RYAN: Rendering Your Animation Nonlinearly projected

Patrick Coleman and Karan Singh Dynamic Graphics Project
Computer Science University of Toronto 8 June 2004

Ainear Perspective

Good approximation of human visual system Conceptually simple and predictable

- Aids depth perception
- Efficient graphics pipelines

Nonlinear Rerspective

- Extend visual range
- Avoid disjoint images for complex scenes
- Artistic expression

Allow artists to explore, understand, and subsequently express complex 3D scenes

Linear Perspective

Allow artists to explore, understand, and subsequently expresscomplex 3D scenes

Nonlinear Projection

Nonlinear Projection Goals

- Interactive and incremental
- Use of common animated camera
- Local linear perspective
- Continuous nonlinear projections
- Artistic control of composition, projection
- Coherent shading, shadows, lighting
- Handle complex scenes

Related Work

- Image Processing (Max 83, Zoin a Barr 95, Seitz \& Dyer 96, Collomosse \& Hall 03)
View-Dependent Deformation (Rademacher 99, Martin 00)
Multi-Perspective Panoramas (Wood et al. 97 , Rademacher \&
Bishop 98, Peleg et al. 00, Seitz \& Kim 02)
- Nonlinear Ray Tracing (Wyvill \& McNaughton 90 , Glassner 00, wêfrove 04)
- Multiprojection Rendering (Acrawela et al. 00, Classner 04, Yu 04)

Nonlinear Projection (singh 02)

Our-Approach

- Combine linear perspective views (Singh 02)
- Extend weight computation from Singh 02
- New deformation approach for complex scenes and animated camera
- New constraint formulation with local control Shading from multiple points of view

Workflow

- Animate the boss camera as a normal CG camera
- Incrementally add lackey cameras to locally manipulate perspective
Edit lackey weight functions
Add constraints and edit viewport transformations

Defining projection weights

Positional

Nonlinear Projection Model

C, M, and V are the eye-space, perspective, and viewport matrices for a linear perspective camera.

- A point in the scene P linearly projects to $\langle x, y>$ in the image at depth z where, $\langle x, y, z>=P C M V$.

Boss and Jackey cameras

Lackey cameras induce projection deformations to scene geometry as seen by the boss camera

Deformation from a lackey camera

For P^{\prime} to appear in boss camera b, as P appears in lackey camera i :

Combining cameras

Given weight $w_{i}(P)$ for lackey camera i, point P deforms to P^{\prime} :

$$
P^{\prime}=P+P\left(w_{i P}\left(A_{i}-I\right)\right)
$$

...and for many lackey cameras

$$
P^{\prime}=P+\sum_{i=1}^{n} P\left(w_{i} P\left(A_{i}-I\right)\right)
$$

Constraints

No Constraints

Constraints

Local control of composition

Independent of projection

Constraints

To see constraint frame R_{f} in lackey as R_{t} in boss camera :

Con $=\left(\operatorname{Cartesianize}\left(R_{f} C_{i} M_{i} V_{i}\right)\right)^{-1}$ Cartesianize $\left(R_{t} C_{b} M_{b} V_{b}\right)$

...where Con is a constraint matrix such that

...in general Con is defined as an RBF interpolation of multiple constraints per scene object, per camera.

Boss camera shading Virtua camera shading
Blended shading

Shadows

grinim

Conclusions

- Interactive nonlinear projection of complex scenes with animated camera
- Global and local composition and relative depth control
- Illumination and shading from multiple viewpoints

Future Work

- Full unwrapping
- High level artist control
- Automatic camera specification

Acknowledgements

Chris Landreth \& the Ryan Crew.

Aaron Hertzmann \& DGP.

NFB of Canada, Seneca College, Alias.
http://www.dgp.toronto.edu/~patrick/ryanTech

