrees of the
spherical NURBS surface are (5, 5).

Acknowledgements

The Ministry of Science and Technology of Korean
government has supported the research.

Appendix A. Origin of local coordinate system when
rank Q, =2

Let A =2Q, and b = —v, then Eq. (15) can be written in
a matrix form as follows:

Ax=Db (AD)
When rank A = 2, a general solution of Eq. (A1) is given by
X=p+1q; tER (A2)
where p is a particular solution of Ax = b, and the unit
vector q is a solution set of Ax = 0. p, q are calculated

using the singular value decomposition method [33]. In
order to obtain the origin o of the local coordinate system
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for the input COP-data {W(x;, v, 2); k= 1,...,N}, t is
determined so that the following objective function is
minimized:

N N
fO = (W =07 =D {¥,—(p+1)’ (A3)
k=1 k=1

Thus, the value of ¢ satisfying df(¢)/dt = O is obtained as
follows:

1 N
fh=-q Y (W —p) (A4)
NS
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