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ABSTRACT 
We present the bubble cursor – a new target acquisition 
technique based on area cursors. The bubble cursor 
improves upon area cursors by dynamically resizing its 
activation area depending on the proximity of surrounding 
targets, such that only one target is selectable at any time. 
We also present two controlled experiments that evaluate 
bubble cursor performance in 1D and 2D target acquisition 
tasks, in complex situations with multiple targets of varying 
layout densities. Results show that the bubble cursor 
significantly outperforms the point cursor and the object 
pointing technique [8], and that bubble cursor performance 
can be accurately modeled and predicted using Fitts’ law. 

ACM Classification Keywords: H.5.2 [User Interfaces]: 
Graphical User Interfaces, Theory and methods, Interaction 
styles. 
Keywords: Area cursor, Bubble cursor, target acquisition, 
Fitts’ law. 

INTRODUCTION 
Pointing to targets is a fundamental task in graphical user 
interfaces (GUI’s). As software gets more complex with an 
increasing number of selectable user interface elements 
being crammed into finite sized displays, improvements in 
pointing performance can have a significant impact on 
overall software usability. Recognizing this challenge, 
researchers have proposed several techniques [3-5, 8, 9, 14, 
15, 17] that attempt to improve pointing performance by 
exploiting the fact that virtual pointing can surpass physical 
pointing by manipulating the control-display parameters.  

With few exceptions [8], most of these new techniques have 
been shown to improve pointing only in situations where 
targets are fairly sparsely distributed across the display 
space. When targets are more closely packed together, as is 
common in many current GUIs, the benefit of these 
techniques tend to degrade, and can even be detrimental, 
thus resulting in no advantage in the general case.  

In an effort to improve on these previously suggested 
pointing facilitation techniques we present the bubble 
cursor, a new technique based upon area cursors [9, 15]. 
While a standard point cursor has a single point of 
activation or hotspot, area cursors have larger hotspots 
defined by the boundary of the cursor (Figure 1a). Problems 
arise, however, when the area cursor encompasses more 
than one target, making it difficult to isolate the intended 
target (Figure 1b). The bubble cursor solves this problem of 
the area cursor by dynamically updating its size based on 
the proximity of surrounding targets, such that there is 
always exactly one target inside the hotspot (Figure 1c,d). 

In the following sections, we will review previous efforts at 
pointing facilitation; discuss the design and implementation 
of the bubble cursor; evaluate the performance of the 
bubble cursor in two experiments: first in a simple 1D 
pointing task and second in a multi-target 2D pointing task 
with varying target densities; show that the bubble cursor’s 
performance can be modeled accurately by Fitts’ law; and 
conclude by discussing implications for user interface 
design and future lines of work. 

 

Figure 1. (a) Area cursors ease selection with larger hotspots 
than point cursors. (b) Isolating the intended target is difficult 
when the area cursor encompasses multiple possible targets. 

(c) The bubble cursor solves the problem in (b) by changing its 
size dynamically such that only the target closest to the cursor 
centre is selected. (d) The bubble cursor morphs to encompass 
a target when the basic circular cursor cannot completely do 

so without intersecting a neighboring target. Note that the 
same legend is used for Figures 1 to 5. 
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RELATED WORK 
The common approach for studying new selection 
techniques is to use Fitts’ law [6, 11], a highly successful 
model for predicting movement time in a pointing task. 
Fitts’ Law states that the time (MT) to acquire a target with 
width W and distance (or amplitude) A from the cursor can 
be predicted by the equation: 







 ++= 1log2 W

AbaMT  

where a and b are empirically determined constants. The 
logarithmic term is the index of difficulty (ID) of the task. It 
can be seen from Fitts’ Law that if a target’s size decreases, 
or the distance needed to travel to acquire the given target 
increases, then the time taken to select it increases. Thus 
target selection can be facilitated by increasing the target 
width [5, 9, 14, 15, 17], decreasing the amplitude [3, 8], or 
both [4]. We now review such selection techniques. 

Decreasing A 
An interesting attempt to directly reduce A is the drag-and-
pop technique developed by Baudisch et al. [3]. In this 
technique, the system analyzes the directional movements 
of the cursor and temporarily brings virtual proxies of the 
potential targets towards the cursor. While this technique 
was found to be beneficial on a large display for very large 
A, it can be tricky to determine when the user intends to 
select the remote elements versus items that are in the 
nearby vicinity. Falsely activated proxies may annoy or 
even impede the user’s selections. As a result, this 
technique tends to work best in an environment with a 
relatively sparse layout of targets. 

An alternative to bringing the target closer to the cursor is 
to jump the cursor to the target. Guiard et al. [8] designed a 
promising interaction technique, called object pointing, 
where the cursor skips across the empty space which can 
exist between targets, jumping from one selectable target to 
another. Object pointing was found to be considerably 
faster than regular pointing in a 1D reciprocal pointing task. 
However in a 2D environment, it was shown that the degree 
to which object pointing outperformed regular pointing 
depended upon the target density. As with the drag-and-pop 
technique, increased target densities were detrimental to the 
performance of the object pointing technique. 

Increasing W 
While the width of the target is typically defined by its size 
in visual space, the effective target width can be defined as 
the corresponding size of the target in motor space. In 
standard pointing, the effective target width is typically 
equal to the width. One of the earliest techniques for 
increasing the effective width of a target is proposed by 
Kabbash and Buxton [9] who investigated the use of area 
cursors. The basic idea is that an area cursor has a larger 
active region or hotspot for target selection, rather than a 
single pixel hotspot as in standard cursors. Kabbash and 
Buxton [9] showed that by setting W to be the width of the 

area cursor, selection of a single pixel target could be 
accurately modeled using Fitts’ law. Thus, very small 
targets would have a much lower index of difficulty when 
selected by an area cursor. However, a problem of 
ambiguity arises when the desktop environment is densely 
populated with targets, as multiple targets could fall inside 
the area cursor at one time (Figure 1b).  

Worden et al. [15] propose an enhanced area cursor to 
alleviate this ambiguity, by including a single point hotspot 
centered within the area cursor, which takes effect when 
more than one target is within the cursor’s bounds. The 
enhanced area cursor performed identically to regular point 
cursors when targets were close together, and outperformed 
point cursors when targets were far apart. This enhanced 
area cursor is the major inspiration for the bubble cursor 
which we describe and evaluate in this paper.  

In the realm of 3D pointing, Zhai and Buxton [16] 
implemented a 3D volume cursor and showed that it 
surpassed a 3D point cursor for target selection. They also 
showed that semitransparent rendering was a useful aid in 
discriminating between targets in depth.  

Instead of enlarging the cursor’s activation zone to increase 
effective target width, the size of the actual target can be 
increased. McGuffin and Balakrishnan [14] investigated the 
potential performance benefits of expanding targets, whose 
size dynamically increase as the cursors approaches. They 
found that users were able to take advantage of the larger 
expanded target width even when expansion occurred after 
90% of the distance to the target was traveled. It was also 
shown that overall performance could be modeled 
accurately by Fitts’ law by setting W to the expanded target 
width. Zhai et al. [17] followed up this study by showing 
that even when users could not anticipate the expansion, 
similar performance gains were realized. Cockburn and 
Firth [5] developed a similar technique based on expanding 
targets called bubble targets. Instead of increasing the size 
of the entire target, a bubble would appear around the target 
as the cursor approached. While expanding targets improve 
selection times for single isolated targets [14, 17], to date it 
has not been shown to work well when multiple targets are 
present in close proximity [13, 14, 17]. 

Decreasing A and Increasing W 
There have been a number of efforts to facilitate pointing 
by dynamically adjusting the control display (CD) gain. By 
increasing the gain while approaching a target, and 
decreasing it while inside a target, the motor space distance 
and width are decreased and increased respectively. Such 
adaptive CD gain techniques have been shown to decrease 
target acquisition times [4, 5, 10, 15]. In a variation called 
semantic pointing Blanch et al. [4] showed that 
performance could be predicted using Fitts’ Law, based on 
the resulting larger W and smaller A in motor space. Once 
again, however, problems arise when multiple targets are 
present as the intervening targets will slow down the cursor 
as it travels to its destination target.  
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BUBBLE CURSOR DESIGN AND IMPLEMENTATION 
In designing the bubble cursor, we explicitly sought to 
address two main shortcomings of area cursors.  

First, area cursors in the literature are typically squares. As 
shown in Figure 2a, situations can occur where a target that 
is further away from the centre of the cursor is captured 
preferentially over a closer target, due to the shape of the 
square. This may make it potentially difficult for a user to 
plan their movements when heading for a particular target. 
We solve this problem by making the default shape of our 
bubble cursor a circle, which ensures that the target closest 
to the cursor centre is always captured first (Figure 2b) 

 

Figure 2. Square vs. circle cursors. D1 < D2. (a) Square shape 
captures target further away from the cursor centre. (b). 

Circle shape ensures that the closest target is captured first. 

Second, as discussed in the previous section, even with the 
enhancement suggested by Worden et al. [15], area cursors 
surpass point cursors only when a single target is inside its 
hotspot. When the area cursor is too large (Figure 3a), the 
likelihood of multiple targets being captured by the hotspot 
increases, and consequently lowers the benefits of an area 
cursor. In essence, the effective width of the targets regress 
to their actual values since the area cursor simply behaves 
as a point cursor in this situation [15]. Conversely, if the 
size is too small, the full potential of the area cursor will not 
be realized, as the area cursor may find itself in empty 
spaces with no targets within its hotspot (Figure 3b). Thus, 
the overall benefit of an area cursor when used in an 
interface with multiple targets is highly dependent on its 
size, and on the layout of the targets. The bubble cursor 
addresses this problem by dynamically changing its size 
based on the proximity of the surrounding targets.  

 

Figure 3. Effect of size on performance of area cursors. (a) A 
large area cursor tends to encompass multiple targets, thus 

completely negating its benefits. (b) A small area cursor does 
not always capture a target, thus reducing its benefits. 

By default, the bubble cursor is rendered as a semi 
transparent circular area cursor. A small crosshair is drawn 
in the center of the bubble cursor indicating the current 
location of the standard pointer. A simple algorithm is used 
to continuously update the radius of the bubble cursor, such 
that there is always exactly one target within its hotspot. To 
describe the algorithm in an environment with targets T1, 
T2, ..., Tn we use the following definitions: 

Intersecting Distance i (IntDi): The length of the shortest 
line connecting the center of the bubble cursor and any 
point on the border of Ti. 

Containment Distance i (ConDi): The length of the longest 
line connecting the center of the bubble cursor and any 
point on the border of Ti. 

A simplified version of the algorithm is as follows: 

Set i = index of closest target (Ti) by intersecting distance 
Set j = index of second closest target (Tj) by intersecting 
distance 
Set radius of bubble cursor = min(ConDi, IntDj) 

This algorithm ensures that the bubble cursor will at least 
intersect the closest target, and possibly completely contain 
it. Furthermore, it will not intersect the second closest 
target, and therefore no other target. To prevent the bubble 
cursor from always touching the second closest target, in 
practice we slightly modify this algorithm to allow some 
empty space between the edges of the bubble cursor and the 
second closest target (Figure 4a). When the bubble only 
intersects the closest target and does not completely contain 
it, we morph the cursor by extending a second bubble 
which quickly expands from the intersection points and 
envelopes the target (Figure 4b). This acts as a reinforcing 
visual cue to the user that the target is indeed captured by 
the cursor.  

 
Figure 4. Bubble cursor. (a) Cursor size is dynamically 

adjusted such that only one target is captured at any time. (b) 
Cursor is morphed to envelop the target when it is not 

completely contained by the main bubble. 

Effective Width  
We now define how the bubble cursor changes the effective 
width of a target – the size in motor space of a target’s 
activation boundaries. Using the bubble cursor essentially 
divides up the total space in which all targets reside into 
regions, such that there is exactly one target inside each 
region, and that target is the closest target to any point 
within that region (Figure 5). In mathematical terms, this is 
referred to as a Voronoi diagram [2]. The activation 
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boundaries of each target are thus equivalent to its 
corresponding region in this Voronoi diagram. This in 
effect increases the target’s size in motor space to the 
maximum possible extent. As can be seen from Figure 5, a 
target’s region need not be rectangular. In this paper, we 
restrict our experiments to targets with square activation 
zones, and define the effective width as the square’s width. 
To model selection times in the case where the region is not 
square, more advanced techniques are required, which we 
have developed and published elsewhere [7].     

 
Figure 5. Voronoi diagram defining the regions surrounding 

each target. The activation boundaries of each target, or 
effective width, are defined by the corresponding region. 

EXPERIMENT 1 
Given that the bubble cursor enlarges the effective width of 
every target in a deterministic manner, we should be able to 
use Fitts’ law to model and predict the time it takes to 
acquire targets using the bubble cursor. From previous 
work on expanding targets [14, 17], we would expect that 
Fitts’ law would hold in situations like this where the target 
width dynamically changes during the acquisition process. 
However, the bubble cursor has a few properties that make 
it difficult to directly apply the results of the previous work 
on expanding targets without additional experimental 
verification. First, a bubble cursor that is constantly 
changing size may be visually distracting to the user and 
thus affect the performance in an irregular way that may 
make it difficult to model with Fitts’ law. Second, users 
may find it difficult to predict how far they need to move 
the pointer before the bubble cursor captures the desired 
target, thus affecting the planning and execution of the 
required motor movements. Thus, it is important to 
empirically determine if Fitts’ law holds for bubble cursors. 
This is the first goal of Experiment 1. 

Even if Fitts’ law is shown to model bubble cursor 
performance accurately, it does not necessarily mean that 
the bubble cursor provides a significant advantage over 
point or regular area cursors. By definition, the bubble 
cursor enlarges the effective width of every target to the 
maximum possible extent. As such, in the best case 
scenario, performance should be governed by the effective 
width rather than the actual width of the target. In other 
words, selecting a target with actual width W and effective 
width EW with a bubble cursor should be equivalent to 
selecting a target with actual width of EW with a regular 

point cursor. In practice, however, this may not be the case 
and performance may be somewhere between the limits 
determined by W and EW. Thus, the second goal of 
experiment 1 is to determine if performance is governed by 
and makes maximal use of the effective width. 

To answer these questions in a systematic manner, we begin 
by studying bubble cursor performance in the simplest 
possible pointing task: 1D target acquisition.  

Apparatus 
The experiment was conducted on a 3.2Ghz Pentium4 PC 
running Windows XP with OpenGL for graphics, and a 20” 
LCD display at 1600x1200 resolution. Mouse acceleration 
was set to 0, with a control-display ratio of 1/2. All 
dimensions are measured in units (1 unit = 0.2 cm). 

Participants 
Ten volunteers (4 female, 6 male) participated in the 
experiment. Participants ranged in ages from 18 to 25, were 
all right-handed, and controlled the input device and 
consequently the cursor with their right hand. 

Procedure 
The task was a reciprocal 1D pointing task, which required 
participants to select two fixed sized targets back and forth 
in succession. The targets were rendered as solid circles, 
equidistant from the centre of the display in opposite 
directions along the horizontal axis. The target to be 
selected was colored green, and the other grey. Movement 
of the cursor was restricted along the horizontal axis. When 
participants correctly selected a target, the targets would 
swap colors, as an indication that the participant had to now 
move to and select the other target. Participants had to 
successfully select the green target before the colors would 
swap, even if it required multiple clicks. This removes the 
possibility that participants may try to “race through the 
experiment by clicking anywhere”.  

If we only had two targets in the scene, the effective width 
of each target would be half the size of the display, making 
selection trivial. To approximate a more realistic target 
acquisition scenario, distracter targets of varied sizes were 
pseudo-randomly placed in the scene, in a manner such that 
the effective width of both goal targets was controlled. 
Distracters were rendered as grey outlined circles. The 
bubble cursor was rendered in semitransparent blue, and 
any goal or distracter targets it covered also appeared blue. 
In the baseline condition using a point cursor, goal and 
distracter targets were highlighted blue when the point 
cursor was over them. 

Design 
A repeated measures within-participant design was used. 
The independent variables were cursor type CT (Point, 
Bubble), amplitude A (192, 384, 768 units), width W (8, 16, 
24 units), and effective width EW (32, 64, 96 units). A fully 
crossed design resulted in 54 combinations of CT, A, W, 
and EW. 
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Each participant performed the experiment in one session 
lasting approximately one hour. The session was broken up 
by cursor type, with nine blocks of trials completed for each 
cursor. In each block participants completed trial sets for 
each of the 27 combinations of A, W, and EW, presented in 
random order. A trial set consisted of 5 clicks (i.e., four 
reciprocal movements between the two targets).  

Before using each cursor, participants were given a single 
warm-up block to familiarize themselves with the cursor 
and task. Participants were randomly divided into 2 groups 
of 5 each, with one group using the point cursor first, and 
the other group using the bubble cursor first.  

Results 

Movement Time  
Movement time is the main dependent measure, and is 
defined as the time taken to move to and successfully select 
the active green target. Repeated measures analysis of 
variance showed a significant main effect for CT (F1,9 = 
10870, p < .0001), W (F2,358 = 991, p < .0001), EW (F2,358 = 
374, p < .0001), and A (F2,358 = 4487, p < .0001) on 
movement time. The overall mean movement times were 
1.250 seconds for the point cursor and 0.879 seconds for the 
bubble cursor. Post hoc multiple means comparison tests 
showed that for each of the 27 conditions, the bubble cursor 
was significantly faster, all at the p < .0001 level. These 
results clearly show that the bubble cursor can result in 
improved performance, even when the effective width is 
only 33% larger than actual target width (W=24, EW=32). 
There were also interaction effects CT x EW (F5,445 = 235, p 
< .0001) and CT x W (F5,445 = 491, p < .0001) for movement 
time. As Figure 6 illustrates, performance of the bubble 
cursor is dependent on EW rather than W whereas 
performance of the point cursor of course depends on W. 

 

Figure 6. Movement time by W, EW values for both cursors, 
averaged over all A values.  

Figure 7 plots the movement time as a function of the index 
of difficulty (ID). For the point cursor, we define ID as 
log2(A/W + 1), while for the bubble cursor, log2(A/EW + 1). 
Linear regression analysis showed that both conditions fit 

the Fitts’ law equation with r2 values above 0.95. Moreover, 
the r2 value of the combined data is 0.9858. This is an 
excellent result as it shows that not only can selection using 
the bubble cursor be accurately modeled using Fitts’ Law, 
but selection is just as fast as if the target had a actual width 
of EW and a point cursor were used. This is similar to the 
findings in [14, 17] where the time taken to acquire 
expanding targets could be modeled accurately using the 
final expansion width, and that movement times could be 
just as fast as if the target started at the expanded width.  

 
Figure 7. Movement time by ID for both cursors 

It is interesting to note that even though the regression 
analysis suggests almost no overhead to using the bubble 
cursor, there was a significant effect of W (F2,178 = 16.51, p 
< 0.0001) on movement time, as well as a significant W x 
EW (F2,178 = 3.76, p < 0.005) interaction, in bubble cursor 
conditions (Figure 8a). Post hoc tests show that increasing 
W does significantly decrease movement time for EW = 32 
and 64 (p < 0.001). However there is no decrease in MT for 
EW = 96. A possible explanation for this is that as EW 
approaches W, users rely more on the visual target bounds, 
instead of on the expansion of the bubble.  
Another interesting observation is that there was a 
significant CT x block number interaction (F17,153 = 6.43, p 
< 0.0001). The different slopes of the curves in Figure 8b 
illustrates that more learning occurs with the bubble cursor, 
probably due to users overcoming the slight overheads 
which were discussed in the previous paragraph.  

 
Figure 8. (a) Movement time by W, EW for the bubble cursor, 

illustrating differences in effect of W depending on EW. (b) 
Movement time by block number, illustrating differences in 

learning effects for the two cursors. 
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Error Rate 
Recall that the experiment design was such that participants 
had to successfully select each target before proceeding to 
the next trial, even if it required multiple clicks. As such, all 
trials are ultimately “successful”. However, we classified 
the cases where targets were not selected on the first click 
as errors, and analyzed this error data. 

There was a main effect for CT (F1,9 = 11.68, p < .001), W 
(F2,358 = 3.79, p < .05), EW (F2,358 = 19.55, p < .0001), and 
A (F2,358 = 8.84, p = .0001) on error rate. Overall error rates 
were 3.16% for the point cursor and 2.35% for the bubble 
cursor – well within the < 4% range one typically finds in 
standard Fitts’ law experiments [11]. 

EXPERIMENT 2 

In experiment 1, we determined that the bubble cursor can 
indeed reduce target acquisition times, taking maximum 
advantage of the increased effective target width, and that 
its performance is accurately modeled using EW. The 1D 
reciprocal pointing task used in that experiment was well 
suited to answering the initial fundamental questions we 
asked. However, it may not be representative of the more 
complex target acquisition tasks one commonly encounters 
in real 2D GUI interfaces. In this second experiment, we 
explore the bubble cursor’s performance in a more realistic 
environment with multiple 2D targets in varying layout 
densities.  

By definition, we know that the bubble cursor will have no 
advantage when acquiring a target which is completely tiled 
in by its surrounding targets since the effective width of that 
target would be equivalent to its actual width. In experiment 
1, we saw that the bubble cursor could improve selection 
times even when the effective width was only 33% larger 
than the actual width. In this experiment, we probe this 
issue further, and see how much surrounding void space a 
target would need to take advantage of the bubble cursor. 
We also look at the impact that intervening distracter 
targets have on the bubble cursor’s performance. In this 
second experiment, in addition to comparing the bubble 
cursor to the standard point cursor, we include a third 
technique – Object Pointing [8] – which as discussed in the 
related work section is perhaps the most promising existing 
technique for improved target acquisition. Since the bubble 
cursor is a direct extension of the static area cursor, there is 
no reason to expect it to perform worse than the area cursor. 
This was confirmed in pilot studies, and as such we did not 
include the area cursor in our experimental comparison. 

Object Pointing 
Object pointing [8] is a pointing technique which 
essentially ignores void space between targets. When the 
crosshair cursor leaves a target’s “safety zone”, which can 
be larger than its visual boundaries, it analyzes its current 
direction, velocity, and acceleration. If its velocity and 
acceleration exceeds a threshold values, it jumps to the 
boundary of the closest target within an angular slice of its 
current direction. If no target is found, or its velocity or 

acceleration is below their respective threshold values, the 
cursor returns to the boundary of the current target. In our 
implementation, the safety zone was a 32 unit radius (100 
pixels), the velocity threshold was 90 pixels per second, and 
it searched angular slices of 20, 25, and 30 degrees in 
sequence. We chose not to use an acceleration threshold as 
we found it hindered the performance of the cursor when 
crossing over a large number of intermediate targets. 
Although it was found in [8] that hiding the crosshair cursor 
had no effect on movement times, we chose to display the 
crosshair, as it proved beneficial in our pilot studies. 

Apparatus 
The apparatus used was the same as in experiment 1. 

Participants 
Twelve volunteers (3 female, 9 male) participated in this 
experiment. Participants ranged in age from 18 to 28, were 
all right-handed, and controlled the input device and 
consequently the cursor with their right hand. 

Procedure 
At the start of each trial, a starting solid green goal target 
was placed in the center of the screen. As in experiment 1, 
participants had to successfully select the target before 
continuing to the next goal target. After each successful 
selection, a new goal target and set of distracter targets 
were displayed, with the goal target appearing in an 
unpredictable location. Distracter targets were also 
positioned so that the effective width of the goal target was 
controlled. We chose to redraw the entire scene after every 
successful click, instead of simply jumping the goal target 
to one of the distracter targets, so that we could carefully 
control the goal target’s effective width and number of 
intermediate distracter targets along the straight line ideal 
movement path from the start to goal target. Remaining 
distracters which were not along the ideal movement path 
were randomly placed in the scene. Distracters were again 
rendered as grey outlined circles, and were always the same 
size as the goal target. The feedback we provided was 
stronger than in experiment 1, with both goal and distracter 
targets being filled red when any of the three cursors 
captured them. The bubble cursor was rendered in a 
semitransparent grey, which was slightly more visually 
subtle compared to the blue used in experiment 1, and made 
it easier to see the red highlighted targets beneath it. 

Independent Variables 
We define two factors resulting from the environment 
density which may affect acquisition time in any 2D 
selection technique (Figure 9). One is the amount of void 
space immediately surrounding a target (as characterized by 
EW when using the bubble cursor). In this experiment we 
vary the ratio between the target’s effective and actual 
widths. The other factor is the density of intermediate 
targets which must be passed over en route to the goal 
target. This has been shown to affect acquisition times in 
other selection techniques [8] and could affect the bubble 
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cursor’s performance due to the visual distraction of the 
bubble cursor growing and shrinking as it passes over these 
intervening targets. To control the effective width we 
placed two distracter targets along the direction of 
movement, one before and one after the goal target, and 
another two distracter targets perpendicular to the direction 
of movement, one above and one below the goal target. 
This created a square activation boundary for the target 
when using the bubble cursor, simplifying the calculation of 
EW. We controlled the density of the intermediate targets 
by fixing the number of targets within a 20 degree slice 
originating at the start target and pointing towards the new 
goal target positions. With a density value of 0, there were 
no intermediate targets, except for the one placed before the 
goal target to control its effective width. With a density of 
1, intermediate targets were almost tiled from the start to 
goal target positions, and then offset in the direction 
perpendicular to the line of movement by a pseudo-random 
length, such that each one remained within the 20 degree 
slice. A density value of 0.5 would produce half as many 
intermediate targets. The number of remaining distracter 
targets which were not in the 20 degree slice was controlled 
to closely match the density of targets within the slice. 

 
Figure 9. Experimental setup. Red circle is the start target, 

green circle the goal target. Placement of the grey filled circles 
is manipulated in the experiment to control the EW/W ratio. 
The black filled circles are placed to control the intermediate 
target density. The black outline circles are randomly placed 
distracters. Note that the grey and black colors, and lines, are 
for illustration only – in the experiment, there were no lines 

and all the distracter targets were grey outline circles. 

Design 
A repeated measures within-participant design was used. 
The independent variables were cursor type CT (Point, 
Bubble, Object), amplitude A (256, 512, 768 units), width 
W (8, 16, 32 units), effective width to width ratio EW/W 
(1.33, 2, 3), and distracter density D (0, 0.5, 1). A fully 
crossed design resulted in 243 combinations of CT, A, W, 
and EW/W. Each participant performed the experiment in 
one session lasting approximately 90 minutes. The session 
was broken up by cursor type, with 4 blocks of trials 
completed for each cursor. In each block participants would 
complete trial sets for each of the 27 combinations of W, 
EW/W, and D presented in random order. A trial set 
consisted of selecting 9 targets in sequence (not counting 
the initial click on the start target). The distance between 
the targets was one of the three A conditions, with each of 
the A conditions occurring three times but randomly 

distributed within each trial set. Before using each cursor, 
participants were given six warm-up trial sets to familiarize 
themselves with the cursor and task. Presentation order of 
the cursors was counterbalanced, resulting in six orderings. 
Participants were randomly divided into 6 groups of 2, with 
each group performing one of the six orderings. 

Results 

Movement Time 
Repeated measures analysis of variance showed a 
significant main effect for CT (F2,22 = 7947, p < .0001), W 
(F2,286 = 6659, p < .0001), EW/W (F2,286 = 72.92, p < .0001), 
A (F2,286 = 2038, p < .0001) and D (F2,286 = 206.3, p < 
.0001) on movement time. The overall mean movement 
times were 1.41 seconds for object pointing, 1.08 seconds 
for the point cursor, and 0.93 seconds for the bubble cursor. 
The following interaction effects were observed: CT x W, 
CT x EW/W, CT x D, and CT x A indicating that the 
different cursors were affected differently by the 
manipulated target parameters. Figures 10, 11, and 12 
illustrate these effects.  

As seen in Figure 10, the bubble cursor is faster than the 
point cursor, even at the smallest EW/W value of 1.33 (F1,11 
= 157.6, p < .0001), and is able to take maximal advantage 
of the increased effective width as the EW/W ratio 
increases. In contrast, it is interesting that object pointing 
performance degrades as EW/W ratio increases (p < .0001).  

Although the density of distracter targets had a significant 
main effect on selection times, this effect was remarkably 
different for the object and bubble cursors as indicated by 
the significant CT x D interaction (F8,376 = 203.2, p < 
.0001). For the bubble cursor, contrary to what may be 
expected, movement time increased when the density was 
decreased (p < .0001) (Figure 11). We believe this is due to 
the visual distraction of the bubble cursor becoming 
extremely large when no targets are in its vicinity. This 
shortcoming could possibly be alleviated by introducing a 
maximum value for the cursor radius, or altering its visual 
appearance when it is larger to reduce its intrusiveness. For 
object pointing, performance was severely degraded as the 
density of distracter targets increased (p < .0001). There are 
several explanations for the poor showing. First, in [8] the 
tested target environments contained at most 60 objects. In 
our experiment, there could be up to 200 targets depending 
on the distracter target density and target size. Secondly, 
our experimental design differed from [8] in that we always 
had a distracter target after the goal target along the 
expected movement path. This meant overshooting the goal 
target had a cost associated with it, whereas in [8] the 
absence of a distracter target after the goal target in some 
cases effectively made the goal target’s width extremely 
large along one side. It is also possible that users need more 
time to learn strategies for using the object pointing cursor. 
Indeed the block x CT interaction was significant (F11,121 = 
5.31, p < .0001), with object pointing showing the most 
learning (Figure 12). 
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Figure 10. Movement time for each cursor type by EW/W 

 

 
Figure 11. Movement time for each cursor type by distracter 

target density. 

 

 
Figure 12. Movement time for each cursor type by block 

number. 

Figure 13 plots the movement time as a function of the 
index of difficulty (ID). As in experiment 1, for the point 
cursor, we define ID as log2(A/W + 1), while for the bubble 
cursor, log2(A/EW + 1). Note that it has been shown that 
acquisition of square and circular targets can accurately be 
modeled using their respective widths in the Fitts’ Law 
equation [1, 6, 12]. We omitted the object pointing data 
from this analysis as the technique cannot be accurately 
modeled using Fitts’ law [8]. Linear regression analysis 
showed that both conditions fit the Fitts’ law equation with 
r2 values above 0.96. The combined data r2 value is 0.966. 
This confirms that the results seen in the simplified task in 
experiment 1 continue to hold in the more general 2D target 
selection task of experiment 2, even with dense target 
layouts. 

Error Rate 
We calculated error rate in the same manner as in 
experiment 1. Error rate was significantly effected by CT 
(F2,22 = 25.64, p < .0001), W (F2,286 = 43.85, p < .0001), and 
EW/W (F2,286 = 3.18, p = .0416). Total error rates were 
2.98% for the point cursor, 2.31% for the object pointing 
cursor, and 1.58% for the bubble cursor, again all well 
within the typical < 4% range seen in target acquisition 
studies. 

 

Figure 13. Movement time by ID. To calculate the ID values, 
W is used for point cursor and EW is used for bubble cursor.  

DISCUSSION 
We have presented the bubble cursor, a new selection 
technique which enhances area cursors by growing and 
shrinking to maximize the effective width of targets. In two 
experiments we have demonstrated that the bubble cursor 
significantly reduces target acquisition times in both simple 
and complex multi-target environments.  

Unlike many previously described techniques which 
facilitate selection, the bubble cursor continues to provide 
advantages in dense target environments. In the second 
experiment, we varied both the densities of targets 
immediately surrounding the goal target, and of 
intermediate targets along the expected movement path. In 
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all cases we found the bubble cursor to be beneficial, even 
with relatively little empty space between targets. Because 
we evaluated the cursor in such varied conditions, and 
showed that Fitts’ law accurately models its performance, 
we can confidently use the results to predict the 
performance of the bubble cursor in a general 2D user 
interface.  

While our conditions did vary the essential parameters, we 
were forced to make minor simplifications in the second 
experiment. First, each target in the environment was set to 
the same size, to ease the control of the target density 
parameters. Second, the distracter targets surrounding the 
goal target were placed in an organized fashion so that the 
goal target would have a square activation zone. It may be 
worthwhile to investigate what, if any, overhead costs 
would be introduced in conditions which do not make such 
simplifications. 

Our experimental method and analysis warrants some 
discussion. Firstly, we defined movement time as the time 
taken for users to make a successful selection, rather than 
the time until the first click. By forcing subjects to make a 
successful click to complete a trial, it is in the subject’s best 
interest to perform honestly and minimize errors. This 
method is also a closer approximation to a realistic GUI 
pointing task, where users typically do not abort a selection 
simply because they missed it the first time.  

To ensure that this method did not bias our results in any 
way, we repeated our analysis using the time until the first 
click, whether it was a successful selection or not. Indeed, 
the basic patterns, and significant differences which we 
report, are upheld. For example, in Experiment 1 we report 
average movement times of 0.879 and 1.250 seconds for the 
bubble cursor and point cursor respectively.  Average times 
until the first click were 0.866 and 1.232 seconds 
respectively. Similarly, in Experiment 2, instead of the 
movement times of 1.08 and 0.93 seconds which we report, 
times would have been 1.067 and 0.922 seconds. 

A related issue was our decision not to use the effective 
width adjustment for accuracy, as described by MacKenzie 
[11]. One reason we did not use this adjustment, is so we 
could analyze movement time data broken up by the 
specific width conditions in our experiment. Figure 6, for 
example, would be impossible, or at least misleading, if the 
widths didn’t take on exact values or if it represented data 
points when a selection was made outside the specified 
width. Another reason why we chose not to make this 
adjustment was because the bubble cursor had lower 
movement times and lower error rates, negating the need 
for any in-depth analysis of the speed-accuracy trade-off. 

In both studies we found that not only did the bubble cursor 
reduce pointing times, but its performance in selecting 
targets with actual width of W and effective width of EW 
was essentially equivalent to using a point cursor to select 
targets with actual width of EW. In other words, targets can 
remain visually small, but can be selected as though they 

were as large as can possibly be in motor space. Most 
importantly, the bubble cursor’s performance remains 
extremely good regardless of the number or density of 
targets in the environment. In contrast, many of the other 
selection techniques surveyed in our related work section 
tend to break down in dense multi-target situations. 

Another advantage of the bubble cursor is that it achieves 
these performance gains without changing the visual 
characteristics of the underlying interface elements. The 
size and position of all targets remain unmodified, rather it 
is the cursor that dynamically changes in size. 

We also found the bubble cursor to be superior to object 
pointing, one of the more promising selection techniques in 
the literature. However we must be careful before drawing 
too many conclusions about the relatively poor performance 
of object pointing in our experiment, as there are a number 
of parameters which could conceivably be modified to 
improve this technique. It would be interesting to see if 
object pointing could benefit from adaptive algorithms 
which continuously update their own parameters, much like 
how the bubble cursor radius is dynamically calculated.  

It may also be possible to apply the concepts of the bubble 
cursor to expanding targets. In current implementations, 
expanding targets have a final predetermined expansion 
width (such as 200%). This causes the target to overlap or 
push away neighboring targets within this expansion zone. 
An alternative strategy would be to expand the target into 
the region of space as defined by the Voronoi diagram. This 
would increase its activation zone the same extent which 
the bubble cursor does. 

The positive results from our experiment suggest that the 
bubble cursor could be a beneficial addition to user 
interfaces. Because the interface layout is unmodified, 
individual software programs do not need to be re-written, 
instead the mouse driver software could be updated to have 
the bubble cursor available in any program. It would be 
trivial to incorporate the bubble cursor into user interfaces 
in which users only need to click on targets, and never in 
void space. A web browser is a good example of such an 
interface. Special considerations are required for interfaces 
in which users can also click on the void space in between 
targets. In a word processor for example, a user can click 
anywhere to reposition the cursor location. One solution 
would be to have some sort of switching mechanism, as 
suggested in [8] to only use the crosshair positioned in the 
middle of the bubble. Such a switch could be done in a fluid 
manner since the crosshair position is already visible to the 
user. An alternative would be to require users to explicitly 
select the bubble cursor from a menu or icon. This would be 
very appropriate for interfaces which already have explicit 
“selection” modes. In Adobe Illustrator for example, the 
user must click an arrow icon before selecting drawing 
objects such as vertices, edges, and control points. This 
arrow icon could simply be changed to a bubble icon, 
which would activate the bubble cursor. 
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FUTURE WORK 
Our experiments indicate that the bubble cursor is a very 
promising selection technique with significant performance 
advantages over the status-quo. However, there are several 
directions that can be pursued to extend the current work. 

First, while our results could be used to predict the 
effectiveness of the bubble cursor in any general user 
interface, it may be interesting to explicitly evaluate it for 
specific target layouts resembling particular user interfaces.  

It may also be interesting to combine some of the prediction 
algorithms found in [3, 8] into the bubble cursor. Currently, 
the bubble cursor expands and shrinks in each direction 
equally, such that it is always a circle. It may be interesting 
to experiment with some more interesting shapes. One 
could imagine the cursor expanding in the direction of 
movement, and shrinking in the direction perpendicular to 
the movement. Such an elliptical shape could further 
increase effective target widths by biasing against targets 
which clearly are not along the direction of movement.  

It would also be useful to explore interaction techniques for 
switching between the discrete selections of the bubble 
cursor, and the continuous pointing capability of the 
standard point cursor. As mentioned earlier, the bubble 
cursor’s crosshair would play a critical role in such a 
switch. It may even be useful to give the crosshair 
additional functionality when using the bubble cursor, 
beyond the currently simple function of simply indicating 
the center of the bubble.  

Another interesting extension would be to explore methods 
for group selections using the bubble cursor. There could be 
a button or gesture which allows the user to modify the 
shape or size of the bubble such that it can cover multiple 
objects for selection when desired. 

Lastly, we feel that the bubble cursor could be an effective 
tool for selection in 3D environments, where the bubble is a 
spherical volume instead of circular area. Such a cursor 
would build on the silk cursor of Zhai and Buxton [16], just 
as the 2D bubble cursor builds on area cursors. 
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