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Fig. 1. The ChronoLenses interface includes (A) a charts panel showing the time-series; (B) a lens creation toolbar; (C) a lens
analysis pipeline view of (D) the currently selected lens; (E) a property panel showing details of the currently selected lens. A context
menu (F) can be invoked to perform lens-based operations, and (G) the lens toolbar allows quick access to a lens’ parameters.

Abstract—Visual representations of time-series are useful for tasks such as identifying trends, patterns and anomalies in the data.
Many techniques have been devised to make these visual representations more scalable, enabling the simultaneous display of
multiple variables, as well as the multi-scale display of time-series of very high resolution or that span long time periods. There has
been comparatively little research on how to support the more elaborate tasks associated with the exploratory visual analysis of time-
series, e.g., visualizing derived values, identifying correlations, or discovering anomalies beyond obvious outliers. Such tasks typically
require deriving new time-series from the original data, trying different functions and parameters in an iterative manner. We introduce
a novel visualization technique called ChronoLenses, aimed at supporting users in such exploratory tasks. ChronoLenses perform
on-the-fly transformation of the data points in their focus area, tightly integrating visual analysis with user actions, and enabling the
progressive construction of advanced visual analysis pipelines.

Index Terms—Time-series Data, Exploratory Visualization, Focus+Context, Lens, Interaction Techniques.

1 INTRODUCTION

Time-series data are found in almost every domain, ranging from fi-
nance to many engineering and scientific disciplines. Time has in-
herently unique characteristics: for most purposes outside the theory
of relativity, things evolve over time, but time does not depend on
other variables. Time is considered uniform and absolute. It is thus
often treated as a special variable, in terms of both how the data is
structured and how it is presented to users. Tasks associated with the
analysis of temporal datasets typically focus on the evolution of other
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(dependent) variables with respect to time: identifying trends and re-
curring patterns, establishing correlations and possibly predicting the
future based on past and current behavior.

Visual representations of time-series take advantage of people’s
innate perceptual abilities to process information and detect struc-
ture [32], making it significantly easier for users to discover trends and
patterns at different scales, but also to identify anomalies in the data
[10, 31]. However, basic time-series visualizations using line plots do
not scale well; and as time-series data are often very large, featuring
multiple, possibly heterogeneous, dependent variables measured for
long periods of time and/or at high sampling rates, visualization of
real-world time-series data poses significant challenges and has been
an active area of research for many years. Many interactive visual-
ization tools have been developed to address this scalability problem,
offering innovative alternatives to the common line plot visualizations
or enhancing the visualization with advanced interactive features.

There has been comparatively little research on how to support the
more elaborate tasks typically associated with the exploratory visual
analysis of time-series, e.g., visualizing derived values, identifying
correlations, or identifying anomalies beyond obvious outliers. Such
tasks typically require deriving new time-series from the data, visual-
izing those time-series and relating them to the original data plots.
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Visual exploration techniques take advantage of human abilities to
drive the data exploration process and are especially useful for undi-
rected searches, when users know little about the data or have only
vague exploration goals [23, 35]. As emphasized by Keim’s visual
analytics mantra – “Analyze first, Show the important, Zoom, Filter
and analyze further, Details on demand” [24] – this process is itera-
tive. For it to be efficient, visual representations, that support human
judgment, and interactions, that re-parameterize the visual represen-
tation, should be tightly integrated, enabling users to quickly choose
and refine parameter values that best suit the task at hand [2]. New
plots derived from the original data should be put in context and made
easy to relate both to the original data and to other plots that have been
derived as part of the exploratory process.

We introduce a novel, domain-independent time-series visualiza-
tion technique called ChronoLenses, aimed at supporting users in ex-
ploratory visual analysis tasks. ChronoLenses, as many other types of
lenses, delimit a region of interest in the data to be put in focus through
magnification [12, 33], visual filtering [15] or other arbitrary trans-
formations of the underlying content [8]. Based on the metaphor of
direct manipulation, ChronoLenses perform on-the-fly transformation
of the data points in their focus area, tightly integrating visual anal-
ysis with interaction. Users can build pipelines composed of lenses
performing various transformations on the data (e.g., remove mean,
compute 1st derivative, auto-correlation), effectively creating flexible
and reusable time-series visual analysis interfaces. At any moment,
users can change the parameters of already created lenses, with the
modifications instantaneously propagating down through the pipeline,
providing immediate visual feedback that supports the iterative explo-
ration process. Figure 1 gives an overview of the technique.

After a review of related work, we introduce tasks and require-
ments associated with the exploratory analysis of time-series, gathered
from expert users in varied domains including operations monitoring
and control for a radio-observatory, environmental research related to
weather forecast, as well as financial and network streaming data anal-
ysis. We then describe the general concept of ChronoLenses, followed
by its implementation in a research prototype application that provides
rich interaction and analytical support for time-series. Example anal-
ysis pipelines follow with usage scenarios based on our work with
network analysts, and astronomers of the ALMA radio-observatory,
demonstrating how ChronoLenses can be used for the monitoring and
offline analysis of complex time-series data. We conclude the paper
with a discussion of the current implementation’s limitations.

2 RELATED WORK

2.1 Time-series Visualization
Visual representations of time-series date back to the 18th century with
seminal work using line charts by Playfair [37]. Many new static and
dynamic techniques have been proposed since then. See [1, 32, 36] for
relevant surveys. Some innovative techniques focus on helping users
identify periodic patterns in the data. For instance, van Wijk [20] uses
a calendar-based display to visualize time-oriented series aggregated
on a daily, weekly or monthly basis via similarity clustering. Other
visualizations, such as SpiralGraph [40] and SpiralView [7], lay out
the data on a spiral-shaped time axis to reveal cycles. These techniques
can yield meaningful representations of data that feature periodicity,
making recurring patterns easy to spot. VizTree [28] takes a different
approach, computing a symbolic representation of time-series and then
representing the sequence of symbols using a suffix tree. The resulting
visualization is radically different from other temporal visualizations
and can be disconcerting at first, but represents a potentially powerful
alternative to other techniques for identifying patterns in large datasets.

Most of the work on time-series visualization has focused on the
scalability of the more conventional line plot and bar chart representa-
tions, either by proposing variations on the original plotting techniques
or by enhancing them with advanced interactive visual filtering tech-
niques. Variations on conventional line plots include Small multiples
and sparklines [37], Horizon graphs [18], and Braided graphs [22].
These techniques focus on the issue of optimal space management, en-
abling the display of an increased number of time-series compared to

regular line plots. Lopez-Hernandez et al. [29] address the same prob-
lem for a specific type of time-series – univariate oscilloscope digital
signals – by wrapping the signal in time, representing the different
traces on layers that can be brushed by users.

2.2 Multi-scale Representations
Multi-scale visualization techniques adapt the representation depend-
ing on available screen real-estate. Time-series can be represented
at several levels of detail and abstraction using different qualitative
scales, or hybrids combining qualitative and quantitative informa-
tion [6], gradually revealing more information as more space gets al-
located to the chart, or as the user zooms in a region of interest [27].
Line Graph Explorer [25] provides an overview+detail interface for
the exploration of large collections of time-series. It displays a com-
pact overview of the entire collection by encoding the y-dimension
of individual line graphs using color instead of space and viewing se-
lected graphs in detail as standard line graphs. The technique is also
interesting as the overview visualization lends itself well to sorting and
clustering of the graphs using various similarity distances.

Hao et al. [17] present a space-filling, multi-resolution matrix rep-
resentation of time-series where the color of a cell encodes the mag-
nitude of the corresponding value in the data. The same authors pro-
pose another space-filling visualization capable of displaying multiple
time-series, where the various charts are organized based on their im-
portance in a treemap-like structure [16]. Stack zooming [21] uses a
relatively similar technique, taking advantage of the one-dimensional
nature of time-series to present them as hierarchies of strips, where
each strip contains magnified versions of one or more region(s) of in-
terest delimited in the above strip. Stack zooming can also be seen
as a specialization of the DragMag [39] that supports recursive mag-
nification and automatic arrangement of magnification windows. The
technique enables efficient exploration of time-series at multiple lev-
els of detail. LiveRAC [31] offers another variation on this approach,
organizing charts in a reorderable spreadsheet-like matrix that allows
side-by-side visual comparisons at multiple levels of detail. The tech-
nique supports semantic zooming [12], providing visual representa-
tions adapted (cell-wise) to the allocated screen space.

2.3 Lens-based Interaction for Time-series Visualizations
Timeboxes [19] take a different approach to the scalability problem.
Timeboxes act like visual filters that specify constraints on what time-
series to display, only showing plots that intersect the one or more
boxes that form conjunctive queries, enabling the dynamic exploration
of large data sets by direct manipulation of the rectangular boxes. In
that sense, timeboxes can be seen as data filtering lenses, that have an
impact on the visualization beyond the region of interest.

SignalLenses [26] provide another type of lens, conceptually closer
to the usual lens-based focus+context visualization techniques [12].
SignalLenses are used for the visual analysis of large electronic time-
series and help perform tasks such as anomaly detection and motif
discovery. They provide in-place magnification of the signal, achiev-
ing a smooth transition between the focus and context regions through
1D distortion [11, 33]. Though they can provide additional measure-
ment tracks to assist the exploration of time-series data by computing
time-aligned properties, SignalLenses are limited to the magnification
of plots in the region of interest. The MagicAnalytics lenses of Kro-
noMiner [41] go beyond simple magnification, building on the concept
of Magic Lenses [8] originally designed for arbitrary 2D graphics.
MagicAnalytics lenses compute and display the result of a function
involving two time-series. They represent one of the basic building
blocks of ChronoLenses, though limited to single step transformations.

ChronoLenses go beyond these simple transformations, offering
multi-step transformations of one or more time-series. These can be
purely visual transformations, or transformations that change the value
of the data (1st derivative, point-wise maximum, etc.). ChronoLenses
enable users to construct elaborate visual analysis pipelines, with mod-
ifications automatically propagating downstream, providing immedi-
ate visual feedback that supports the iterative exploration process.
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3 TASKS AND DESIGN REQUIREMENTS

To better understand the needs for interactive visualization when ex-
ploring time-series data, we conducted informal interviews with expert
users from various domains, including: astronomers, experts doing re-
search in network streaming data analysis, finance, and weather fore-
casting. Based on their feedback and on the literature [4], we identified
low-level tasks that users typically perform to carry out time-series
analyses. From these tasks, we derived design requirements for the
ChronoLenses technique, as introduced in this section.

The analysis of time-series datasets typically implies feature ex-
traction and data comparison by transforming one or more time-series
into another. Such computations usually require performing one, or a
combination of, the following low-level tasks:

T1 Single-data stream transformation. Transform each data point
of a series by applying an operator. Examples are data alteration,
e.g., Fourier transforms and Box-Cox transforms [9]; bias reduc-
tion, e.g., remove means and remove trends; repeated pattern iden-
tification, e.g., auto-correlation; and operations related to delays
and time lags, e.g., differencing and seasonal differencing.

T2 Cross-data stream analysis. Compute a new time-series from
two or more input time-series. Examples are data comparison,
e.g., subtraction; similarity examination, e.g., inner product; rela-
tionship discovery, e.g., cross-correlation; and series aggregation,
e.g., point-wise maximum value.

However, exploring time-series often implies going through a more
elaborate analysis pipeline that combines various tasks [24]. Practi-
cally speaking, this implies that users should be able to make com-
pound queries on the data by iteratively performing sequences of low-
level tasks T1 and T2, combining and modifying the transformation
parameters as part of the visual exploration process. From these ob-
servations we derive the following requirements:

R1 Dynamic transformations. Low-level tasks T1 and T2 are the
core components of the visual analysis process. The transforma-
tions that support them should be easy to perform through oper-
ators applied to the input time-series data. Visual representations
and interactions that re-parameterize these transformations should
be tightly integrated so as to facilitate exploratory analysis.

(a) Dynamic selection of input region of interest: users should
be able to dynamically select and modify what timespan(s)
in the input data are to be processed through the operators.

(b) Dynamic transformation parameters: users should be able
to easily configure and edit transformation parameters.

(c) Immediate visual feedback: the system should provide in-
stant visual update to reflect these changes.

R2 Dynamic analysis pipeline. Enabling the easy combination
of operators makes it possible to progressively build and re-
fine the analysis pipeline, thereby helping formulate complex
queries [24].

(a) Dynamic composition: users should be able to build the
analysis pipeline iteratively, combining basic transforma-
tions through the incremental composition of operators that
take as input arbitrary combinations of time-series from
the original dataset and time-series that result from earlier
transformation steps upstream in the pipeline.

(b) Reuse of intermediate results and easy backtracking: The
above requirement entails that all intermediate time-series
transformation steps in the pipeline should be reusable as
input to downstream operators, enabling users to branch out
and explore, and possibly compare, alternatives at any point
while sharing the data transformation steps that come earlier
in the analysis process.

(c) Visual representation of the pipeline: the system should
provide an overview of the analysis pipeline, helping users
maintain a mental map of the transformation steps and keep
track of the exploration history.

We also rely on general principles for visual exploration as listed
in [41], including: direct manipulation; overview first, zoom & filter,
details on demand; and support for dynamic multi-focus exploration.

4 CHRONOLENSES FRAMEWORK

ChronoLenses is an interactive visualization technique for the ex-
ploratory analysis of time-series data, whose design was driven by the
above requirements. It computes on-the-fly transformations of data
points and displays the result of those transformations in place, us-
ing the metaphor of lenses. The MagicAnalyticsLens technique intro-
duced in [41] relies on the Magic Lens concept [8] and forms one of
the basic building blocks for ChronoLenses. While MagicAnalytics
lenses enabled users to apply four single-step basic transformations
to exactly two input time-series, ChronoLenses extends the concept,
allowing for an arbitrary number of input time-series and introduc-
ing several additional operators. But most importantly ChronoLenses
enable multi-step transformations to be specified, where the result of
time-series transformed through a given lens can serve as input to an-
other lens, and where multiple pipelines can be branched out to explore
multiple alternative visualizations simultaneously, easing the formula-
tion of complex queries.

4.1 Lens Parameters
We define a lens L as the transformation of an input time-series in
the focus region of that lens into a resulting time-series. Time-series
can be seen as streams of data that get transformed through the lenses
that constitute an analysis pipeline structured as a dataflow. Transfor-
mations are computed on-the-fly according to a set of parameters that
can be dynamically adjusted1. To support tasks T1 and T2, L can
either transform a single data stream, or perform cross-data stream op-
erations. Data streams can be univariate or multivariate. Each lens L
is defined by four transformations, all optional:

Unary Operator: Lunary(·) defines the transformation that applies
to a single data stream in the focus region of the lens (T1);

Binary Operator: Lbinary(·, ·) defines the transformation that takes
the data in the focus region of the lens (processed by Lunary if set
to anything else than the identity transform) as the first operand,
and the output data stream resulting from the parent lens in the
hierarchy (detailed later), if any, as the second2 operand (T2);

Filter: L f ilter(·,θ) defines visual filters that hide time-series speci-
fied by parameter θ (applies to multivariate data streams only);

Scaling: Lscale(·,s) determines the magnification factor s applied to
the data rendered in the lens’ focus.

Operators Lunary and Lbinary perform actual computations on the
input data and can take some data points outside the lens’ time span,
such as when computing the 1st derivative. On the contrary, L f ilter
and Lscale only affect the visual representation of the processed data
within that time span. They do not need to access data outside it.

4.2 Pipelines of Lenses
As mentioned earlier, the output of a lens, i.e., the time-series result-
ing from the transformation of an input time-series, can be fed to one
or more lenses. In other words, lenses can be piped, effectively cre-
ating a lens-based data flow pipeline that can be used to progressively
build elaborate visual analysis interfaces. The hierarchical combina-
tion of lenses relies both on a layering system and on cross-data stream
parent-child relationships between lenses. The tree structure not only
helps users keep track of the sequence of exploration steps, but also
makes it possible to backtrack, that is, adjust the intermediate process-
ing stages iteratively, the system providing immediate visual feedback

1ChronoLenses support the representation of stacked multivariate time-
series. In that case, each individual series is processed separately using the
L transformation, and is then stacked in the lens’ frame.

2Most of the operations that consider more than two input data streams can
usually be simulated by cascading a series of binary operations.
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Fig. 3. Schematic representation of the ChronoLenses combination mechanism (I), and all possible elementary combinations (II).

Fig. 2. ChronoLenses rendering pipeline for lens L . (P) processing
pipeline in parent lens; (1) applying Unary Operator Lunary; (2) applying
Binary Operator Lbinary; (3) applying Filter Operator L f ilter; (4) applying
Scaling Operator Lscale.

of the consequences of these parameter adjustments by propagating
them downwards in the hierarchy. In the following, we describe the
steps involved in rendering data seen through a lens, and then describe
how lenses can be combined to build a full analysis pipeline.

4.2.1 Rendering Pipeline
Figure 2 illustrates the steps of the rendering pipeline applied to some
multivariate input data, eventually leading to the visualization of the
resulting time-series through lens L , that gets part of its input from a
parent lens.

More formally, the rendering pipeline can be described as follows.
Let ~D = (d1,d2, . . . ,dm)

T be the m-dimensional set of data points
defined by the focus region of lens L . We note Lop(~Di) the re-
sult of applying one of the transformations steps to the data, where
op ∈ {unary,binary, f ilter,scale}. The final result L (~D) is obtained
by performing the following four computational steps:

C1 Apply unary operator Lunary, such that ~D1 = Lunary(~D) (Fig-
ure 2-1);

C2 Apply binary operator Lbinary, such that ~D2 = Lbinary( ~D1, ~Dp)

(Figure 2-2), where ~Dp is the set of data points resulting from
applying the parent lens to the same or to another set of input data
points (Figure 2-P);

C3 Apply visual filter operator L f ilter such that ~D3 =L f ilter( ~D2,θ),
where θ defines the subset of time-dependent variables to be ren-
dered in case of multivariate input (Figure 2-3);

C4 Apply scaling operator Lscale such that ~D4 = Lscale( ~D3,s),
where s defines the magnification factor (Figure 2-4). We note
L (~D) = ~D4 the final result.

Any of the four operators can be set to null, in which case the asso-
ciated step is equivalent to an identity transform. As mentioned earlier,
operators Lunary and Lbinary perform actual computations on the in-
put data while L f ilter and Lscale only affect the visual representation
of the data. Thus, a simple magnifying lens can be obtained by only
setting Lscale. And a lens showing only one time-series in a multi-
variate plot can be obtained by only setting L f ilter with θ limited to
that particular series. The following section focuses on the more com-
plex computational steps C1 and C2, and describes complete analysis
pipelines involving multiple lenses.

4.2.2 Analysis pipeline
Users can specify elaborate transformations by combining multiple
lenses. Two lenses L1 and L2 can be combined either by overlaying
them in the chart, in which case the operators defining the lenses get
applied sequentially to the input time-series data points (first those of
L1, then those of L2); or by declaring L1 as the parent lens of L2, the
transformed output of L1 being an operand of L2’s binary operator.
Figure 3.I gives a schematic representation of these two combination
mechanisms. Basic transformations that apply to a single data stream
only require a lens with a unary operator (Figure 3-a) as defined in
C1. Cross-data-stream computations require the definition of a child
lens (Figure 3-b), that takes as input a data stream resulting from a
parent lens and the data in the child lens’ focus. The two streams are
processed through the child lens’ binary operator (C2), with the unary
operator (C1) pre-processing the data points in the child lens’ focus, if
set. Figure 3.II illustrates all possible elementary lens combinations:

E1 Simple transformation (Figure 3-c): the most basic lens, where
Lunary is set and Lbinary is null. It is conceptually similar to a
Magic Lens [8], with the unary operator (noted α) transforming
the data in the lens’ focus region;

E2 Series of transformations (Figure 3-d): two lenses that are piled
up (they observe the same timespan) on separate layers as in tra-
ditional graphics editors. The first lens processes the input time-
series data points that fall into its focus through unary operator α1.
The resulting data is fed to the second lens and gets processed by
unary operator α2. It is possible to pile up an arbitrary number of
lenses, as with Fishkin and Stone’s Movable Filters [14].
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E3 Cross-data computation (Figure 3-e): cross-data computations
are achieved by creating a parent-child relationship between two
lenses. Output data from the parent lens and time-series data
points in the child lens’ focus region are the operands given to
binary operator β . The unary operator of the child lens is set to
null (identity transform).

E4 Simple transformation and cross-data computation (Figure 3-f):
both the unary operator α and the binary operator β are set. The
lens first applies transformation α to the time-series data points
in its focus. The result of this transformation, ~D1, is then fed to
the binary operator β along with the output of the parent lens’
transformation, ~DP.

More elaborate analysis pipelines can be built by creating hierar-
chies consisting of the above elementary combinations (see Section 6).

5 CHRONOLENSES INTERFACE

We developed a proof-of-concept, full-featured interactive visualiza-
tion tool implementing the ChronoLenses technique for the visual ex-
ploration of multivariate time-series. The interface (Figure 1) consists
of five main components: (A) the chart panel displaying the differ-
ent time-series in a classical stacked view; (B) a lens creation toolbar;
(C) a lens analysis pipeline view displaying all ancestors of the cur-
rently selected lens (D); and (E) a property panel showing the latter
lens’ settings. Following the design requirements listed in Section 3,
the interactive visualization was designed to allow rapid exploration
of time-series and construction of analytical pipelines. This section
describes the interactive visual interface of our prototype. Concrete
examples of use are introduced in the following section.

Figure 4-I shows the user interface of a lens L . The region of
interest (time span ~D in the lens focus) is visually represented as a
blue focus bar on the time axis (Figure 4-c). The time-series L (~D)
is displayed inside the lens’ frame (Figure 4-b). A toolbar located
on the top border of the lens provides quick access to the lens’ main
parameters (Figure 4-a). This toolbar is visible only when the cursor
is hovering over the lens, so as to minimize visual clutter. Detailed
information of a lens is also provided in a tooltip when hovering.

The user can modify the visual representation of plots, offering dif-
ferent perspectives on the data. Our prototype supports classical plots
such as line charts and dot plots, but also statistical plots including
histograms and Q-Q normal plots for comparing data distributions.

5.1 Creating an Analysis Pipeline
Advanced analysis pipelines are typically built by creating and pro-
gressively combining multiple lenses corresponding to the desired el-
ementary operations E1-E4 defined in Section 4.2.2.

To create a basic lens, the user first specifies its parameters through
the creation toolbar, for instance choosing a unary operator such as
remove means, and setting the binary operator to null. She then selects
the data to be processed through the lens by initiating a rubber-band
selection on any time-series loaded in the charts panel. This selection,
achieved thanks to a simple mouse drag (Figure 4-e), defines the time
span of interest, that will become the lens’ focus.

Lenses that enable cross-data stream analyses obviously accept two
input streams3. One stream is defined by the lens’ focus, set as ex-
plained above. The second stream is provided as the output of another
lens. This lens is considered as the parent lens; it feeds data to the
child lens, that performs the cross-data stream analysis. The parent
lens must exist in order to create a child lens.

The user can derive a child lens from the currently selected lens,
by clicking on the Create Child Lens button in the creation toolbar or
on the equivalent contextual menu item (Figure 1-f), after having set
the desired parameters for the unary operator (if relevant) and binary

3As explained in Section 4.2.1, these streams can contain multivariate time-
series. The binary nature of the transformation does not mean that input time-
series are restricted to two variables. See Section 5.3 for more information
about handling multivariate time-series.

operator (e.g. cross-correlation). The time span of a child lens must
match that of the parent lens. This is to guarantee that input streams
contain the same number of data points for binary operations, and thus
make sure that cross-data stream operations are consistent. However,
it would be possible to support unequal time spans between parent
and child lenses, using time-series transformations that would make
the number of data points between both streams consistent using, e.g.,
linear interpolation methods for time-series.

The created lenses are z-ordered using layers and can be piled up
according to this ordering. Piling up lenses entails piping their opera-
tors as described in Section 4.2.2. In the current implementation, two
lenses get actually piped when the upper lens’ time span is fully con-
tained within that of the lens underneath: the result of the latter then
becomes the input of the former, as when composing Movable Filters
by overlapping them [14].

To help the user keep awareness of the analysis pipeline, a pipeline
view is provided, depicting the currently selected lens’ ancestors (Fig-
ure 1-C). The tree structure displays dynamic miniatures of the differ-
ent lens branches, alongside labels detailing the operators associated
with each lens in the pipeline. The current lens is visually empha-
sized with a thick blue border, and always corresponds to the top-left
element in the pipeline view. By hovering over a lens either in the
pipeline view or in the main chart view, the user can get an overall
preview of all its ancestors. All lenses upstream are visually identified
using an outer-glowing effect varying from green (closest ancestor)
to yellow (furthest ancestor) in both views. The hovered lens is also
emphasized with a blue glow effect (Figure 1-D).

5.2 Visual Exploration through Direct Manipulation
Visual exploration, the process of interactively browsing through dif-
ferent regions of a dataset to gain a better understanding of it, is not
only useful as a quick and effective technique for hypothesis confirma-
tion. It is also, and perhaps more importantly, essential for discovering
the unexpected and raising new questions [38]. Direct manipulation
has been successfully applied to time-series interactive visualizations
as a means to facilitate visual exploration in conjunction with immedi-
ate visual feedback; see, e.g., PatternFinder [10] and KronoMiner [41].
ChronoLenses, by virtue of their progressive analysis pipeline building
process, are meant to facilitate step-by-step exploration through direct
manipulation, while giving users freedom to edit intermediate steps.
Changes to a lens in the hierarchy are automatically propagated to its
descendants, and all affected plots are visually updated accordingly.

5.2.1 Modifying Lens Parameters
To facilitate opportunistic discovery of regions of interest, we make
it possible to redefine the focus region of a lens by simply dragging
the lens frame (Figure 4-g) or the associated focus bar (Figure 4-h)
left or right. The immediate redisplay of the newly computed result
in both the chart view and the pipeline view enables quick access to
different regions of the data stream, and thereby effectively supports
visual exploration. The red arrow controllers placed on the focus bar
(Figure 4-f) make it possible to adjust the lens’ time span. The time
span of all lenses downstream is adjusted accordingly so as to keep the
number of data points consistent, as explained earlier. The user can
also decide to move a lens to a different chart to further her analysis
on another dataset, as illustrated in Figure 4-k.

The lens frame’s width can be increased using the mouse wheel.
The time span considered does not change, which means that resiz-
ing affects the Lscale parameter: the lens behaves as a magnifying
glass4. Resizing on the vertical axis works similarly, except that the
lens frame’s height never changes and is always equal to the underly-
ing chart’s bounding box height. The y-axis origin can be adjusted by
dragging the plot up and down inside the frame. An auto-adjust func-
tion is also provided, that automatically adjusts the y-axis’ origin and
scale so as to make the best use of available screen real-estate within
the lens’ frame as the user drags it.

4The above-mentioned blue bar still shows the original region of interest.
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Fig. 4. (I) UI of a ChronoLens: (a) toolbar enabling adjustment of the lens’ main parameters, (b) tooltip (pops-up when hovering), (c) focus bar with
resizing handles, (d) lock icon for detaching/reattaching the lens’ frame from/to the focus bar; (II) associated interactions.

5.2.2 Groups of Lenses
As mentioned earlier, the z-ordering of lenses that belong to the same
analysis pipeline implicitly defines in what order transformation oper-
ations are applied to the data. The z-ordering and relative position of
lenses that make a given analysis pipeline is important and should be
kept constant during visual exploration via direct manipulation (when
brushing the time-series plots with the lenses). Having to move each
lens would be extremely cumbersome and would greatly impede the
interactive visual exploration process. To avoid this, lenses can be
grouped. All lenses that belong to the same group move synchronously
as the user drags any one of them. The user can therefore create a com-
pound lens set in which lenses are piled up in a specific order, thus
creating a reusable analysis pipeline.

Grouping lenses can also be useful when analyzing multiple charts
at a time, or when looking for seasonality. Such tasks require the in-
terval between lenses (time lag) in the data stream to remain constant.
By defining a group consisting of the different lenses to be moved syn-
chronously, the user can keep the time lag between these constant.

A lens can be added to the currently selected group through the
contextual menu (Figure 1-F). All lenses belonging to the same group
as the currently selected one are outlined with a green stroke, giv-
ing feedback about the time-lag constraints that exist between those
lenses. Group membership is also reflected in the tree view, where the
group number is explicitly specified alongside the lens miniatures.

5.2.3 Dealing with Visual Clutter
The instantiation of many lenses can quickly lead to visual clutter.
Lenses that are part of the same analysis pipeline will often overlay
each other, either partially or fully occluding one another. This can
be a problem when the user wants to visualize intermediate computa-
tional steps of the pipeline. Occlusion problems can also arise when
magnification lenses (any lens with Lscale > 1) look at time spans that
are disjoint but close to one another.

To address these issues, we introduce a mechanism that enables the
user to detach the lens frame from its associated focus bar, thereby giv-
ing her control over where to display the lens’ output, independently
of the actual input region of interest (focus bar location). Figures 4-g
to 4-j illustrate this mechanism. To detach a lens from its focus bar,
the user simply clicks on the lock icon (Figure 4-d) to unlock the lens
from the focus bar. In that mode, dragging the lens frame does not
affect the focus interval (Figure 4-i), making it possible to space out
lenses or, on the contrary, move them closer to facilitate comparison.
In the same manner, dragging the focus bar only affects the input time
span, the lens frame remaining in place (Figure 4-j). Wherever a lens
and its focus bar are positioned, locking them again will keep the po-
sition offset constant (Figure 4-g-h). When hovering over a lens frame
or a focus bar, both are emphasized with a glow effect making it easier
to identify what focus bar is associated with what lens, and conversely.

Other mechanisms that help manage visual clutter include delete
and minimize buttons in the toolbar (Figure 4-a). The former deletes

a b

Fig. 5. Lenses applied to multivariate data: (a) auto-correlation for three
series out of five; (b) point-wise aggregated maximum showing the re-
sulting plot (common to all series) overlaid on top of each variable’s plot.

the lens, the latter hides the lens’ frame, but not its focus bar. The bar
remains visible so as to keep the user aware of its existence. At all
times, double-clicking it makes the lens’ frame visible again.

5.2.4 Multi-foci Exploration
As many other types of datasets, time-series are amenable to multi-
scale navigation. For a given series, the user might be interested in
behaviors and event patterns that occur at various time scales, from
months or years down to fractions of a second.

Magnification lenses support the process of interactively drilling
down into the data, and enable the comparison of different time spans
(a common practice when analyzing time-series data [13, 21, 41]) sim-
ply by instantiating multiple lenses. Magnification lenses can easily be
instantiated in ChronoLenses: any lens with Lscale > 1 is a magnifica-
tion lens that enables drilling down into the data. However, magnifica-
tion lenses pose some problems from an interaction perspective [5, 33].
In-place magnification of the focus region means that the immediate
surroundings of the region of interest will be occluded if the lens is
simply overlaid on the original data, hiding potentially valuable in-
formation and hindering navigation. Smooth transition between the
magnified focus and surrounding context can be achieved using spa-
tial distortion [26], but the introduced deformation has a cost in terms
of legibility and interpretation of the visualization.

An alternative drill-down method called Stack Zooming was re-
cently proposed by Javed et al. [21]. The technique consists in stack-
ing multiple views as the user drills down into the data. The con-
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remove mean

filter out all but one antenna

Fig. 6. Exploring ALMA Line Length Correction Stretcher Voltage plots for four antennas: (a) two-day overview at a sampling rate of one second; (b)
magnification of the 5 hours seen through the remove mean lens applied in (a); magnification of the 50 minutes for a single antenna seen through
a filtering lens, rendered in scatterplot mode (c) and line-plot mode (d).

tent of a given view is a magnification of a region in the view imme-
diately above, delimited by a lens-like viewfinder similar to a (one-
dimensional) DragMag [39]. The technique can seamlessly be inte-
grated with ChronoLenses and is implemented as follows.

The user creates a new empty chart panel in the main view. Then,
dragging-and-dropping an existing lens into this empty panel dupli-
cates the data within the span of the lens and displays it in this new
panel. The visual representation is stretched horizontally to fill the
panel, thus providing a magnified view of the lens’ content that is dy-
namically updated whenever that lens moves. Figure 6 illustrates this
technique, with chart (b) providing a magnified version of the region
seen through the lens in chart (a). Lenses can be instantiated on this
new panel, enabling users to drill-down recursively and build a truly
multi-scale view hierarchy in which lenses at any level can be freely
adjusted. Lenses that form this hierarchy are of course not limited to
simple magnification and can apply to the data any of the elaborate
transformations enabled by the ChronoLenses operators.

5.3 Multivariate Time-Series
In ChronoLenses, multivariate datasets can be visualized either over-
plotted in the same chart (Figure 1, top chart) or separately, stacked on
top of one another (Figure 1, bottom chart). When applying a lens to
a multivariate data stream, each series gets processed independently,
except for some operators that aggregate the data, such as point-wise
minimum or maximum. In that case, the output is a univariate stream,
that can be duplicated and overlaid in all charts. We distinguish ag-
gregated operators from other operators by color-coding in red all the
replicas of the unique plot resulting from data aggregation (Figure 5-b)
as opposed to the one-to-one color mapping used when the different
variables are processed separately (Figure 5-a).

To focus on a subset of variables, the user can filter out series that
she does not want to be considered in the computational pipeline by
setting the filter operator L f ilter accordingly. To do so, she can either

select all the series to be taken into account in the corresponding menu
accessible from the lens toolbar, or specify the list in the property panel
(Figure 1-E), by entering the corresponding textual expression using a
very simple syntax. When filtered out, streams are neither computed
nor rendered, as the first and fourth streams in Figure 5-a. Note that
when a lens defines an aggregated operator, filtering out a stream has
an impact on the result, as the stream is no longer considered as an
operand. Again, we offer the user full control over what data gets pro-
cessed, making the analysis process highly flexible and customizable.

6 USE CASE SCENARIOS

In this section, we illustrate how ChronoLenses can be used with two
use cases involving real datasets.

6.1 ALMA Observatory Usage Scenario
The Atacama Large Millimeter/submillimeter Array (ALMA, [3, 34])
is a single telescope (under construction in the Chilean Andes) that
will eventually be composed of 66 high-precision antennas. Observa-
tions are based on the principle of interferometry: a source in the sky is
observed by at least two antennas; the signals (radio waves) captured
by each antenna are then combined by a central computer called the
correlator to form images suitable for performing scientific analysis.
Time-series visualization are used by both operators and astronomers
for a variety of tasks, ranging from checking some of the thousands
of monitor points in the system to performing scientific data quality
assurance during observations. In the following, we focus on one ex-
ample where ChronoLenses can help users in their daily task.

When combining the signals coming from the different antennas
taking part in a given observation, the correlator must know the length
of the path traveled by the signal through the fiber optics cables with an
accuracy of hundredths of a millimeter. A round-trip laser signal gets
sent to all antennas in order to continuously monitor the length of the
optical fibers, as the latter can expand and contract due to temperature
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Fig. 7. Analysis of a month of the visiting population of two P2P video-on-demand channels: a) analysis of the evolution of the correlation within
and between the channels (see Section 6.2.1); b) looking for seasonal pattern lag value, the blue arrows show a strong correlation at a delay of
1440s (=24h) and c-d) comparing the delayed time spans (see Section 6.2.2).

variations. These changes in path length must be compensated in real-
time. This is achieved by the Line Length Correction (LLC) system,
which ensures that path lengths are all stabilized to about 1 micron.
Operators are interested in monitoring the LLC stretcher voltage for
each antenna, and observing potential deviation of an antenna’s LLC
stretcher voltage compared to that of the other antennas.

From a time-series visualization perspective, different things can be
happening at different time scales: from several days to a few minutes.
Efficient multi-scale and multi-focus visualization, as enabled by the
Lscale operator and the variation on stack zooming [21] implemented
in ChronoLenses, is thus an essential feature. Figure 6-a plots voltage
against time for 2 days at a sampling rate of 1 second.

Starting from this 2-day overview, the operator is first interested
in finding out whether all antennas are behaving normally or if one
or more are somehow deviating. All antennas are expected to behave
more or less similarly. Direct visual comparison between the plots,
overlaid or stacked, is sufficient to see the deviation of one antenna
during the second day (Figure 6-a).

To better see the smaller and shorter fluctuations, the operator cre-
ates a lens spanning a 5-hour period, with Lunary operator remove
mean (Figure 6-a). The lens is dragged and dropped to create panel
6-b. The content of that panel is a stretched version of what is seen
through 6-a’s lens. The operator can clearly see that the fluctuations
are in phase, which implies that they all come from a single source.
She could then plot various monitoring points simultaneously based
on system or environmental components likely to cause these fluctu-
ations and create lenses defining a cross-correlation Lbinary operator
(not shown here), eventually tracing the source to temperature fluctu-
ations in the local oscillator room.

Finally, zooming in further to display just 50 minutes (Figure 6-c),
the operator can see some odd features in the signal for one of the
antennas. She filters out antennas that behave normally using a lens
defining the appropriate L f ilter. She also switches from a scatterplot
to a line-plot rendering inside the lens focus (Figure 6-d), revealing
fast oscillations at a much lower scale that occur on top of the slow
ones observed earlier for this particular antenna. This antenna-specific
issue eventually gets traced to a device repeatedly turning on and off
in the antenna.

6.2 Peer-to-peer Network Fluctuation Analysis
We consider a network system manager who is trying to optimize
bandwidth usage on a centralized peer-to-peer system. She uses line
graphs of the visiting population of two different video-on-demand
channels. The relative evolution through time of the two channels,
temporal distances, and the activity load before and after peak events
are important clues that the analyst can rely upon, assisting her in the
decision making process. For instance, identifying regular activity pat-
terns helps better predict future fluctuations and therefore better pin-
point the needs for server pool optimization. Being able to spot anoma-
lies such as overloads in their context also helps identify the potential
causes, and plan for technical solutions.

~D1 ~D2

~R

Fig. 8. Comparing the evolution of two time-series using ChronoLenses.
Left: the analysis pipeline, right: the corresponding lens hierarchy.

6.2.1 Analyzing the Evolution of Correlations
Our dataset consists of the visiting population of two different chan-
nels over a month, sampled from the server every 10 minutes (Fig-
ure 7). The overall yearly or monthly trends of the channels might be
different. For instance, one might be rising much faster than the other,
or one might fall while the other is rising a bit. In this first scenario,
the user is rather interested in the smaller scale fluctuations, comparing
evolution and identifying potential correlations at this scale.

The user first focuses on a single channel, looking for repeating
patterns. To do so, she compares differentiated data at different times
by performing the following steps: 1) remove mean, to make the data
more stationary and thus more amenable to comparison for our pur-
poses; 2) compute the first derivative (or differencing) of those; and
3) perform the cross-correlation between the two for comparison. The
pipeline that supports this type of analysis, described below, is com-
posed of four lenses, as shown in Figure 8.

The user creates lenses L1 and L2, with the Lunary operator set to
remove mean (step 1). She then creates L3 (Lunary operator set to 1st
derivative) and places it on top of L1 (step 2). Its child lens L4 gets
positioned on top of L2 with operators Lunary and Lbinary set to 1st
derivative and cross-correlation respectively (steps 2-3). In the end,
L4 outputs the correlation of the data below it (1st derivative of L2) and
its parent’s output (L3). The discovery of recurring patterns usually re-
quires performing computations on data with parameterized-yet-fixed
lags in time. Here, we use lens groups – that make all member lenses
move synchronously – to build dynamically-parameterized operators
enabling efficient exploration of the effect of different time lags and
time spans via direct manipulation.

Grouping L1 and L3 on the one hand (L1-3), and L2 and L4 on the
other hand (L2-4) makes it possible to drag one or the other focused
intervals along time and look for strong correlation by observing the
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result of L4. When such a correlation is identified, as in Figure 7-a, the
user can group L1-3 and L2-4 altogether and drag them. If L4 exhibits
a stable plot while dragging, then a recurrent trend is identified. If
on the contrary the plot varies, direct manipulation with immediate
feedback helps better understand the correlation variation before and
after peaks of interest, whereas it might be more difficult to apprehend
when computing automatic pattern detection.

When the analyst has located a pattern of interest, she can focus
on the second channel to look for correlations. She creates pipeline
L5-6 similar to group L2-4 using the data from the second channel as
input: L5 (remove mean) and L6 (L3’s child placed on top of L5 with 1st
derivative and cross-correlation operators), as depicted in Figure 7-a.

Different analysis tasks can easily be performed with the current set
of lenses: (1) drag the group L5-6 until the plot is like, or the opposite
of, L2-4 to identify correlations between the two series (see Figure 7-
a); (2) group L2-4 and L5-6 so that they preserve their relative distance
while dragging one or the other in order to compare the correlation
fluctuations by simultaneously looking at the results of lenses L4 and
L6. If those behave the same, then a similar evolution is identified
and the relative lag is known. If they always behave the opposite,
there is an inverse causality; and (3) by extending the group to L1-3
and dragging the whole, the analyst can also explore if a pattern is
preserved in time. The user can also change the lenses’ operators at
any time during exploration, as for example changing L3, L4 and L6’s
Lunary operator to 2nd derivative and looking for insights when more
lag is involved (20 minutes in our example).

6.2.2 Comparing different Time Spans in the same Series
Discovering seasonality is another important task in time-series data
analysis. It helps better predict future fluctuations. In this second part
of the scenario, our user is interested in finding seasonal differencing
on the two channels simultaneously, in order to gain a better under-
standing of what characterizes the typical data streaming cycle, if such
a cycle exists. Gaining this knowledge will eventually help develop
strategies to optimize bandwidth usage, but also assist in spotting ab-
normal behavior when it occurs.

Box-Cox Transforms [9] can be used to perform a variance stabiliz-
ing transformation. Seasonal differencing parameterized with a time
lag can then be applied to find out if the non-stationarity of the origi-
nal time-series is removed [30], but this requires to know the lag value
in advance. The identification of an appropriate lag value to perform
seasonal differencing can be made easier by building the following
pipeline: an auto-correlation lens (L1) on top of a Box-Cox transform
lens (L2). A strong correlation is observed at a delay of approximately
1440 minutes = 24 hours (see Figure 7-b).

The analyst deletes L2 and furthers her exploration as she creates
L2’s child lens L3 with Box-Cox transform and subtraction, synchro-
nized so that L3 is always 24 hours ahead of its parent (Figure 7-c).
An auto-correlation lens is then applied on top (after the differenc-
ing operation) to evaluate stability of the series. At this position in
the original time-series (Figure 7-d), there does not seem to be any
significant seasonal pattern, as high correlation values exist only at
zero-delay. But moving the lens group along the timeline, one pattern
is eventually discovered (Figure 7-e), calling for further exploration.

7 DISCUSSION

ChronoLenses aim at facilitating the creation of customized analy-
sis pipelines for easy exploration and navigation through time-series
datasets. Our initial prototype, although already offering a large set
of functionalities, still has limitations. It could be improved in several
ways, as discussed in this section.

7.1 Layering and Treeview Limitations
In its current implementation, the ChronoLenses interface does not
support effective layer management for the z-ordering of lenses that
pile up. Although the grouping of lenses keeps the z-ordering constant,
when not grouped, selecting a lens puts it on the topmost layer. This
might be annoying when dealing with complex pipelines as clicking
on a lens only to get information about it or even by mistake can alter

the pipeline. Making layer management more stable and more easily
configurable through a dedicated synchronized view would reduce the
need for advanced planning when building the pipeline and would aid
keep an accurate mental map of the data flow.

Similarly, the lens hierarchy treeview could be enhanced. As is, the
hierarchical view dynamically changes as the user selects a different
lens. This might be distracting and difficult to interpret. Moreover it
is not interactive. There is an opportunity for improvement here, as an
additional and complementary representation of the analysis pipeline
could be used as an alternative means of performing exploration tasks
if enriched with interactive capabilities. In particular, allowing for the
creation of lenses, duplication of analysis branches, or other changes
to the analysis pipeline from this alternate view would make it easier
to build up and manage complex pipelines.

7.2 Integration of SigmaLens Focus+Context Techniques
Another limitation of the current implementation is related to the po-
sitioning of lenses. When displaying an overview of large time-series,
ChronoLenses only draws a subset of all points (subsampling). Mag-
nifying the data through a lens enables the display of more detail in
context. However, as the lens’ magnification factor increases, small
movements of the lens translate to larger jumps in terms of time span
observed in the lens’ focus. For instance, given a magnification factor
of 10x, moving the lens by 10 pixels will move the time span observed
through the lens by 100 equivalent pixels at that zoom factor (see [5]
for a detailed description of this problem of quantization). The prob-
lem also exists when controlling the time span seen in a plot through
a lens observing a lower scale version of that plot à la Stack zooming.
Adapting one of the high-precision magnification lens techniques in-
troduced in [5] would solve this issue, enabling both fast repositioning
and precise selection within the lens focus.

A related issue is that our lenses occlude the area immediately sur-
rounding the region of interest, as basic magnifying lenses do. Sig-
nalLenses [26] address this issue by distorting the representation in a
bounded transition region between the lens focus and the context. We
chose not to rely on spatial distortion because of the issues it raises
in terms of making accurate analytical comparison and interpretation.
However, there are other solutions to this problem, such as speed-
coupled Sigma Lens focus targeting techniques [33]. For instance, the
Speed-coupled Blending Lens technique consists in coupling the lens
focus’ opacity to its speed, smoothly fading out the lens as speed in-
creases and smoothly fading it back in when it comes to a stop, having
reached its target position. The technique addresses the problems of
visual occlusion and would be relatively straightforward to implement
in ChronoLenses as we already support translucency in lens render-
ings. However, potential issues related to visual interference between
the layers during lens repositioning would have to be investigated.

8 CONCLUSIONS AND FUTURE WORK

We have presented ChronoLenses, a novel domain-independent vi-
sualization technique for the visual exploration of time-series data.
ChronoLenses relies on the metaphor of lenses, that compute on-
the-fly data transformations in place. ChronoLenses allow users
to progressively build elaborate analysis pipelines by interactively
compounding elementary operations, thus supporting complex user-
defined exploratory analysis tasks.

The concept of ChronoLenses can be extended to other types of
data than time-series, e.g., image analysis and image processing tech-
niques for exploring temporal media such as video, where content-
aware operators (feature detection algorithms, sharpening and color
correction filters) would complement more generic operators (magni-
fication, track filtering).

In addition to exploring new applications of the framework, we plan
to improve our implementation by addressing the limitations discussed
in the previous section, and by exploiting analytical mechanisms to
guide exploration. For instance, lenses could be made to snap to lo-
cal optima in the visualized time-series as the user drags them, using
measures such as, e.g., the strongest local cross-correlation.
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