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ABSTRACT 
Previous work has demonstrated the viability of applying 
offline analysis to interpret forearm electromyography 
(EMG) and classify finger gestures on a physical surface. 
We extend those results to bring us closer to using muscle-
computer interfaces for always-available input in real-world 
applications. We leverage existing taxonomies of natural 
human grips to develop a gesture set covering interaction in 
free space even when hands are busy with other objects. We 
present a system that classifies these gestures in real-time 
and we introduce a bi-manual paradigm that enables use in 
interactive systems. We report experimental results demon-
strating four-finger classification accuracies averaging 79% 
for pinching, 85% while holding a travel mug, and 88% 
when carrying a weighted bag. We further show generali-
zability across different arm postures and explore the tra-
deoffs of providing real-time visual feedback.  

ACM Classification: H.1.2 [User/Machine Systems]; H.5.2 
[User Interfaces]: Input devices and strategies; B.4.2 [In-
put/Output Devices]: Channels and controllers 

General terms: Design, Human Factors 

Keywords: Electromyography (EMG), Muscle-Computer 
Interface, input, interaction. 

INTRODUCTION 
Our hands and our ability to control them have evolved 
over thousands of years, yielding an amazing ability to pre-
cisely manipulate tools. As such, we have often crafted our 
environments and technologies to take advantage of this 
ability. For example, many current computer interfaces re-
quire manipulating physical devices such as keyboards, 
mice, and joysticks. Even future looking research systems 
often focus on physical input devices [5]. However, as 
computing environments become more diverse, we often 
find ourselves in scenarios where we either cannot, or pre-
fer not to, explicitly interact with a physical device in hand.  

Previous work has explored hands-free and implement-free 
input techniques based on a variety of sensing modalities. 
For example, computer vision enables machines to recog-
nize faces, track movement and gestures, and reconstruct 
3D scenes [24]. Similarly, speech recognition allows for 
hands-free interaction, enabling a variety of speech-based 
desktop and mobile applications [8, 11]. However, these 
technologies have several inherent limitations. First, they 
require observable interactions that can be inconvenient or 
socially awkward. Second, they are relatively sensitive to 
environmental factors such as light and noise. Third, in the 
case of computer vision, sensors that visually sense the en-
vironment are often susceptible to occlusion.  

We assert that computer input systems can leverage the full 
bandwidth of finger and hand gestures without requiring the 
user to manipulate a physical transducer. In this paper, we 
show how forearm electromyography (EMG) can be used to 
detect and decode human muscular movement in real time, 
thus enabling interactive finger gesture interaction. We en-
vision that such sensing can eventually be achieved with an 
unobtrusive wireless forearm EMG band (see Figure 1). 

Previous work exploring muscle-sensing for input has pri-
marily focused either on using a single large muscle (rather 
than the fingers) [2, 3, 4, 22, 25], which does not provide 
the breadth of input signals required for computer input, 
and/or on situations where the hand and arm are constrained 
to a surface [3, 4, 15, 21, 23, 25], which is not a realistic 
usage scenario for always-available input devices. Saponas 
et al. [18] demonstrated the feasibility of using offline ma-
chine learning techniques to interpret forearm muscle-
sensing and classify finger gestures on a surface. We extend 
their offline classification results to achieve online classifi-
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Figure 1. Artist rendering of a forearm muscle-sensing band.
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cation that enables using muscle-sensing for always-
available input in real-world applications that are not con-
strained to a surface. Note that our contribution is not in the 
realm of trying to better understand or measure the physiol-
ogy of human musculature, but rather in simply sensing 
muscle activity to enable interaction. Specifically: 

1. We leverage existing taxonomies of natural human 
grips to develop a gesture set covering interaction in 
free space, including when the hands are busy with ob-
jects, and even when hands and muscles are under load. 
 

2. We develop a procedure for rapidly and robustly cali-
brating an activation signal, present a system that clas-
sifies our gestures in real-time, and introduce a bi-
manual “select and activate” paradigm that enables use 
in interactive systems. 
 

3. We demonstrate the feasibility of our approach through 
a laboratory experiment. Results show average classifi-
cation accuracies of 79% for pinching, 85% while 
holding a travel mug, and 88% when carrying a 
weighted bag, all for four-finger gesture sets. Results 
further suggest generalizability across different arm 
postures. Furthermore, we show preliminary evidence 
of use within a more ecologically valid example appli-
cation: controlling a simulated portable music player. 
 

We conclude the paper with discussion of our results, the 
limitations of our techniques, implications for design, and 
proposals for future work. 

BACKGROUND AND RELATED WORK 

Sensing Muscles with EMG 
Humans employ a complex set of skeletal muscles and ad-
joining tendons and bones to create body movement. The 
brain initiates movement process by transmitting an elec-
trical signal through the nervous system. This signal stimu-
lates the fibers that make up our muscles, which contract in 
response to create forces or body movement.  

EMG senses this muscular activity by measuring the elec-
trical potential between pairs of electrodes. This can either 
be done invasively (with needles in the muscle) or from the 
surface of the skin. While invasive EMG can be very accu-
rate, our work focuses on surface EMG because it is more 
practical for HCI applications. For more detailed informa-
tion on electromyography, see Merletti et al. [13].  

For either modality (surface or invasive), the EMG signal is 
an oscillating electrical wave. When a muscle is contracted, 
the amplitude of this wave increases, with most of the pow-
er in the frequency range of 5 to 250 Hz [13]. 

Applications of EMG Sensing 
EMG is frequently used in clinical settings for muscle func-
tion assessment during rehabilitation and for measuring 
muscle activation to assess gait [9]. In clinical applications, 
a typical statistic computed over the EMG signal is the root 
mean squared (RMS) amplitude of the measured potential. 
This provides a rough metric for how active a muscle is at a 

given point in time. For a review of processing techniques 
used in previous work, see [14]. 

EMG is also used in both research and clinical settings for 
controlling prosthetics. This typically involves sensing the 
activity in large individual muscles and using it as input to 
control the movement of physical devices. For example, the 
shoulder muscle might be used to control one of the degrees 
of freedom in a lower-arm prosthetic. Other work has ex-
plored similar techniques for sensing activity in large mus-
cles such as the biceps or pectoralis for computer input by 
healthy individuals (e.g. [2]). However, learning to perform 
fine tasks with muscles that are not normally used for dex-
terous manipulation can be difficult. 

Recent work has used surface EMG to sense and decipher 
muscle activity that drives fine motor function in our fin-
gers, wrists, and hands. Wheeler et al. [23] explore EMG-
based input systems, but assume that the hands are in a con-
strained, static posture, and do not address calibration issues 
associated with real-world use. Ju et al. [6] explored several 
machine learning approaches to classifying a finger-pinch 
gesture using electrodes placed near participants’ wrists, 
and achieved classification accuracies as high as 78% when 
differentiating among four gestures. Their work, however, 
was focused on machine learning techniques, and does not 
address the human-computer interaction issues that impact 
the feasibility of real-world EMG applications. In particu-
lar, their work does not address posture-independence (e.g., 
arm rotation), hands-busy scenarios, scenarios in which 
hands are not constrained to a surface, the “Midas Touch” 
problem (differentiating intended gestures from rest), or 
real-time classification. Our work builds on the work of Ju 
et al. by addressing each of these issues. 

Saponas et al. [18] used 10 EMG sensors worn in a narrow 
band around the upper forearm to differentiate position, 
pressure, tapping, and lifting gestures across five fingers 
placed on a surface. They showed the effectiveness of using 
not only RMS amplitude but also frequency energy and 
phase coherence features in a linear classifier to attain com-
pelling proof-of-concept results. However, their work was 
limited in that participants were constrained to fixed arm 
postures while sitting in a chair and working on a physical 
surface. Furthermore their data was processed using offline 
analysis, which did not allow exploration of real-time inte-
ractions or the potential effects of feedback to the user.  

We seek to extend previous muscle-sensing work to explore 
real-time classification of finger-level movement for more 
naturalistic settings including when people are holding ob-
jects. We also investigate practical concerns including arm 
posture independence, “Midas touch,” and visual feedback. 

Natural Human Grips 
Most of the input devices we use for computing today take 
advantage of our ability to precisely operate physical trans-
ducers like buttons, knobs, and sliders. While this is an ex-
cellent approach when a computing device is one’s primary 
focus, as in desktop computing, physical devices can be 
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difficult or impossible to use when a user’s hands or body 
are devoted to another activity. For example, a jogger may 
strap a music player to her arm or waist. However, even 
simple tasks such as changing songs, channels, or volume 
can be a struggle, requiring a user to reach across her body, 
possibly stop running, find the right button, and manipulate 
it. In circumstances such as these, where a user prefers to 
keep their hands free or is already holding something other 
than an input device, we propose that muscle-sensing offers 
an opportunity to take advantage of our manual dexterity 
without requiring physical actuation of a device. 

To guide the design of muscle-sensing-based interaction 
techniques, it is important to consider the space of natural 
human grips and hand postures that we might leverage for 
gesture design. Over the last century, many grip posture 
classifications have been developed for biomechanical 
modeling, robotics, and therapy [12]. Schlesinger [20] put 
forth most well-known of these taxonomies (see Figure 2), 
characterizing six different manual grasps: 

• Spherical: for holding spherical tools such as balls 
• Cylindrical: for holding cylindrical tools such as cups  
• Palmar: for grasping with palm facing the object 
• Tip: for holding small tools like a pen 
• Lateral: for holding thin, flat objects like paper 
• Hook: for supporting a heavy load such as a bag 

We explore techniques that will enable people to interact 
with computers when their hands are already being used in 
one of these grips, or when their hands are unencumbered 
but a handheld device is impractical. We divide these grips 
into three classes: small or no object in hand (tip and later-
al), tool in hand (cylindrical, spherical, and palmar), and 
heavy load in hand (hook). Based on these three classes we 
suggest finger gestures, detect and classify these gestures in 
real-time using forearm muscle sensing, develop a two-
handed interaction technique that allows for these gestures 
to control applications, and experimentally demonstrate the 
efficacy of these gestures. 

EXPERIMENT 
We conducted a laboratory experiment to investigate using 
forearm EMG to distinguish finger gestures within the three 
classes of grips: (1) small or no object in hand, (2) tool in 
hand, and (3) heavy load in hand. 

Participants 
Twelve individuals (5 female) volunteered to participate in 
the experiment. Participants ranged from 18 to 55 years of 
age with an average age of 36. All were daily computer 
users, and came from a variety of occupations. None re-
ported existing muscular conditions or skin allergies, and 
all were right-handed. None were colorblind and all had 
20/20 or corrected-to-20/20 vision. The experiment took 1.5 
hours and participants were given a small gratuity. 

Equipment and Setup 
We used a BioSemi Active Two system as our forearm EMG 
sensing device (www.biosemi.com). This system samples 
eight sensor channels at 2048 Hz. We first had participants 
clean their forearms with a soft scrub solution while we 
prepared the BioSemi sensors with conductive gel and ad-
hesive. The preparation, gel and adhesive are artifacts of 
our EMG setup and could be eliminated if dry electrodes 
such as the Dri-Stik (NeuroDyne Medical, Corp.) are used. 
This would clearly be more appropriate for real-world use. 

To get the best possible signal, EMG sensing is traditionally 
conducted with two sensors spread an inch apart on a mus-
cle belly. However, Saponas et al. [18] showed that they 
were able to obtain reasonable results even when not pre-
cisely placing sensors. As such, we chose to place six sen-
sors and two ground electrodes in a roughly uniform ring 
around each participant’s upper right forearm for sensing 
finger gestures. We also placed two sensors on the upper 
left forearm for recognizing left-hand squeezes, or activa-
tion intent. This configuration mimics potential use with an 
approximately-placed armband EMG device, as illustrated 
in Figure 1. Setup took about 15 minutes. 

Design and Procedure 
We divided the experiment into three parts. Part A ex-
amined gestures when the participant’s hand was free of 
objects and explored the sensitivity of our techniques to 
arm posture. Part B examined gestures while the hands 
were busy holding objects, a travel mug and a weighted bag 
that created constant muscular load. In Part C, participants 
used the muscle-computer interface (while holding an ob-
ject) to control a simulated portable music player.  

Before beginning any of the tasks in each session, we per-
formed a short calibration step. Participants squeezed a ball 
for four seconds and then relaxed for another four. This 
calibration provided us with approximate maximum and 
minimum values across each channel and feature, which we 
used for normalizing the signal from each channel. Our 
normalization process was to scale the signal from zero to 
one based on the observed maximum and minimum value. 

Parts A and B of the experiment each contained a training 
phase, in which the system prompted the participant to per-

Figure 2. Schlesinger’s natural grip taxonomies [20] as de-
picted in MacKenzie and Iberall [12]. Groupings indicate the 

three similarity classes that guide our gesture set. 
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form finger gestures while it collected training data. This 
data was immediately used to train our gesture recognizer 
and build a predictive model. The training phase was fol-
lowed by a testing phase in which the system attempted to 
classify the participant’s gestures in real-time. Part C used 
the training data collected in Part B for real-time control. 

In a real-world interactive system, determining when a user 
is performing a gesture and when he is not is crucial for 
preventing spurious detection of gestures and precisely 
labeling gesture onset or offset. This is particularly true if 
there is a strong timing component to the application, such 
as in games. Even in applications that do not have an intrin-
sic timing component, such as text entry, ambiguities in 
timing can yield incorrect results. For example, when 
switching from pinching with the index finger to the ring 
finger, a user passes through intermediate states, which may 
cause spurious or incorrect classifications of user intention. 

Our approach to differentiating gesture from rest, and to 
simultaneously increasing the precision of gesture timing, is 
to introduce an explicit activation gesture. To do this, we 
use a second muscle-interface source, making a fist and 
squeezing the contra-lateral hand, in this case the non-
dominant hand. Squeezing is a large multi-muscle action 
that can be robustly detected with consistent timing, but in 
itself is not sufficiently complex for most applications. By 
combining rich gestures performed with one hand and ro-
bust but simple gestures performed with the other hand, we 
allow reliable and precise muscle-based interactions.  

In addition to making the timing of input more predictable, 
using the non-dominant hand for gesture activation also 
allows the user to rapidly re-execute a single gesture many 
times in a row. For example, when scrolling through a list, 
the “down” gesture can be held for a second while the non-
dominant hand makes several quick squeezes. This bima-
nual “select and activate” paradigm is the one we used in 
the testing phase of our experiment. 

Part A: Hands-Free Finger Gestures 
The first part of our experiment explored performing finger 
gestures when the hands were not holding anything. Each 
participant performed pinch gestures with the thumb and 
one of the other fingers of their dominant hand. The gestur-
ing arm was held in a comfortable position with a bent el-
bow and the empty hand held at about shoulder height (see 
Figure 1 and Figure 3a). 

Without the constraint of a surface to rest on, people natu-
rally move and rotate their arms and wrists between ges-
tures. Doing so moves muscles under the skin and relative 
to the attached sensors, creating changes to the observed 
EMG signals and potentially impacting classification. Most 
previous work has carefully constrained arm posture to 
avoid this scenario (for example, securing people’s arm to a 
surface). However, this is an unreasonable constraint if 
muscle-computer interfaces are to be used for real-world 
interaction. Hence, we set out to examine whether or not 
our decoding techniques generalize to variable postures, 
and more importantly, how we can improve our techniques 
to better support posture variability.  

We chose three different postures to explore: the two ex-
tremes of comfortable rotation of the forearm toward and 
away from their shoulder (pronation and supination) as well 
as a “natural” midpoint position (see Figure 3a). 

Hands-Free Training Phase 
Participants sat in a chair facing a desktop display. The sys-
tem prompted participants to pinch each of their fingers to 
their thumb by highlighting the appropriate finger on an 
outline of a hand (see Figure 4a). We asked participants to 
press “a comfortable amount”. If they asked for clarifica-
tion, we told them to “press hard enough to dent a tomato, 
but not hard enough to rupture the skin.” They were told to 
relax their fingers when nothing was highlighted. Fingers 
were highlighted for a second, with a break of three-
quarters of a second in between each stimulus. 

We employed a block design, with each block comprising 
one trial each of an index, middle, ring, and pinky finger 
gesture, presented in random order. We gathered 25 blocks 
of training data for each of the three arm postures, the order 
of which was counterbalanced across participants. 

Hands-Free Testing Phase 
In the testing phase, participants performed 25 blocks of 
gestures in each of the three arm postures. As in the training 

 
Figure 4. (a) A red highlight indicates that a gesture should be 
performed with the given finger; (b) a blue highlight indicates 
the currently recognized gesture; (c) a purple highlight indi-

cates that the correct gesture is being performed. 

 
Figure 3. Our finger gesture sets. a) pinch gestures performed 
in three different arm postures b) fingers squeezing a travel 
mug c) fingers pulling up against the handle of a carried bag 
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phase, participants received their cues via a highlighted 
finger on the display. However, rather than timing their 
responses to the timing of the stimuli, participants were 
asked to perform the gesture with their right hand and “lock 
it in” by clenching their left fist. To aid participants in this, 
we provided a small ball that they could squeeze with their 
left hand. The gesture could have just as easily been per-
formed without the prop, as we demonstrate in Part B of the 
experiment. When the system recognized a squeezing 
movement with the left hand, it classified the gesture being 
performed with the right hand using the muscle-sensing 
data immediately preceding the squeeze.  

Locking in a gesture by squeezing made the finger hig-
hlighting disappear for half a second, after which the sys-
tem advanced to the next gesture. Since detecting the acti-
vation gesture is quicker and more robust than that of indi-
vidual finger gestures, the bimanual paradigm allows for 
rapid selection of the same gesture multiple times in a row, 
as well as a robust way to avoid false positives.  

Part B: Hands-Busy Finger Gestures 
The second part of our experiment explored performing 
finger gestures when the hands are already busy holding an 
object. We looked at two different classes of objects. First, 
we used a travel mug to represent small tool-sized objects 
held in the hand. For this task, participants sat in a chair and 
held the mug in the air as one might naturally hold a beve-
rage (see Figure 3b). Second, we tested larger and heavier 
objects being carried. Participants stood in front of the desk 
and carried a laptop bag in each hand (see Figure 3c). Each 
bag held a book weighing approximately one kilogram. 

As in Part A, for both object types, we conducted a training 
phase and a testing phase. These were done one object type 
at a time and the order of the two object types was counter-
balanced across users. 

Hands-Busy Training Phase 
As before, participants performed 25 blocks of finger ges-
tures in response to stimuli. The same stimuli highlighting 
fingers in the outline of a hand were used. Participants were 
asked to exert a little more pressure with the highlighted 
finger than with the other fingers. With the mug, this meant 
pressing on it a little more firmly with the highlighted fin-
ger than with the other fingers. With the bag, this meant 
pulling on the handle a little harder with the highlighted 
finger than with the other fingers. At the conclusion of the 
training phase for each object, the collected data was used 
to train the gesture recognition system for use in the subse-
quent phases. Once training data is collected, training the 
system requires only a few seconds of computation. 

Hands-Busy Testing Phase 
In the testing phase of this part of the experiment, partici-
pants used the two-handed technique to perform gestures as 
they did in Part A. However, unlike in Part A, participants 
completed the stimulus-response task twice: once with vis-
ual feedback about the real-time classification, and once 

without visual feedback. The order was counterbalanced 
across participants and objects to avoid an ordering effect. 

The “no visual feedback” condition was in the same style as 
Part A’s testing phase; a finger was highlighted and a par-
ticipant would perform that gesture then squeeze with their 
left hand. When holding the travel mug, participants 
squeezed an empty left hand with their fingers against the 
lower pad of their thumb to “lock in” the current right-hand 
gesture. When holding a bag in each hand, participants 
squeezed the handle of the left-hand bag to “lock in” the 
current right-hand gesture. 

The “with visual feedback” condition added a second com-
ponent to the display of the hand. In addition to the red hig-
hlighting of the finger that should be used in the gesture, the 
system also continuously highlighted its current gesture 
recognition result in a semi-transparent blue (see Figure 4b-
c). We explained to participants that this was the system’s 
best guess at their current gesture. Users were asked to per-
form the red gesture and activate their response only when 
they were confident it was correctly detected. As a side 
effect, visual feedback also allowed participants to under-
stand the system’s recognition behavior and to tailor their 
gestures accordingly. The goal of this manipulation was to 
explore the importance and tradeoffs of having visual feed-
back while using a muscle-computer interface. 

Participants completed 25 blocks of gestures for each object 
both with and without visual feedback. The order of the 
feedback manipulation was balanced across the order of 
participants and objects. 

Part C: Controlling a Portable Music Player Application 
In addition to testing the accuracy with which our system 
was able classify gestures performed by participants, we 
also applied these gestures to use in a more ecologically 
valid application, a portable music player interface. 

Our simulated portable music player (see Figure 5) is con-
trolled through a hierarchical menu interface similar to 
those found in many mobile computing devices. Our player 
contained eight songs and only the songs menu was popu-
lated. The menu system can be navigated using four direc-
tional arrows where the “up” and “down” arrows move a 
selection cursor up and down in the current menu, while the 
“left” and “right” arrows navigate backward or forward in 
the menu structure. Forward navigation is also used to indi-
cate a final selection at the end of a series of navigations. In 
music players, this corresponds to selecting a song.  

We asked participants to control the portable music player 
menu interface and complete a series of tasks using our 
real-time muscle-computer interface. The training data from 
Part B was used, since the hands were similarly loaded with 
either the mug or the heavy bag. The user’s inputs were 
mapped to the directional controller of the portable music 
player by assigning the index finger of the right hand to left, 
the pinky finger to right, the middle finger to up, and the 
ring finger to down. As in the other experiments, the left-
hand grasping gesture was used to activate the gesture be-
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ing performed by the right hand. The system continuously 
highlighted in red the directional arrow corresponding to 
the system’s current finger gesture recognition result. This 
visual feedback told a participant what action the system 
would take if he squeezed their left hand at that moment.  

Participants completed three different tasks with the porta-
ble music player. They (a) navigated from the top of the 
menu structure to the list of songs and selected a specified 
song, (b) navigated from a random starting point in the 
songs list to a particular song, and (c) advanced to the next 
song, starting at a random song in the song list. Above the 
music player participants were given task instructions such 
as “Select Even Flow.” They would then do a series of di-
rection gestures to navigate the menu and select the song. 
Participants completed five blocks of these three tasks for 
each object (mug and heavy bag), for 30 tasks in total. 

Data Processing Technique 
To classify gestures from an EMG signal, we used a similar 
approach to Saponas et al. [18], performing basic signal 
processing, computing a set of features, using those features 
to train a support vector machine (SVM) [1], and then using 
that SVM to classify finger gestures. While Saponas, et al. 
did not test this, we show here that this can be used in a 
real-time system. We outline the procedure here, but more 
details on the approach can be found in their paper [18]. 

Basic Signal Processing 
Our first step is to convert the raw EMG data into a form 
suitable for our machine learning algorithm. We divide the 
signal into 32 segments per second (about 31ms per seg-
ment). By dividing the data into segments, we transform it 
into a time independent dataset. We can then treat each of 
these segments as a single sample of data. 

Feature Generation 
For each 31ms sample, we generated three classes of fea-
tures, which we use for training and testing the classifier.  

The first set of features is the Root Mean Square (RMS) 
amplitude in each channel, which correlates with magnitude 
of muscle activity. From the six base RMS features gener-
ated by sensors on the right arm, we create another fifteen 
features by taking the ratio of the base RMS values between 
each pair of channels. These ratios make the feature space 
more expressive by representing relationships between 
channels, rather than treating each as being independent.  

The second set of features is Frequency Energy, indicative 
of the temporal patterns of muscle activity. To derive these 
features, we compute the fast Fourier transform (FFT) for 
each sample and square the FFT amplitude, which gives the 
energy at each frequency. We create 13 bins over the 32 Hz 
sampling range for each of the six channels on the right 
arm. This yields 78 frequency energy features per sample.  

The third set of features is Phase Coherence, which loosely 
measures the relationships among EMG channels. We 
create fifteen such features by taking the ratios of the aver-
age phase between all channel pairs on the right arm.  

These calculations result in 114 features per sample for 
right-hand gesture classification. The only feature we use 
for left-hand “squeeze” recognition is a single RMS feature 
computed over the subtractions of the two channels availa-
ble on the left hand. 

Classification of Right-Hand Finger Gestures 
Support vector machines (SVMs) are a set of supervised 
machine learning methods that take a set of labeled training 
data and create a function that can be used to predict the 
labels of unlabeled data. For our experiment, we used the 
Sequential Minimal Optimization version of SVMs [16].  

In supervised machine learning, training data inherently 
needs to be labeled with a ‘ground truth’. In our case, this is 
the gesture being performed by a participant at a given time 
when the muscle-sensing data segment was gathered. Be-
cause people respond to a stimulus with varying delay, 
there is some amount of mislabeled information early with-
in each stimulus presentation. We combat this issue by dis-
carding all samples from the first half of presentation and 
saving only the latter half as training data for our system. 
While classification results were generated 32 times a 
second, the system determined the currently recognized 
gesture at any given time as the last gesture classified three 
times in a row. For example, if the previous four samples 
were classified as “index, index, index, middle”, the system 
would use “index” as the currently recognized gesture. We 
chose this approach to reduce sensitivity to momentary 
fluctuations in classification. Throughout this paper, our 
classifiers were trained and tested independently on data 
from each participant during a single participant session. 

Classification of Left-Hand Squeeze 
Detecting the squeezing gesture performed by the left hand 
is much simpler. We take the RMS features from the differ-
ence of the two channels on the left arm. This process re-
moves noise such as a person’s cardiac electrical activity, 
giving a good estimate of the total muscle activity in the 
upper forearm. The system took any value above 40% of 
the maximum value seen during calibration to mean that the 
left hand had been squeezed. We empirically selected 40% 
from results in pilot studies. The system would then “sleep” 
for a quarter-second before attempting to detect another 
left-hand squeeze. We enforced this “silent” period to pre-
vent unintentional rapid sequences of selections.  

 
Figure 5. Software mockup of a portable music player 
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Results 
In both parts of our experiment, we collected gesture exam-
ples to train our recognizer and then asked participants to 
complete tasks using those gestures in a two-handed tech-
nique. For each part, we examine the average accuracies 
our system achieved in classifying finger gestures. 

While each part of the experiment was conducted with a set 
of four finger gestures, we also present an offline analysis 
for Parts A and B of a gesture recognizer that only uses the 
first three fingers (index, middle, and ring) to demonstrate 
the potential tradeoff of gesture richness against classifica-
tion accuracy. We chose the pinky finger as the finger to 
remove in this analysis because participants reported that it 
was the most uncomfortable to manipulate.  

Part A: Hands-Free Finger Gesture Recognition 
As describe above, variability in arm posture (particularly 
twisting of the forearm) presents a challenge for accurate 
finger gesture classification. To explore this issue, we 
trained the gesture recognizer in each of three postures in-
dependently, and performed an offline analysis testing each 
recognizer with the test data from the other two postures.  

As shown in Table 1, the system performed best when clas-
sifying pinch gestures using training data that was gathered 
in the same posture. Furthermore, training transferred more 
effectively between postures that were more similar. This 
can be seen by grouping these results by distance (in 
amount of arm rotation) between training and testing post-
ures. Distance zero represents training and testing on the 
same posture. Distance one represents a small rotation 
away, that is, either of the extremes to the midpoint or vice 
versa. Distance two represents training on one of the ex-
treme positions and testing on the other.  

The mean accuracy for distance zero is 77%, while distance 
one classifies at 72% and distance two at 63%. A univariate 
ANOVA on classification accuracy with rotation distance 
as the only factor shows a main effect of distance 
(F2,105=5.79, p=0.004). Posthoc tests with Bonferroni cor-
rection for multiple comparisons show this effect driven by 
significant differences between distance zero and distance 
two (p=0.003) and marginally between distance one and 
distance two (p=0.086). Note that a random classifier would 
be operating at about 25% for the four-finger gestures. 

However, when all of the training data is used (75 blocks) 

to train the gesture recognizer, instead of training data from 
a single posture, the average accuracy over all of a person’s 
test data is 79% with a standard deviation of 13% (see Fig-
ure 6). This demonstrates that training in a variety of post-
ures could lead to relatively robust models that find the 
invariants and work well across the range of postures. Ex-
ploring more complex methods of modeling posture inde-
pendence remains future work. Reducing the gesture recog-
nizer to just the first three fingers increased this accuracy to 
85% with a standard deviation of 11%.  

Part B: Hands-Busy Finger Gesture Recognition 
Participants performed finger gestures both sitting down 
with a travel mug in their hand and while standing with 
laptop bags in their hands. The system attempted to classify 
gestures both when the participants did and did not have 
visual feedback from the recognizer. 

When participants held a travel mug in their hand, the four-
finger recognizer attained an average accuracy of 65% 
without visual feedback (see Figure 7). Mean classification 
improved dramatically, to 85%, with visual feedback. A 
two-way ANOVA (finger × presence/absence of visual 
feedback) on classification accuracy revealed that the re-
sults with visual feedback were significantly higher than 
without (F1,10=24.86, p=0.001). The system also classified 
much more accurately when only classifying among three 
fingers instead of four: 77% without feedback and 86% 
with feedback.  

Participants spent a mean of 1.61 seconds between gestures 
without visual feedback. This slowed to a mean of 3.42 
seconds when they had visual feedback. An ANOVA re-
vealed a main effect for feedback (F1,10=13.86, p=0.004).  

While holding a bag in each hand, the system classified 
participants’ four-finger gestures at an accuracy of 86% 
without visual feedback and 88% with visual feedback (see 
Figure 7). When the classification was reduced to three 
fingers, the system’s accuracy was better: 91% without vis-
ual feedback and similarly 90% with feedback.  

On average, participants waited 1.69 seconds to squeeze 
their left fist when there was no visual feedback. This in-
creased to 2.67 seconds when they had visual feedback of 

Train 
Test 

Left Center Right 

Left 78% 72% 57% 

Center 70% 79% 74% 

Right 68% 73% 74% 

Table 1. Classification accuracies among pinch postures, 
averaged across all users. Chance classification for this 

four-gesture problem is 25%. 
Figure 6. Mean classification accuracies for pinch gesture. 

Error bars represent standard deviation in all graphs. 
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the system’s current recognition result. A two-way 
ANOVA (finger × presence/absence of visual feedback) on 
completion time showed that the difference in feedback 
conditions was significant (F1,10=19.77, p=0.001). 

These results suggest that there is a time-accuracy tradeoff 
for visual feedback. Participants were probably spending 
time inspecting the feedback and making corrections to 
increase overall accuracy. In future work, we would like to 
explore less intrusive methods of providing feedback.  

Part C: Portable Music Player Application Recognition 
In the portable music player application, participants com-
pleted five blocks of three tasks with both the mug and 
bags. For each of these tasks, we recorded whether they 
selected the correct song, how many navigation steps they 
used above the minimum steps required to select the correct 
song, and how long it took them to complete each task.  

In the travel mug scenario, two of the participants found 
that the system’s classification of their pinky finger did not 
work well enough to effectively complete the portable mu-
sic player tasks. We removed this data from our analysis. 

When navigating the three-level hierarchical menu to select 
a song, participants on average selected the correct song 
85% of the time with bags in their hands and 87% of the 
time while holding a travel mug. A failure was selecting 
any song besides the one specified. On average participants 
spent 45 seconds (median 39 seconds) navigating the menus 
through an average of 15 gestures per task with bags, and 
58 seconds (median 40 seconds) through an average of 14 
gestures with the mug. The goal of this phase of the expe-
riment was to demonstrate that our real-time recognition 
system functioned well enough to be used in an interactive 
system. Among our participants some found it somewhat 
difficult to control the music player, while several stated 
that it worked very well for them and were interested when 
this might be released as a commercial product. 

DISCUSSION 
We have explored the feasibility of building forearm mus-
cle-sensing based finger gesture recognizers that are inde-

pendent of posture and shown that these recognizers per-
formed well even when participants’ hands were already 
holding objects. In this section, we discuss the implications 
of these results for application design. 

Posture Independence 
The results from Part A suggest that while training data 
from one arm posture is most useful in recognizing gestures 
in the same posture, it is also possible to use our techniques 
to train a single gesture recognizer that works reasonably 
well in multiple arm positions. This suggests that electro-
myography based interactions could be deployed without 
constraining wrist and hand positions. We feel that this is a 
major step toward enabling real-world applications, particu-
larly applications in mobile settings. Users interact with 
mobile devices in a variety of body postures (seated, stand-
ing, walking, etc.), and we would therefore expect a similar 
variety of postures in the gesturing hand. Requiring a user 
to train a separate classifier for multiple hand positions 
would be costly, hence we are encouraged by our results 
demonstrating the feasibility of cross-posture training. 

Hands-Busy Interaction 
Traditional input modalities take advantage of our dexterity, 
motor ability, and hand-eye coordination. However, in 
many scenarios we have to choose between our everyday 
behavior and manipulating a physical input device. In these 
scenarios, muscle-computer interfaces leveraging gestures 
that can be performed while our hands are already gripping 
an object provide an opportunity for computing environ-
ments to better support hands-busy activities such as when 
using a mobile phone while walking with a briefcase in 
hand or operating a music player while jogging. The results 
of Part B of our experiment demonstrate the possibility of 
classifying gestures involving individual fingers even when 
the whole hand is already engaged in a task, and even when 
the arm is supporting a heavy load.  

Quantity of Training Data and Classification Accuracy 
Figure 8 shows that even with limited training data (10 
blocks or approximately 70 seconds), average accuracies 
exceed 80% for four-finger classification, suggesting that 
the required amount of training for a muscle-computer in-
terface would be on par with that typically required to train 
a speech recognition system. Future work will explore 
building cross-user models that would allow instantaneous 
use of our system without per-user training, leveraging per-
user training only to enhance performance. 

Cross-User and Cross-Session Models 
We trained and tested our classifier for a single participant 
in a single session as is common with similar technologies 
such as brain-computer interfaces [10, 19]. Future work will 
evaluate the degree to which classifiers can be re-used 
across sessions, and will focus on automatically configuring 
a classification system without careful sensor placement. 

Interaction Design Issues 
Even if a system can recognize individual gestures with 
reasonable accuracy, deployment in real-world scenarios 

Figure 7. Mean classification accuracies of hands-busy ges-
tures. Error bars represent the standard deviation. 
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still requires careful consideration of appropriate interaction 
techniques. Here we explore some of the design issues re-
lated to using muscle-computer interfaces for input. 

Visual Feedback: Speed and Accuracy 
Our experiments demonstrate that the proposed gesture set 
can be accurately recognized via muscle-sensing in the ab-
sence of visual feedback, which is critical to many applica-
tions, including nearly all hands-free mobile scenarios. 

However, visual feedback makes the system more predicta-
ble and gives users an opportunity to adapt their behavior to 
that of the recognition system. For example, participants 
could experiment with finger position or exertion to im-
prove recognition. This can be seen in Part B of our expe-
riment where participants held a travel mug in their hands. 
The average accuracy of the system was much higher when 
participants had visual feedback. However, this came at the 
cost of reduced speed. On average, participants spent more 
time performing each gesture, as they adjusted their ges-
tures until the system made the correct classification. This 
speed-accuracy tradeoff should be considered carefully in 
the context of an application. In applications where an error 
can easily be undone and the gesture repeated (e.g., in a 
mobile music player), the higher speed that comes from 
feedback-free gesture input may justify an increased error 
rate. In contrast, in applications where an incorrect gesture 
might be more costly (e.g., when controlling a mechanical 
device or playing a game), the decreased speed that comes 
from using visual feedback might be reasonable. 

Engagement, Disengagement, & Calibration 
A wearable, always-available input system needs a mechan-
ism for engaging and disengaging the system. We do not 
want the system to interpret every squeeze or pinch action 
as a command. In our experiment, we used the left hand to 
support engagement and disengagement, and we feel that 
this separation of tasks across the two hands is a reasonable 
option for real applications. However, it would be worth-
while to look at how engagement and disengagement might 
be supported by sensing only one hand. In particular, is 
there a physical action unique enough to be robustly classi-

fied during everyday activity such that it can be used as an 
engagement delimiter? One example of such an action 
might be squeezing the hand into a fist twice in succession. 
In our limited exploration of this topic, a fist clench has 
appeared to be easily distinguishable among other typical 
movements, so this may be a starting point for future mus-
cle-computer interfaces. 

Multi-Finger Interactions 
Our experiments focused on recognition of single gestures 
performed one at a time. The system’s ability to recognize 
these gestures indicates that we could develop interaction 
techniques that rely on sequences of gestures. It would also 
be interesting to compare such sequenced interaction with 
simultaneous performance of several gestures at a time. For 
example, how does recognition performance compare when 
doing an index finger pinch followed by a middle finger 
pinch, vs. a simultaneous index and middle finger pinch. 
Apart from recognition performance, users’ perception and 
performance of these different styles of multi-finger inte-
ractions must also be considered carefully. 

Ongoing and Future Directions  

Air-Guitar Hero 
Encouraged by the results, we developed an application that 
allows a user to use our muscle-computer interface to play 
the Guitar Hero game. In Guitar Hero, users hold a guitar-
like controller and press buttons using both hands as the 
system presents stimuli timed to popular music. Using our 
muscle-computer interface, users can now play with an 
“air-guitar”. A user controls four buttons with our pinching 
gestures and moves the opposite wrist in a strumming mo-
tion. Informal tests of the system show that users are able to 
complete the easy mode of the game. We demonstrate this 
system in our video figure. 

Wireless Electromyography 
Although we extended previous work by not tethering 
people’s arms and hands to specific orientations or surfaces, 
our experiment was conducted in a lab using a wired elec-
tromyography device, and we have yet to validate our clas-
sification approaches in scenarios with more variable ges-
ture execution. To this end, we have recently created a 
small, low-power wireless prototype muscle-sensing unit 
(see Figure 9). Each of these units is equipped with four 
electrodes (two differential electromyography channels) 
sampling at 128 Hz, and multiple units can be used simul-
taneously. We are currently working to put this wireless 
unit into an armband form factor with dry electrodes.  

Figure 9. Classification accuracy versus blocks of training data 
for four finger gestures with bags in hand. Each training block 

takes seven seconds for a four finger classifier. 
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Figure 8. Our wireless EMG device prototype, weighing 

five grams and measuring 26x18x8mm. 
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CONCLUSION 
Our work demonstrates that muscle-sensing can be used to 
accurately classify a useful variety of finger gestures, even 
when the hands are under load. It also shows that classifica-
tion can be done in real-time, thus making forearm muscle-
sensing viable for human-computer interaction, in contrast 
to previous work that relied on off-line analysis. Further-
more, it highlights the tradeoff between speed and accuracy 
that results from providing users with immediate visual 
feedback. Finally, it introduces a novel bimanual technique 
for accurate engagement/disengagement of the recognizer, a 
crucial aspect of making muscle sensing usable for interac-
tive tasks. In addition to the formal experimentation and 
results, we have demonstrated more holistic interaction via 
our portable music player application and a prototype game. 
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