
CHI 2005 ׀ PAPERS: Smart Interaction Techniques 1 April 2–7 ׀ Portland, Oregon, USA

The Bubble Cursor: Enhancing Target Acquisition by
Dynamic Resizing of the Cursor’s Activation Area

Tovi Grossman, Ravin Balakrishnan
Department of Computer Science

University of Toronto
tovi | ravin @dgp.toronto.edu

www.dgp.toronto.edu

ABSTRACT
We present the bubble cursor – a new target acquisition
technique based on area cursors. The bubble cursor
improves upon area cursors by dynamically resizing its
activation area depending on the proximity of surrounding
targets, such that only one target is selectable at any time.
We also present two controlled experiments that evaluate
bubble cursor performance in 1D and 2D target acquisition
tasks, in complex situations with multiple targets of varying
layout densities. Results show that the bubble cursor
significantly outperforms the point cursor and the object
pointing technique [8], and that bubble cursor performance
can be accurately modeled and predicted using Fitts’ law.

ACM Classification Keywords: H.5.2 [User Interfaces]:
Graphical User Interfaces, Theory and methods, Interaction
styles.
Keywords: Area cursor, Bubble cursor, target acquisition,
Fitts’ law.

INTRODUCTION
Pointing to targets is a fundamental task in graphical user
interfaces (GUI’s). As software gets more complex with an
increasing number of selectable user interface elements
being crammed into finite sized displays, improvements in
pointing performance can have a significant impact on
overall software usability. Recognizing this challenge,
researchers have proposed several techniques [3-5, 8, 9, 14,
15, 17] that attempt to improve pointing performance by
exploiting the fact that virtual pointing can surpass physical
pointing by manipulating the control-display parameters.

With few exceptions [8], most of these new techniques have
been shown to improve pointing only in situations where
targets are fairly sparsely distributed across the display
space. When targets are more closely packed together, as is
common in many current GUIs, the benefit of these
techniques tend to degrade, and can even be detrimental,
thus resulting in no advantage in the general case.

In an effort to improve on these previously suggested
pointing facilitation techniques we present the bubble
cursor, a new technique based upon area cursors [9, 15].
While a standard point cursor has a single point of
activation or hotspot, area cursors have larger hotspots
defined by the boundary of the cursor (Figure 1a). Problems
arise, however, when the area cursor encompasses more
than one target, making it difficult to isolate the intended
target (Figure 1b). The bubble cursor solves this problem of
the area cursor by dynamically updating its size based on
the proximity of surrounding targets, such that there is
always exactly one target inside the hotspot (Figure 1c,d).

In the following sections, we will review previous efforts at
pointing facilitation; discuss the design and implementation
of the bubble cursor; evaluate the performance of the
bubble cursor in two experiments: first in a simple 1D
pointing task and second in a multi-target 2D pointing task
with varying target densities; show that the bubble cursor’s
performance can be modeled accurately by Fitts’ law; and
conclude by discussing implications for user interface
design and future lines of work.

Figure 1. (a) Area cursors ease selection with larger hotspots
than point cursors. (b) Isolating the intended target is difficult
when the area cursor encompasses multiple possible targets.

(c) The bubble cursor solves the problem in (b) by changing its
size dynamically such that only the target closest to the cursor
centre is selected. (d) The bubble cursor morphs to encompass
a target when the basic circular cursor cannot completely do

so without intersecting a neighboring target. Note that the
same legend is used for Figures 1 to 5.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2005, April 2–7, 2005, Portland, Oregon, USA.
Copyright 2005 ACM 1-58113-998-5/05/0004...$5.00.

281

CHI 2005 ׀ PAPERS: Smart Interaction Techniques 1 April 2–7 ׀ Portland, Oregon, USA

RELATED WORK
The common approach for studying new selection
techniques is to use Fitts’ law [6, 11], a highly successful
model for predicting movement time in a pointing task.
Fitts’ Law states that the time (MT) to acquire a target with
width W and distance (or amplitude) A from the cursor can
be predicted by the equation:







 ++= 1log2 W

AbaMT

where a and b are empirically determined constants. The
logarithmic term is the index of difficulty (ID) of the task. It
can be seen from Fitts’ Law that if a target’s size decreases,
or the distance needed to travel to acquire the given target
increases, then the time taken to select it increases. Thus
target selection can be facilitated by increasing the target
width [5, 9, 14, 15, 17], decreasing the amplitude [3, 8], or
both [4]. We now review such selection techniques.

Decreasing A
An interesting attempt to directly reduce A is the drag-and-
pop technique developed by Baudisch et al. [3]. In this
technique, the system analyzes the directional movements
of the cursor and temporarily brings virtual proxies of the
potential targets towards the cursor. While this technique
was found to be beneficial on a large display for very large
A, it can be tricky to determine when the user intends to
select the remote elements versus items that are in the
nearby vicinity. Falsely activated proxies may annoy or
even impede the user’s selections. As a result, this
technique tends to work best in an environment with a
relatively sparse layout of targets.

An alternative to bringing the target closer to the cursor is
to jump the cursor to the target. Guiard et al. [8] designed a
promising interaction technique, called object pointing,
where the cursor skips across the empty space which can
exist between targets, jumping from one selectable target to
another. Object pointing was found to be considerably
faster than regular pointing in a 1D reciprocal pointing task.
However in a 2D environment, it was shown that the degree
to which object pointing outperformed regular pointing
depended upon the target density. As with the drag-and-pop
technique, increased target densities were detrimental to the
performance of the object pointing technique.

Increasing W
While the width of the target is typically defined by its size
in visual space, the effective target width can be defined as
the corresponding size of the target in motor space. In
standard pointing, the effective target width is typically
equal to the width. One of the earliest techniques for
increasing the effective width of a target is proposed by
Kabbash and Buxton [9] who investigated the use of area
cursors. The basic idea is that an area cursor has a larger
active region or hotspot for target selection, rather than a
single pixel hotspot as in standard cursors. Kabbash and
Buxton [9] showed that by setting W to be the width of the

area cursor, selection of a single pixel target could be
accurately modeled using Fitts’ law. Thus, very small
targets would have a much lower index of difficulty when
selected by an area cursor. However, a problem of
ambiguity arises when the desktop environment is densely
populated with targets, as multiple targets could fall inside
the area cursor at one time (Figure 1b).

Worden et al. [15] propose an enhanced area cursor to
alleviate this ambiguity, by including a single point hotspot
centered within the area cursor, which takes effect when
more than one target is within the cursor’s bounds. The
enhanced area cursor performed identically to regular point
cursors when targets were close together, and outperformed
point cursors when targets were far apart. This enhanced
area cursor is the major inspiration for the bubble cursor
which we describe and evaluate in this paper.

In the realm of 3D pointing, Zhai and Buxton [16]
implemented a 3D volume cursor and showed that it
surpassed a 3D point cursor for target selection. They also
showed that semitransparent rendering was a useful aid in
discriminating between targets in depth.

Instead of enlarging the cursor’s activation zone to increase
effective target width, the size of the actual target can be
increased. McGuffin and Balakrishnan [14] investigated the
potential performance benefits of expanding targets, whose
size dynamically increase as the cursors approaches. They
found that users were able to take advantage of the larger
expanded target width even when expansion occurred after
90% of the distance to the target was traveled. It was also
shown that overall performance could be modeled
accurately by Fitts’ law by setting W to the expanded target
width. Zhai et al. [17] followed up this study by showing
that even when users could not anticipate the expansion,
similar performance gains were realized. Cockburn and
Firth [5] developed a similar technique based on expanding
targets called bubble targets. Instead of increasing the size
of the entire target, a bubble would appear around the target
as the cursor approached. While expanding targets improve
selection times for single isolated targets [14, 17], to date it
has not been shown to work well when multiple targets are
present in close proximity [13, 14, 17].

Decreasing A and Increasing W
There have been a number of efforts to facilitate pointing
by dynamically adjusting the control display (CD) gain. By
increasing the gain while approaching a target, and
decreasing it while inside a target, the motor space distance
and width are decreased and increased respectively. Such
adaptive CD gain techniques have been shown to decrease
target acquisition times [4, 5, 10, 15]. In a variation called
semantic pointing Blanch et al. [4] showed that
performance could be predicted using Fitts’ Law, based on
the resulting larger W and smaller A in motor space. Once
again, however, problems arise when multiple targets are
present as the intervening targets will slow down the cursor
as it travels to its destination target.

282

CHI 2005 ׀ PAPERS: Smart Interaction Techniques 1 April 2–7 ׀ Portland, Oregon, USA

BUBBLE CURSOR DESIGN AND IMPLEMENTATION
In designing the bubble cursor, we explicitly sought to
address two main shortcomings of area cursors.

First, area cursors in the literature are typically squares. As
shown in Figure 2a, situations can occur where a target that
is further away from the centre of the cursor is captured
preferentially over a closer target, due to the shape of the
square. This may make it potentially difficult for a user to
plan their movements when heading for a particular target.
We solve this problem by making the default shape of our
bubble cursor a circle, which ensures that the target closest
to the cursor centre is always captured first (Figure 2b)

Figure 2. Square vs. circle cursors. D1 < D2. (a) Square shape
captures target further away from the cursor centre. (b).

Circle shape ensures that the closest target is captured first.

Second, as discussed in the previous section, even with the
enhancement suggested by Worden et al. [15], area cursors
surpass point cursors only when a single target is inside its
hotspot. When the area cursor is too large (Figure 3a), the
likelihood of multiple targets being captured by the hotspot
increases, and consequently lowers the benefits of an area
cursor. In essence, the effective width of the targets regress
to their actual values since the area cursor simply behaves
as a point cursor in this situation [15]. Conversely, if the
size is too small, the full potential of the area cursor will not
be realized, as the area cursor may find itself in empty
spaces with no targets within its hotspot (Figure 3b). Thus,
the overall benefit of an area cursor when used in an
interface with multiple targets is highly dependent on its
size, and on the layout of the targets. The bubble cursor
addresses this problem by dynamically changing its size
based on the proximity of the surrounding targets.

Figure 3. Effect of size on performance of area cursors. (a) A
large area cursor tends to encompass multiple targets, thus

completely negating its benefits. (b) A small area cursor does
not always capture a target, thus reducing its benefits.

By default, the bubble cursor is rendered as a semi
transparent circular area cursor. A small crosshair is drawn
in the center of the bubble cursor indicating the current
location of the standard pointer. A simple algorithm is used
to continuously update the radius of the bubble cursor, such
that there is always exactly one target within its hotspot. To
describe the algorithm in an environment with targets T1,
T2, ..., Tn we use the following definitions:

Intersecting Distance i (IntDi): The length of the shortest
line connecting the center of the bubble cursor and any
point on the border of Ti.

Containment Distance i (ConDi): The length of the longest
line connecting the center of the bubble cursor and any
point on the border of Ti.

A simplified version of the algorithm is as follows:

Set i = index of closest target (Ti) by intersecting distance
Set j = index of second closest target (Tj) by intersecting
distance
Set radius of bubble cursor = min(ConDi, IntDj)

This algorithm ensures that the bubble cursor will at least
intersect the closest target, and possibly completely contain
it. Furthermore, it will not intersect the second closest
target, and therefore no other target. To prevent the bubble
cursor from always touching the second closest target, in
practice we slightly modify this algorithm to allow some
empty space between the edges of the bubble cursor and the
second closest target (Figure 4a). When the bubble only
intersects the closest target and does not completely contain
it, we morph the cursor by extending a second bubble
which quickly expands from the intersection points and
envelopes the target (Figure 4b). This acts as a reinforcing
visual cue to the user that the target is indeed captured by
the cursor.

Figure 4. Bubble cursor. (a) Cursor size is dynamically

adjusted such that only one target is captured at any time. (b)
Cursor is morphed to envelop the target when it is not

completely contained by the main bubble.

Effective Width
We now define how the bubble cursor changes the effective
width of a target – the size in motor space of a target’s
activation boundaries. Using the bubble cursor essentially
divides up the total space in which all targets reside into
regions, such that there is exactly one target inside each
region, and that target is the closest target to any point
within that region (Figure 5). In mathematical terms, this is
referred to as a Voronoi diagram [2]. The activation

283

CHI 2005 ׀ PAPERS: Smart Interaction Techniques 1 April 2–7 ׀ Portland, Oregon, USA

boundaries of each target are thus equivalent to its
corresponding region in this Voronoi diagram. This in
effect increases the target’s size in motor space to the
maximum possible extent. As can be seen from Figure 5, a
target’s region need not be rectangular. In this paper, we
restrict our experiments to targets with square activation
zones, and define the effective width as the square’s width.
To model selection times in the case where the region is not
square, more advanced techniques are required, which we
have developed and published elsewhere [7].

Figure 5. Voronoi diagram defining the regions surrounding

each target. The activation boundaries of each target, or
effective width, are defined by the corresponding region.

EXPERIMENT 1
Given that the bubble cursor enlarges the effective width of
every target in a deterministic manner, we should be able to
use Fitts’ law to model and predict the time it takes to
acquire targets using the bubble cursor. From previous
work on expanding targets [14, 17], we would expect that
Fitts’ law would hold in situations like this where the target
width dynamically changes during the acquisition process.
However, the bubble cursor has a few properties that make
it difficult to directly apply the results of the previous work
on expanding targets without additional experimental
verification. First, a bubble cursor that is constantly
changing size may be visually distracting to the user and
thus affect the performance in an irregular way that may
make it difficult to model with Fitts’ law. Second, users
may find it difficult to predict how far they need to move
the pointer before the bubble cursor captures the desired
target, thus affecting the planning and execution of the
required motor movements. Thus, it is important to
empirically determine if Fitts’ law holds for bubble cursors.
This is the first goal of Experiment 1.

Even if Fitts’ law is shown to model bubble cursor
performance accurately, it does not necessarily mean that
the bubble cursor provides a significant advantage over
point or regular area cursors. By definition, the bubble
cursor enlarges the effective width of every target to the
maximum possible extent. As such, in the best case
scenario, performance should be governed by the effective
width rather than the actual width of the target. In other
words, selecting a target with actual width W and effective
width EW with a bubble cursor should be equivalent to
selecting a target with actual width of EW with a regular

point cursor. In practice, however, this may not be the case
and performance may be somewhere between the limits
determined by W and EW. Thus, the second goal of
experiment 1 is to determine if performance is governed by
and makes maximal use of the effective width.

To answer these questions in a systematic manner, we begin
by studying bubble cursor performance in the simplest
possible pointing task: 1D target acquisition.

Apparatus
The experiment was conducted on a 3.2Ghz Pentium4 PC
running Windows XP with OpenGL for graphics, and a 20”
LCD display at 1600x1200 resolution. Mouse acceleration
was set to 0, with a control-display ratio of 1/2. All
dimensions are measured in units (1 unit = 0.2 cm).

Participants
Ten volunteers (4 female, 6 male) participated in the
experiment. Participants ranged in ages from 18 to 25, were
all right-handed, and controlled the input device and
consequently the cursor with their right hand.

Procedure
The task was a reciprocal 1D pointing task, which required
participants to select two fixed sized targets back and forth
in succession. The targets were rendered as solid circles,
equidistant from the centre of the display in opposite
directions along the horizontal axis. The target to be
selected was colored green, and the other grey. Movement
of the cursor was restricted along the horizontal axis. When
participants correctly selected a target, the targets would
swap colors, as an indication that the participant had to now
move to and select the other target. Participants had to
successfully select the green target before the colors would
swap, even if it required multiple clicks. This removes the
possibility that participants may try to “race through the
experiment by clicking anywhere”.

If we only had two targets in the scene, the effective width
of each target would be half the size of the display, making
selection trivial. To approximate a more realistic target
acquisition scenario, distracter targets of varied sizes were
pseudo-randomly placed in the scene, in a manner such that
the effective width of both goal targets was controlled.
Distracters were rendered as grey outlined circles. The
bubble cursor was rendered in semitransparent blue, and
any goal or distracter targets it covered also appeared blue.
In the baseline condition using a point cursor, goal and
distracter targets were highlighted blue when the point
cursor was over them.

Design
A repeated measures within-participant design was used.
The independent variables were cursor type CT (Point,
Bubble), amplitude A (192, 384, 768 units), width W (8, 16,
24 units), and effective width EW (32, 64, 96 units). A fully
crossed design resulted in 54 combinations of CT, A, W,
and EW.

284

CHI 2005 ׀ PAPERS: Smart Interaction Techniques 1 April 2–7 ׀ Portland, Oregon, USA

Each participant performed the experiment in one session
lasting approximately one hour. The session was broken up
by cursor type, with nine blocks of trials completed for each
cursor. In each block participants completed trial sets for
each of the 27 combinations of A, W, and EW, presented in
random order. A trial set consisted of 5 clicks (i.e., four
reciprocal movements between the two targets).

Before using each cursor, participants were given a single
warm-up block to familiarize themselves with the cursor
and task. Participants were randomly divided into 2 groups
of 5 each, with one group using the point cursor first, and
the other group using the bubble cursor first.

Results

Movement Time
Movement time is the main dependent measure, and is
defined as the time taken to move to and successfully select
the active green target. Repeated measures analysis of
variance showed a significant main effect for CT (F1,9 =
10870, p < .0001), W (F2,358 = 991, p < .0001), EW (F2,358 =
374, p < .0001), and A (F2,358 = 4487, p < .0001) on
movement time. The overall mean movement times were
1.250 seconds for the point cursor and 0.879 seconds for the
bubble cursor. Post hoc multiple means comparison tests
showed that for each of the 27 conditions, the bubble cursor
was significantly faster, all at the p < .0001 level. These
results clearly show that the bubble cursor can result in
improved performance, even when the effective width is
only 33% larger than actual target width (W=24, EW=32).
There were also interaction effects CT x EW (F5,445 = 235, p
< .0001) and CT x W (F5,445 = 491, p < .0001) for movement
time. As Figure 6 illustrates, performance of the bubble
cursor is dependent on EW rather than W whereas
performance of the point cursor of course depends on W.

Figure 6. Movement time by W, EW values for both cursors,
averaged over all A values.

Figure 7 plots the movement time as a function of the index
of difficulty (ID). For the point cursor, we define ID as
log2(A/W + 1), while for the bubble cursor, log2(A/EW + 1).
Linear regression analysis showed that both conditions fit

the Fitts’ law equation with r2 values above 0.95. Moreover,
the r2 value of the combined data is 0.9858. This is an
excellent result as it shows that not only can selection using
the bubble cursor be accurately modeled using Fitts’ Law,
but selection is just as fast as if the target had a actual width
of EW and a point cursor were used. This is similar to the
findings in [14, 17] where the time taken to acquire
expanding targets could be modeled accurately using the
final expansion width, and that movement times could be
just as fast as if the target started at the expanded width.

Figure 7. Movement time by ID for both cursors

It is interesting to note that even though the regression
analysis suggests almost no overhead to using the bubble
cursor, there was a significant effect of W (F2,178 = 16.51, p
< 0.0001) on movement time, as well as a significant W x
EW (F2,178 = 3.76, p < 0.005) interaction, in bubble cursor
conditions (Figure 8a). Post hoc tests show that increasing
W does significantly decrease movement time for EW = 32
and 64 (p < 0.001). However there is no decrease in MT for
EW = 96. A possible explanation for this is that as EW
approaches W, users rely more on the visual target bounds,
instead of on the expansion of the bubble.
Another interesting observation is that there was a
significant CT x block number interaction (F17,153 = 6.43, p
< 0.0001). The different slopes of the curves in Figure 8b
illustrates that more learning occurs with the bubble cursor,
probably due to users overcoming the slight overheads
which were discussed in the previous paragraph.

Figure 8. (a) Movement time by W, EW for the bubble cursor,

illustrating differences in effect of W depending on EW. (b)
Movement time by block number, illustrating differences in

learning effects for the two cursors.

285

CHI 2005 ׀ PAPERS: Smart Interaction Techniques 1 April 2–7 ׀ Portland, Oregon, USA

Error Rate
Recall that the experiment design was such that participants
had to successfully select each target before proceeding to
the next trial, even if it required multiple clicks. As such, all
trials are ultimately “successful”. However, we classified
the cases where targets were not selected on the first click
as errors, and analyzed this error data.

There was a main effect for CT (F1,9 = 11.68, p < .001), W
(F2,358 = 3.79, p < .05), EW (F2,358 = 19.55, p < .0001), and
A (F2,358 = 8.84, p = .0001) on error rate. Overall error rates
were 3.16% for the point cursor and 2.35% for the bubble
cursor – well within the < 4% range one typically finds in
standard Fitts’ law experiments [11].

EXPERIMENT 2

In experiment 1, we determined that the bubble cursor can
indeed reduce target acquisition times, taking maximum
advantage of the increased effective target width, and that
its performance is accurately modeled using EW. The 1D
reciprocal pointing task used in that experiment was well
suited to answering the initial fundamental questions we
asked. However, it may not be representative of the more
complex target acquisition tasks one commonly encounters
in real 2D GUI interfaces. In this second experiment, we
explore the bubble cursor’s performance in a more realistic
environment with multiple 2D targets in varying layout
densities.

By definition, we know that the bubble cursor will have no
advantage when acquiring a target which is completely tiled
in by its surrounding targets since the effective width of that
target would be equivalent to its actual width. In experiment
1, we saw that the bubble cursor could improve selection
times even when the effective width was only 33% larger
than the actual width. In this experiment, we probe this
issue further, and see how much surrounding void space a
target would need to take advantage of the bubble cursor.
We also look at the impact that intervening distracter
targets have on the bubble cursor’s performance. In this
second experiment, in addition to comparing the bubble
cursor to the standard point cursor, we include a third
technique – Object Pointing [8] – which as discussed in the
related work section is perhaps the most promising existing
technique for improved target acquisition. Since the bubble
cursor is a direct extension of the static area cursor, there is
no reason to expect it to perform worse than the area cursor.
This was confirmed in pilot studies, and as such we did not
include the area cursor in our experimental comparison.

Object Pointing
Object pointing [8] is a pointing technique which
essentially ignores void space between targets. When the
crosshair cursor leaves a target’s “safety zone”, which can
be larger than its visual boundaries, it analyzes its current
direction, velocity, and acceleration. If its velocity and
acceleration exceeds a threshold values, it jumps to the
boundary of the closest target within an angular slice of its
current direction. If no target is found, or its velocity or

acceleration is below their respective threshold values, the
cursor returns to the boundary of the current target. In our
implementation, the safety zone was a 32 unit radius (100
pixels), the velocity threshold was 90 pixels per second, and
it searched angular slices of 20, 25, and 30 degrees in
sequence. We chose not to use an acceleration threshold as
we found it hindered the performance of the cursor when
crossing over a large number of intermediate targets.
Although it was found in [8] that hiding the crosshair cursor
had no effect on movement times, we chose to display the
crosshair, as it proved beneficial in our pilot studies.

Apparatus
The apparatus used was the same as in experiment 1.

Participants
Twelve volunteers (3 female, 9 male) participated in this
experiment. Participants ranged in age from 18 to 28, were
all right-handed, and controlled the input device and
consequently the cursor with their right hand.

Procedure
At the start of each trial, a starting solid green goal target
was placed in the center of the screen. As in experiment 1,
participants had to successfully select the target before
continuing to the next goal target. After each successful
selection, a new goal target and set of distracter targets
were displayed, with the goal target appearing in an
unpredictable location. Distracter targets were also
positioned so that the effective width of the goal target was
controlled. We chose to redraw the entire scene after every
successful click, instead of simply jumping the goal target
to one of the distracter targets, so that we could carefully
control the goal target’s effective width and number of
intermediate distracter targets along the straight line ideal
movement path from the start to goal target. Remaining
distracters which were not along the ideal movement path
were randomly placed in the scene. Distracters were again
rendered as grey outlined circles, and were always the same
size as the goal target. The feedback we provided was
stronger than in experiment 1, with both goal and distracter
targets being filled red when any of the three cursors
captured them. The bubble cursor was rendered in a
semitransparent grey, which was slightly more visually
subtle compared to the blue used in experiment 1, and made
it easier to see the red highlighted targets beneath it.

Independent Variables
We define two factors resulting from the environment
density which may affect acquisition time in any 2D
selection technique (Figure 9). One is the amount of void
space immediately surrounding a target (as characterized by
EW when using the bubble cursor). In this experiment we
vary the ratio between the target’s effective and actual
widths. The other factor is the density of intermediate
targets which must be passed over en route to the goal
target. This has been shown to affect acquisition times in
other selection techniques [8] and could affect the bubble

286

CHI 2005 ׀ PAPERS: Smart Interaction Techniques 1 April 2–7 ׀ Portland, Oregon, USA

cursor’s performance due to the visual distraction of the
bubble cursor growing and shrinking as it passes over these
intervening targets. To control the effective width we
placed two distracter targets along the direction of
movement, one before and one after the goal target, and
another two distracter targets perpendicular to the direction
of movement, one above and one below the goal target.
This created a square activation boundary for the target
when using the bubble cursor, simplifying the calculation of
EW. We controlled the density of the intermediate targets
by fixing the number of targets within a 20 degree slice
originating at the start target and pointing towards the new
goal target positions. With a density value of 0, there were
no intermediate targets, except for the one placed before the
goal target to control its effective width. With a density of
1, intermediate targets were almost tiled from the start to
goal target positions, and then offset in the direction
perpendicular to the line of movement by a pseudo-random
length, such that each one remained within the 20 degree
slice. A density value of 0.5 would produce half as many
intermediate targets. The number of remaining distracter
targets which were not in the 20 degree slice was controlled
to closely match the density of targets within the slice.

Figure 9. Experimental setup. Red circle is the start target,

green circle the goal target. Placement of the grey filled circles
is manipulated in the experiment to control the EW/W ratio.
The black filled circles are placed to control the intermediate
target density. The black outline circles are randomly placed
distracters. Note that the grey and black colors, and lines, are
for illustration only – in the experiment, there were no lines

and all the distracter targets were grey outline circles.

Design
A repeated measures within-participant design was used.
The independent variables were cursor type CT (Point,
Bubble, Object), amplitude A (256, 512, 768 units), width
W (8, 16, 32 units), effective width to width ratio EW/W
(1.33, 2, 3), and distracter density D (0, 0.5, 1). A fully
crossed design resulted in 243 combinations of CT, A, W,
and EW/W. Each participant performed the experiment in
one session lasting approximately 90 minutes. The session
was broken up by cursor type, with 4 blocks of trials
completed for each cursor. In each block participants would
complete trial sets for each of the 27 combinations of W,
EW/W, and D presented in random order. A trial set
consisted of selecting 9 targets in sequence (not counting
the initial click on the start target). The distance between
the targets was one of the three A conditions, with each of
the A conditions occurring three times but randomly

distributed within each trial set. Before using each cursor,
participants were given six warm-up trial sets to familiarize
themselves with the cursor and task. Presentation order of
the cursors was counterbalanced, resulting in six orderings.
Participants were randomly divided into 6 groups of 2, with
each group performing one of the six orderings.

Results

Movement Time
Repeated measures analysis of variance showed a
significant main effect for CT (F2,22 = 7947, p < .0001), W
(F2,286 = 6659, p < .0001), EW/W (F2,286 = 72.92, p < .0001),
A (F2,286 = 2038, p < .0001) and D (F2,286 = 206.3, p <
.0001) on movement time. The overall mean movement
times were 1.41 seconds for object pointing, 1.08 seconds
for the point cursor, and 0.93 seconds for the bubble cursor.
The following interaction effects were observed: CT x W,
CT x EW/W, CT x D, and CT x A indicating that the
different cursors were affected differently by the
manipulated target parameters. Figures 10, 11, and 12
illustrate these effects.

As seen in Figure 10, the bubble cursor is faster than the
point cursor, even at the smallest EW/W value of 1.33 (F1,11
= 157.6, p < .0001), and is able to take maximal advantage
of the increased effective width as the EW/W ratio
increases. In contrast, it is interesting that object pointing
performance degrades as EW/W ratio increases (p < .0001).

Although the density of distracter targets had a significant
main effect on selection times, this effect was remarkably
different for the object and bubble cursors as indicated by
the significant CT x D interaction (F8,376 = 203.2, p <
.0001). For the bubble cursor, contrary to what may be
expected, movement time increased when the density was
decreased (p < .0001) (Figure 11). We believe this is due to
the visual distraction of the bubble cursor becoming
extremely large when no targets are in its vicinity. This
shortcoming could possibly be alleviated by introducing a
maximum value for the cursor radius, or altering its visual
appearance when it is larger to reduce its intrusiveness. For
object pointing, performance was severely degraded as the
density of distracter targets increased (p < .0001). There are
several explanations for the poor showing. First, in [8] the
tested target environments contained at most 60 objects. In
our experiment, there could be up to 200 targets depending
on the distracter target density and target size. Secondly,
our experimental design differed from [8] in that we always
had a distracter target after the goal target along the
expected movement path. This meant overshooting the goal
target had a cost associated with it, whereas in [8] the
absence of a distracter target after the goal target in some
cases effectively made the goal target’s width extremely
large along one side. It is also possible that users need more
time to learn strategies for using the object pointing cursor.
Indeed the block x CT interaction was significant (F11,121 =
5.31, p < .0001), with object pointing showing the most
learning (Figure 12).

287

CHI 2005 ׀ PAPERS: Smart Interaction Techniques 1 April 2–7 ׀ Portland, Oregon, USA

Figure 10. Movement time for each cursor type by EW/W

Figure 11. Movement time for each cursor type by distracter

target density.

Figure 12. Movement time for each cursor type by block

number.

Figure 13 plots the movement time as a function of the
index of difficulty (ID). As in experiment 1, for the point
cursor, we define ID as log2(A/W + 1), while for the bubble
cursor, log2(A/EW + 1). Note that it has been shown that
acquisition of square and circular targets can accurately be
modeled using their respective widths in the Fitts’ Law
equation [1, 6, 12]. We omitted the object pointing data
from this analysis as the technique cannot be accurately
modeled using Fitts’ law [8]. Linear regression analysis
showed that both conditions fit the Fitts’ law equation with
r2 values above 0.96. The combined data r2 value is 0.966.
This confirms that the results seen in the simplified task in
experiment 1 continue to hold in the more general 2D target
selection task of experiment 2, even with dense target
layouts.

Error Rate
We calculated error rate in the same manner as in
experiment 1. Error rate was significantly effected by CT
(F2,22 = 25.64, p < .0001), W (F2,286 = 43.85, p < .0001), and
EW/W (F2,286 = 3.18, p = .0416). Total error rates were
2.98% for the point cursor, 2.31% for the object pointing
cursor, and 1.58% for the bubble cursor, again all well
within the typical < 4% range seen in target acquisition
studies.

Figure 13. Movement time by ID. To calculate the ID values,
W is used for point cursor and EW is used for bubble cursor.

DISCUSSION
We have presented the bubble cursor, a new selection
technique which enhances area cursors by growing and
shrinking to maximize the effective width of targets. In two
experiments we have demonstrated that the bubble cursor
significantly reduces target acquisition times in both simple
and complex multi-target environments.

Unlike many previously described techniques which
facilitate selection, the bubble cursor continues to provide
advantages in dense target environments. In the second
experiment, we varied both the densities of targets
immediately surrounding the goal target, and of
intermediate targets along the expected movement path. In

288

CHI 2005 ׀ PAPERS: Smart Interaction Techniques 1 April 2–7 ׀ Portland, Oregon, USA

all cases we found the bubble cursor to be beneficial, even
with relatively little empty space between targets. Because
we evaluated the cursor in such varied conditions, and
showed that Fitts’ law accurately models its performance,
we can confidently use the results to predict the
performance of the bubble cursor in a general 2D user
interface.

While our conditions did vary the essential parameters, we
were forced to make minor simplifications in the second
experiment. First, each target in the environment was set to
the same size, to ease the control of the target density
parameters. Second, the distracter targets surrounding the
goal target were placed in an organized fashion so that the
goal target would have a square activation zone. It may be
worthwhile to investigate what, if any, overhead costs
would be introduced in conditions which do not make such
simplifications.

Our experimental method and analysis warrants some
discussion. Firstly, we defined movement time as the time
taken for users to make a successful selection, rather than
the time until the first click. By forcing subjects to make a
successful click to complete a trial, it is in the subject’s best
interest to perform honestly and minimize errors. This
method is also a closer approximation to a realistic GUI
pointing task, where users typically do not abort a selection
simply because they missed it the first time.

To ensure that this method did not bias our results in any
way, we repeated our analysis using the time until the first
click, whether it was a successful selection or not. Indeed,
the basic patterns, and significant differences which we
report, are upheld. For example, in Experiment 1 we report
average movement times of 0.879 and 1.250 seconds for the
bubble cursor and point cursor respectively. Average times
until the first click were 0.866 and 1.232 seconds
respectively. Similarly, in Experiment 2, instead of the
movement times of 1.08 and 0.93 seconds which we report,
times would have been 1.067 and 0.922 seconds.

A related issue was our decision not to use the effective
width adjustment for accuracy, as described by MacKenzie
[11]. One reason we did not use this adjustment, is so we
could analyze movement time data broken up by the
specific width conditions in our experiment. Figure 6, for
example, would be impossible, or at least misleading, if the
widths didn’t take on exact values or if it represented data
points when a selection was made outside the specified
width. Another reason why we chose not to make this
adjustment was because the bubble cursor had lower
movement times and lower error rates, negating the need
for any in-depth analysis of the speed-accuracy trade-off.

In both studies we found that not only did the bubble cursor
reduce pointing times, but its performance in selecting
targets with actual width of W and effective width of EW
was essentially equivalent to using a point cursor to select
targets with actual width of EW. In other words, targets can
remain visually small, but can be selected as though they

were as large as can possibly be in motor space. Most
importantly, the bubble cursor’s performance remains
extremely good regardless of the number or density of
targets in the environment. In contrast, many of the other
selection techniques surveyed in our related work section
tend to break down in dense multi-target situations.

Another advantage of the bubble cursor is that it achieves
these performance gains without changing the visual
characteristics of the underlying interface elements. The
size and position of all targets remain unmodified, rather it
is the cursor that dynamically changes in size.

We also found the bubble cursor to be superior to object
pointing, one of the more promising selection techniques in
the literature. However we must be careful before drawing
too many conclusions about the relatively poor performance
of object pointing in our experiment, as there are a number
of parameters which could conceivably be modified to
improve this technique. It would be interesting to see if
object pointing could benefit from adaptive algorithms
which continuously update their own parameters, much like
how the bubble cursor radius is dynamically calculated.

It may also be possible to apply the concepts of the bubble
cursor to expanding targets. In current implementations,
expanding targets have a final predetermined expansion
width (such as 200%). This causes the target to overlap or
push away neighboring targets within this expansion zone.
An alternative strategy would be to expand the target into
the region of space as defined by the Voronoi diagram. This
would increase its activation zone the same extent which
the bubble cursor does.

The positive results from our experiment suggest that the
bubble cursor could be a beneficial addition to user
interfaces. Because the interface layout is unmodified,
individual software programs do not need to be re-written,
instead the mouse driver software could be updated to have
the bubble cursor available in any program. It would be
trivial to incorporate the bubble cursor into user interfaces
in which users only need to click on targets, and never in
void space. A web browser is a good example of such an
interface. Special considerations are required for interfaces
in which users can also click on the void space in between
targets. In a word processor for example, a user can click
anywhere to reposition the cursor location. One solution
would be to have some sort of switching mechanism, as
suggested in [8] to only use the crosshair positioned in the
middle of the bubble. Such a switch could be done in a fluid
manner since the crosshair position is already visible to the
user. An alternative would be to require users to explicitly
select the bubble cursor from a menu or icon. This would be
very appropriate for interfaces which already have explicit
“selection” modes. In Adobe Illustrator for example, the
user must click an arrow icon before selecting drawing
objects such as vertices, edges, and control points. This
arrow icon could simply be changed to a bubble icon,
which would activate the bubble cursor.

289

CHI 2005 ׀ PAPERS: Smart Interaction Techniques 1 April 2–7 ׀ Portland, Oregon, USA

FUTURE WORK
Our experiments indicate that the bubble cursor is a very
promising selection technique with significant performance
advantages over the status-quo. However, there are several
directions that can be pursued to extend the current work.

First, while our results could be used to predict the
effectiveness of the bubble cursor in any general user
interface, it may be interesting to explicitly evaluate it for
specific target layouts resembling particular user interfaces.

It may also be interesting to combine some of the prediction
algorithms found in [3, 8] into the bubble cursor. Currently,
the bubble cursor expands and shrinks in each direction
equally, such that it is always a circle. It may be interesting
to experiment with some more interesting shapes. One
could imagine the cursor expanding in the direction of
movement, and shrinking in the direction perpendicular to
the movement. Such an elliptical shape could further
increase effective target widths by biasing against targets
which clearly are not along the direction of movement.

It would also be useful to explore interaction techniques for
switching between the discrete selections of the bubble
cursor, and the continuous pointing capability of the
standard point cursor. As mentioned earlier, the bubble
cursor’s crosshair would play a critical role in such a
switch. It may even be useful to give the crosshair
additional functionality when using the bubble cursor,
beyond the currently simple function of simply indicating
the center of the bubble.

Another interesting extension would be to explore methods
for group selections using the bubble cursor. There could be
a button or gesture which allows the user to modify the
shape or size of the bubble such that it can cover multiple
objects for selection when desired.

Lastly, we feel that the bubble cursor could be an effective
tool for selection in 3D environments, where the bubble is a
spherical volume instead of circular area. Such a cursor
would build on the silk cursor of Zhai and Buxton [16], just
as the 2D bubble cursor builds on area cursors.

ACKNOWLEDGMENTS
We thank Michael McGuffin for his insights into
dynamically sized cursors and directing us to Voronoi
diagrams. We also thank John Hancock, members of the
DGP Lab, and our experiment participants.

REFERENCES
1. Accot, J. and Zhai, S. (2003). Refining Fitts' law models

for bivariate pointing. ACM CHI Conference on Human
Factors in Computing Systems. p. 193-200.

2. Aurenhammer, F. and Klein, R. (2000). Voronoi
Diagrams. Chapter 5 in, in Handbook of computational
geometry, J. Sack and J. Urrutia, Editors. North-
Holland: Amsterdam, Netherlands. p. 201-290.

3. Baudisch, P., Cutrell, E., Robbins, D., Czerwinski, M.,
Tandler, P., Bederson, B., and Zierlinger, A. (2003).
Drag-and-pop and drag-and-pick: Techniques for
accessing remote screen content on touch- and pen-
operated systems. Proceedings of Interact. p. 57-64.

4. Blanch, R., Guiard, Y., and Beaudouin-Lafon, M.
(2004). Semantic pointing: improving target acquisition
with control-display ratio adaptation. ACM CHI
Conference on Human Factors in Computing Systems.
p. 519-525.

5. Cockburn, A. and Firth, A. (2003). Improving the
acquisition of small targets. British HCI Conference. p.
181-196.

6. Fitts, P.M. (1954). The information capacity of the
human motor system in controlling the amplitude of
movement. Journal of Experimental Psychology, 47. p.
381-391.

7. Grossman, T. and Balakrishnan, R. (2005 - in press). A
probabilistic approach to modeling 2D pointing. To
appear in ACM Transactions on Computer Human
Interaction.

8. Guiard, Y., Blanch, R., and Beaudouin-Lafon, M.
(2004). Object pointing: a complement to bitmap
pointing in GUIs. Graphics Interface. p. 9-16.

9. Kabbash, P. and Buxton, W. (1995). The "Prince"
technique: Fitts' law and selection using area cursors.
ACM CHI Conference on Human Factors in Computing
Systems. p. 273-279.

10. Keyson, D. (1997). Dynamic cursor gain and tactual
feedback in the capture of cursor movements.
Ergonomics, 12. p. 1287-1298.

11. MacKenzie, S. (1992). Fitts' law as a research and
design tool in human-computer interaction. Human-
Computer Interaction, 7. p. 91-139.

12. MacKenzie, S. and Buxton, W. (1992). Extending Fitts'
law to two-dimensional tasks. ACM CHI Conference on
Human Factors in Computing Systems. p. 219-226.

13. McGuffin, M. (2002). Fitts' law and expanding targets:
an experimental study and applications to user interface
design, M.Sc. Thesis, Department of Computer Science,
University of Toronto.

14. McGuffin, M. and Balakrishnan, R. (2002). Acquisition
of expanding targets. ACM CHI Conference on Human
Factors in Computing Systems. p. 57-64.

15. Worden, A., Walker, N., Bharat, K., and Hudson, S.
(1997). Making computers easier for older adults to use:
area cursors and sticky icons. ACM CHI Conference on
Human Factors in Computing Systems. p. 266-271.

16. Zhai, S., Buxton, W., and Milgram, P. (1994). The "Silk
Cursor": Investigating transparency for 3D target
acquisition. ACM CHI Conference on Human Factors in
Computing Systems. p. 459-464.

17. Zhai, S., Conversy, S., Beaudouin-Lafon, M., and
Guiard, Y. (2003). Human on-line response to target
expansion. ACM CHI Conference on Human Factors in
Computing Systems. p. 177-184.

290

