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Abstract
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2011

In recent years there has been significant progress in increasing the scope, accuracy and

flexibility of 3D photography methods. However there are still significant open problems where

complex optical properties of mirroring or transparent objects cause many assumptions of tra-

ditional algorithms to break down.

In this work we present three approaches that attempt to dealwith some of these challenges

using a few camera views and simple illumination.

First, we consider the problem of reconstructing the 3D position and surface normal of

points on a time-varying refractive surface. We show that two viewpoints are sufficient to

solve this problem in the general case, even if the refractive index is unknown. We introduce a

novel “stereo matching” criterion calledrefractive disparity, appropriate for refractive scenes,

and develop an optimization-based algorithm for individually reconstructing the position and

normal of each point projecting to a pixel in the input views.

Second, we present a new method for reconstructing the exterior surface of a complex

transparent scene with inhomogeneous interior. We captureimages from each viewpoint while
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moving a proximal light source to a 2D or 3D set of positions giving a 2D (or 3D) dataset per

pixel, called thescatter-trace.The key is that while light transport within a transparent scene’s

interior can be exceedingly complex, a pixel’s scatter trace has a highly-constrained geometry

that reveals the direct surface reflection, and leads to a simple “Scatter-trace stereo” algorithm

for computing the exterior surface geometry.

Finally, we develop a reconstruction system for scenes withreflectance properties ranging

from diffuse to specular. We capture images of the scene as itis illuminated by a planar,

spatially non-uniform light source. Then we show that if thesource is translated to a parallel

position away from the scene, a particular scene point integrates a magnified region of light

from the plane. We observe this magnification at each pixel and show how it relates to the

source-relative depth of the surface. Next we show how calibration relating the camera and

source planes allows for robustness to specular objects andrecovery of 3D surface points.

iii



Dedication

This work is dedicated to my family who have supported me through all the highs and lows.

iv



Contents

1 Introduction 1

1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 6

2.1 Geometric Representations . . . . . . . . . . . . . . . . . . . . . . . . .. . . 6

2.1.1 Depths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Normals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.3 Point Clouds and Surfels . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.4 Meshes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Physical Properties and Models . . . . . . . . . . . . . . . . . . . . .. . . . . 10

2.2.1 Radiometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Bidirectional Reflectance Distribution Functions . . . .. . . . . . . . 12

2.2.3 Snell’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.4 Reflection Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Appearance Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 15

2.3.1 Environment Matting and Extensions . . . . . . . . . . . . . . .. . . 15

v



2.3.2 Separating Reflection Components . . . . . . . . . . . . . . . . . . .. 16

2.4 Shape Reconstruction of Diffuse Scenes . . . . . . . . . . . . . . .. . . . . . 16

2.5 Shape Reconstruction of Non-Diffuse Scenes . . . . . . . . . . .. . . . . . . 17

2.5.1 Multi-view Approaches . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.2 Photometric Stereo and Monocular Approaches . . . . . . .. . . . . . 18

2.6 Shape Reconstruction of Specular Scenes . . . . . . . . . . . . . .. . . . . . 20

2.6.1 Highlight Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6.2 Laser Scanning of Specular Scenes . . . . . . . . . . . . . . . . .. . 21

2.6.3 Dense Calibrated Pattern Approaches . . . . . . . . . . . . . . .. . . 22

2.7 Shape Reconstruction of Transparent Media . . . . . . . . . . . .. . . . . . . 22

2.7.1 Tomographic Reconstruction . . . . . . . . . . . . . . . . . . . . . .. 23

2.7.2 Fluorescent Immersion . . . . . . . . . . . . . . . . . . . . . . . . . .23

2.7.3 Polarization-based Reconstruction . . . . . . . . . . . . . . .. . . . . 24

2.7.4 Shape from Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.7.5 Reconstruction of Dynamic Transparent Media . . . . . . . .. . . . . 26

2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Dynamic Refraction Stereo 29

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29

3.2 Refraction Stereo Geometry . . . . . . . . . . . . . . . . . . . . . . . . .. . 34

3.3 Dynamic Refraction Stereo Algorithm . . . . . . . . . . . . . . . . .. . . . . 38

3.4 Pixel-wise Shape Estimation . . . . . . . . . . . . . . . . . . . . . . .. . . . 39

3.4.1 Measuring Refractive Disparity . . . . . . . . . . . . . . . . . . .. . 40

3.4.2 Computing 3D Position and Orientation . . . . . . . . . . . . . .. . . 42

vi



3.5 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 43

3.5.1 Estimating Pixel-to-Pattern Correspondences . . . . . .. . . . . . . . 43

3.5.2 Fusing 3D Positions and Orientations . . . . . . . . . . . . . .. . . . 45

3.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 46

3.6.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.6.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.6.3 Accuracy experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.6.4 Experiments with dynamic surfaces . . . . . . . . . . . . . . . .. . . 49

3.6.5 Refractive index determination . . . . . . . . . . . . . . . . . . .. . . 52

3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.7.1 Ambiguous surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.7.2 Pixel-to-pattern function . . . . . . . . . . . . . . . . . . . . . .. . . 55

3.8 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Scatter-Trace Photography 61

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61

4.2 Scatter-Trace Photography . . . . . . . . . . . . . . . . . . . . . . . .. . . . 66

4.2.1 Direct and Indirect Scatter Traces . . . . . . . . . . . . . . . .. . . . 69

4.3 3D Shape from Scatter-Trace Constraints . . . . . . . . . . . . . .. . . . . . 71

4.3.1 Estimating the Direct Scatter Trace . . . . . . . . . . . . . . .. . . . 73

4.3.2 Single-View Shape from the Scatter Trace . . . . . . . . . . .. . . . . 75

4.4 Scatter-Trace Stereo . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 76

4.5 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 77

4.5.1 Multi-view Reconstruction . . . . . . . . . . . . . . . . . . . . . . .. 78

vii



4.5.2 Sub-pixel Reconstruction . . . . . . . . . . . . . . . . . . . . . . . .. 78

4.5.3 Efficient Capture by Phase Unwrapping . . . . . . . . . . . . . . .. . 79

4.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 82

4.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5 Depth from Reflectance Magnification 94

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94

5.2 Reflectance Magnification . . . . . . . . . . . . . . . . . . . . . . . . . . .. 98

5.2.1 The 4D Reflectance Function for a Proximal Planar Source. . . . . . . 98

5.2.2 Geometry of a Translating Planar Source . . . . . . . . . . . .. . . . 101

5.2.3 Speedup by Integration . . . . . . . . . . . . . . . . . . . . . . . . . .103

5.3 Reflectance Magnification in the Frequency Domain . . . . . . .. . . . . . . 104

5.4 Depth from Reflectance Magnification . . . . . . . . . . . . . . . . . .. . . . 106

5.4.1 Source-Relative Depth for Differentiable BRDFs . . . . . . .. . . . . 106

5.4.2 Camera-Relative Depth for Differentiable and SpecularBRDFs . . . . 107

5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6 Conclusions 119

6.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

A Proof of Ambiguity Theorem 122

B 2D Scatter Traces 125

C Reflectance Magnification Derivations 126

viii



Bibliography 127

ix



Chapter 1

Introduction

“Vision is the art of seeing what is invisible to others.”

-Jonathan Swift

One of the core elements of the human visual system is “depth perception,” which en-

ables us to analyze our world and perform many tasks which would otherwise be extremely

challenging or impossible. Depth perception is also an important component in artificial vision

systems, however certain optical properties of everyday scenes often make this task much more

difficult. While the human visual system is generally qualitatively robust to optics involving

mirrors, transparency and scattering media, these properties often confound artificial systems.

While artificial systems have much greater quantitative precision, we would like to be able to

add the same kind of robustness as in biological systems.

The 3D scanning of objects for synthesis in virtual environments is an important moti-

vation for this work that requires both robustness and quantitative accuracy. The quality of

rendering or simulation of virtual environments has advanced to such a degree that one of the

primary limiting factors in virtual images is the detail in the geometry. Many hours are re-
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a) b) c)

d) e)

Figure 1.1: Everyday example scenes that have challenging optical properties. Mirror reflec-

tion: all. Transparency: b), d) and e)
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quired to manually generate the required detail to match realism, so it makes more sense to

scan the geometry from the real world. Real world objects often present complex optics and

transparency making it important for scanning techniques to be able to deal with such phenom-

ena. This same scanning procedure is also vital for preserving the world’s cultural heritage, as

fragile archaeological artifacts can be preserved in this manner and virtual museums can allow

people across the globe a unique perspective on such artifacts. Another potential application

of such vision systems is in quality assurance and inspection for the manufacture of glass or

plastic products that exhibit transparency. For instance,glass flow regulators for intravenous

machines currently must be painstakingly and manually examined to ensure that no defects are

present.

One of the major challenges in trying to scan such objects is that they do not have intrin-

sic appearance, but rather they redirect the incident lightfrom the background either through

reflection of refraction. This makes them very difficult to scan with a traditional laser scanner

without resorting to special optics [7], immersing them [52, 123] or directly coating the ob-

jects [37]. While simply coating such objects with a paint or powder that has much simpler

reflectance properties might appear to be a good work-around, this presents several problems

in itself. First, this requires potentially undesirable contact with the target objects, and objects

that are precious artifacts or glass may be extremely fragile and the coating process may eas-

ily damage them. Second, if the objects do have some colored or textured parts these will be

obscured by a general coating. Finally, the coating itself will subtly change the shape of the

object and will tend to fill in cracks or nooks, artificially smoothing the shape. Without great

care coating can easily be uneven and add spurious bumps or layers.

Despite its chemical simplicity, water exhibits many of themost challenging optical prop-

erties and both oceanography [23, 58, 64, 136] and fluid mechanics [41] are important domains
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that would benefit from accurate and rapid perception of water and waves. It is also impor-

tant for robots to be able to navigate scenes that may exhibitsuch properties. For instance,

the recent development of rescue robots for people trapped in hazardous environments could

certainly benefit from navigating around broken glass or seeing through flooded environments.

The problem of capturing the shape of scenes has been a primary focus of computer vision

research. Initial work predominately made significant simplifying assumptions about the re-

flectance properties of the scene, generally assuming a simple diffuse reflectance model [105,

109]. More recently, attempts have been made to generalize to scenes with more arbitrary

reflectance models [45, 61, 122, 125, 140, 142]. While these advances are important, there has

been little work on dealing with even more general scenes that may contain both opaque and

non-opaque structures as well as a variety of reflectance properties and indirect light transport.

1.1 Contributions

The goal of this work is to show that 3D photography methods can be used to recover the shape

of general scenes containing transparent and shiny objectsby making use of controlled diffuse

illumination patterns and simple multi-view camera systems.

Here is a summary of specific contributions made in this thesis. It includes expanded ver-

sions of some work that has previously been published [84, 85].

• A system for finding stereo correspondences at each frame of atemporally dynamic

refractive liquid. These correspondences can then be used to recover the 3D points and

normals on the surface as well as its refractive index. We canthen display novel views

using the recovered geometry.

• A system for reconstructing 3D points and normals of glass and specular surfaces by



CHAPTER 1. INTRODUCTION 5

modeling direct reflection in order to be invariant to indirect light that may be internally

transmitted or caused by inter-reflections.

• A fast method for recovering the depth of scenes with generalreflectance properties from

a monocular view with simple active illumination.

1.2 Overview

In the next chapter we cover the necessary background material for this work. We discuss the

types of geometric representations that are often reconstructed as well as a discussion ofray

opticsand the physical and optical properties of scenes. The next chapter covers our work

on the 3D reconstruction of dynamic transparent surfaces. Next we present our approach to

recovering the exterior surface of reflective and inhomogeneous transparent surfaces. Then we

cover our work that uses a related illumination method to recover depth from general scenes

from a single camera. Finally we present our conclusions.



Chapter 2

Background

“Never bring the problem solving stage into the decision making stage. Otherwise, you

surrender yourself to the problem rather than the solution.”

-Robert H. Schuller

There has been significant progress in 3D photography and image-based measurement tech-

niques in recent years. The shape of more and more complex scenes can be measured to higher

precision. In this chapter we present and categorize many ofthese advances as well as examine

what open areas and unanswered questions remain. In this work we are primarily concerned

with the 3D reconstruction of surfaces. Given this, we will first examine the various ways that

surfaces can be geometrically represented as well as their physical interaction with light.

6
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2.1 Geometric Representations

2.1.1 Depths

The first and most basic representation of shape is in the formof depth maps. For a given image

of the scene, we definepixel raysas vectors originating at the camera center of projection and

passing through the center of each pixel into the scene. We assume a simple pinhole camera

projection model. A depth map consists of an assignment to every pixel of depth, that is the

distance from the center of projection to the first intersection of the pixel ray with a surface in

the scene (see Figure 2.1).

Depth maps are often the output of stereo systems where corresponding features are found

in the images taken from two or more viewpoints of the scene [105]. These correspondences

define rays from each center of projection into the scene thatconverge at a particular depth.

The depth map is created from the depths assigned to pixels ofa particular ‘reference’ image

selected from the available images.

2.1.2 Normals

Normals are defined as vectors perpendicular to the tangent plane at a surface point. A normal

map consists of an assignment to each pixel of the normal at the surface point projecting to the

center of each pixel (see Figure 2.1).

Normal maps can be obtained by reconstruction methods that take into account the shading

of an object such as photometric stereo [131] or shape from shading [51].

A normal map models the surface as locally planar facets however it is often more accurate

to measure the local surface projecting to a pixel as a collection of planar micro-facets, each

with their own normal [88]. These normals can be collected into a histogram of directions and
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can be used to better represent rough materials.

2.1.3 Point Clouds and Surfels

While the previous two representations were image specific,point cloudsandsurfelsrepresent

the surface of an object as a disconnected “cloud” of 3D points possibly with associated sur-

face normals (in the case of surfels). Point clouds may be obtained from sparse multi-view

reconstruction approaches that are not constrained to a particular reference image [35]. They

are also the typical output of laser scanners. Reconstructing the shape of surfaces from a point

cloud is a challenging and open problem [60]. The additionalnormal information stored in

surfels allows for improved reconstruction algorithms especially when the frequency of noise

in the normals data is different from the point data. For instance, 3D points often contain high

frequency noise, while normals often exhibit lower frequency noise. By combining the two we

can achieve significantly improved results [63, 91].

2.1.4 Meshes

The previous representations defined the local position andorientation of the surface at distinct

points, whereasmeshesare a piecewise linear representation of the surface. Meshes consist of

verticeswhich are 3D points that approximately lie on the surface. The vertices are connected

by lines callededgesand edges that are coplanar form polygonalfaces. Meshes are useful

for visualization, surface smoothing [49] and normal estimation when explicit normals are

unknown [114].
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Figure 2.1: Examples of different geometric representations for a cone.
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2.2 Physical Properties and Models

2.2.1 Radiometry

Radiometry deals with the measurement of electromagnetic radiation including visible light.

We first define the terms and physical quantities involved:

Radiant energy The energyQr emitted from or absorbed by a surface during time intervalt

and measured in Joules (J).

Power The radiant powerΦ is the rate of energy emission or absorption and is measured in

Watts (W ) or Joules per second (Js−1):

Φ =
dQr

dt
. (2.1)

Incident irradiance The power received per unit surface areaE, measured in Watts per meter

squared (Wm−2).

Solid angle The ratio of a portionS of the surface area of a sphere to the squared radius of the

sphere, measured in steradians (sr).

Radiance The rate of emission or absorption at a surface per unit foreshortened area in par-

ticular direction. RadianceL is measured in Watts per steradian per meter squared

(Wm−2sr−1). For example, to measure radiance at an infinitesimal patchatp on a sur-

face, with incident light coming from an emitting surface patch, we would first project

this patch onto the point’s hemisphere to find the solid angle. Then we need a cosine term

to govern the angular foreshortening. So the radianceL(p, ω), at pointp and coming in

directionω, is then given by:
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n

p

dω

dA

θ

Figure 2.2: Geometrical properties of radiance.

L(p, ω) =
d2Φ

cos θdωdA
, (2.2)

wheredω is the solid angle of the projected patch,θ is the angle between the surface nor-

mal and the incident direction, anddA is the area of the patch aroundp. See Figure 2.2

for the geometry. Irradiance can also be expressed in terms of an integration of radiance

over the hemisphere of directions:

E(p) =

∫

Ω+

L(p, ω) cos θdω. (2.3)



CHAPTER 2. BACKGROUND 12

2.2.2 Bidirectional Reflectance Distribution Functions

Reflection of light on most opaque surfaces can be described bythe bidirectional reflectance

distribution function (BRDF) [92]. This function relates incident irradiance to exitant radiance

for any pair of directions as follows:

fr(p, ω̂i, ω̂o) =
dL(p, ω̂o)

L(p, ω̂i) cos θidωi

. (2.4)

The BRDF is the quotient of the exitant radianceL(p, ω̂o) from directionω̂o over the inci-

dent irradiance from direction̂ωi at the patch aboutp measured insr−1. The BRDF in general

is a function of four angular dimensions, two each for the incident and exitant directions. Note

that the two directions are constrained to be within the hemisphere around the surface normal.

We can reduce the angular dimensionality to three in the caseof isotropy, where there is

rotational symmetry in the BRDF around the surface normal. BRDFsof this type are called

isotropicas opposed toanisotropic.

Another property of BRDFs is Helmholtz reciprocity [128], it states that the roles of inci-

dent and exitant directions can be reversed because of the second law of thermodynamics. In

particular, the following equation holds for any BRDF:

fr(p, ω̂i, ω̂o) = fr(p, ω̂o, ω̂i). (2.5)

BRDFs are also subject to the law of energy conservation: the reflected energy must not

exceed that which is received.
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n

i

o

θi
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r1
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Figure 2.3: Refraction at an interface.

2.2.3 Snell’s Law

So far we have only considered opaque surfaces, however transparent materials allow the trans-

mission of light through a surface. In this case, the direction of travel depends on the ratio of the

refractive indices on either side of the surface [10]. This refraction occurs in the plane defined

by the direction of incidence and the surface normal and the angle of refraction is described by

Snell’s law:

r1 sin θi = r2 sin θo, (2.6)

wherer1 andr2 are the refractive indices of the two media,θi is the angle between the incident

direction and the surface normal, andθo is the angle between the transmitted direction and the

surface normal (Figure 2.3).
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Refractive indices depend on wavelength. As a result, refraction causes spectral separation

or dispersion of chromatic light. This is often demonstrated by the transmitted ‘rainbow’ of

colors as a beam of white light is refracted through a prism.

2.2.4 Reflection Models

Reflection at a surface depends greatly on the material and finescale surface structure. We can

categorize most types of reflection into three broad types (see Figure 2.4):

Diffuse reflection This model describes a scattering process that causes lightto be reflected

evenly in all directions. This type of reflection is also known as Lambertian reflectance

[71]. Materials that are rough at the micro scale tend to fit this type of model however

significant roughness can be more accurately modeled by the Oren-Nayar reflectance

model [95].

Specular reflection When incident light strikes a polished surface and it reflectsacross the

surface normal such that the outgoing angle is equal to the incident angle, we call this

specular reflection. Mirrors and most transparent objects exhibit strong specular reflec-

tion.

Glossy reflection Many materials exhibit a specular lobe of reflection around the specular

direction, rather than an impulse. This is caused by fine scale surface irregularities on an

otherwise smooth surface and we call such materials ‘glossy.’

There are many more specific types of reflection such as retroreflection and subsurface scat-

tering [72, 81]. Many computer vision algorithms are specific to a particular type of surface
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Diffuse Specular Glossy
Incident ray

n
Incident ray

n
Incident ray

n

Figure 2.4: Illustrations of the different reflectance models.

reflectance model, however some materials have BRDFs that do not easily fit into these cate-

gories and can cause 3D reconstruction algorithms problemssince they violate the algorithm’s

underlying assumptions about the scene’s BRDFs.

2.3 Appearance Modeling

In this section we examine techniques that extract radiometric or material properties from im-

ages without reconstructing the shape of the target scene.

2.3.1 Environment Matting and Extensions

Environment matting techniques were designed to capture the appearance of specular and trans-

parent objects by blending a foreground opacity matte with the background in those areas that

are transparent or reflective. These methods model the reflected or transmitted appearance

without computing the foreground object’s shape. In general, a sequence of patterns is dis-

played around the object so that the background regions thatmap to each pixel by either re-

fraction of reflection can be determined [143]. This processwas extended to allow for dynamic
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transparent objects [21] as well as to remove the necessity of the calibrated camera and pat-

terns [130]. Another extension allows for the simultaneouscapture of environment mattes, the

approximate shape and reflectance properties of transparent objects [82].

2.3.2 Separating Reflection Components

Diffuse reflection can be separated from specular reflectionunder certain conditions such

as color differences between specular highlights and the diffuse scene [80, 118], polariza-

tion [126] and stereo constraints [75]. By identifying the diffuse component we can use simpler

algorithms to process a scene as if only diffuse materials were present.

The direct reflection component has also been iteratively separated from light that has un-

dergone multiple reflections with the scene. This can be an important preprocessing step for 3D

reconstruction since most algorithms assume only direct reflection [90]. More recently direct

reflection has been separated from more general indirect light that also includes sub-surface

scattering and other volumetric effects [89].

The reflection component has also been separated from the transmitted component for im-

ages of planar transparent objects [73, 106]. This decomposition is strongly under-constrained

so significant assumptions such as images with different polarization [106], natural image

statistics [73] or user interaction are required.

2.4 Shape Reconstruction of Diffuse Scenes

While the methods described in the previous sections capturethe specific radiometric properties

of the scene or decompose images into reflectance components, they do not directly measure

the scene shape. In this section we review algorithms for recovering scene shape, beginning
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with algorithms that work under simple reflectance models and continuing with those that deal

with more complex ones.

In order to recover scene shape, we need a model of how light reflects off of the surface of

objects. Under the diffuse reflection model the outgoing radiance of a particular surface patch

does not vary with viewpoint. What is also often implicitly assumed is that objects in the scene

are opaque and indirect lighting such as inter-reflections or subsurface scattering are treated as

insignificant in order to simplify the reconstruction algorithms.

Methods such as stereo reconstruction often rely on this model to find correspondences in

two or more images of a scene point. Given such a correspondence, triangulation allows for

depth reconstruction. A review of the developments in two view stereo is available in [105].

Multi-view methods generalize this approach to include data from more views and have been

extensively researched [109].

While these methods do an admirable job of reconstructing shape, everyday scenes fre-

quently violate the diffuse reflectance model. In the following sections we will look at work

that applies to broader classes of materials.

2.5 Shape Reconstruction of Non-Diffuse Scenes

Simple diffuse reflection models are insufficient for 3D reconstruction of general scenes with

complex reflectance properties. Rather than performing a layer decomposition or treating

glossy or specular highlights as outliers [11, 134], it is possible to take advantage of optical

and geometric constraints to perform 3D reconstructions onsuch scenes.
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2.5.1 Multi-view Approaches

The reciprocity of BRDFs (Section 2.2.2) has been utilized to enable stereo on scenes with

general BRDFs [79, 125, 141, 142]. These approaches use Helmholtz stereopsis, where the

positions of a point light source and camera are interchanged to obtain stereo pairs such that

the appearance of corresponding image points are invariantto the BRDF of scene points. This

of course does not deal with indirect light, and specular points would still be challenging to

recover since they would not reflect light significantly in non-specular directions.

Another approach takes advantage of the fact that for light incident at a patch from a fixed

direction and for a fixed outgoing direction, the reflected radiance scales proportionally to the

power of the light source. So under these conditions, if the source power is multiplied by a

factork, the outgoing radiance also scales by the same factor. In [24], a stereo constraint is

presented where a scene under non-isotropic illumination is observed by two cameras and the

illumination power is varied by a factork. This can be accomplished with a non-isotropic,

directional source that is rotated between images and this leads to a stereo constraint that is

used to reconstruct scene depth. The advantage of this approach is that it is independent of the

BRDF, however the method fails for highly glossy and mirror-like specular materials where the

constraint can only be applied to points that specularly reflect light toward the camera.

2.5.2 Photometric Stereo and Monocular Approaches

Example-based photometric stereo methods rely on an orientation-consistency invariant to re-

construct objects with arbitrary BRDFs. Orientation consistency states that, under illumination

from a distant point source and orthographic viewing, two surface points with the same surface

normal and the same BRDF result in identical image irradiance [45, 46, 122]. To reconstruct
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an object of unknown shape we add to the scene a reference object with known shape and the

same BRDF as the target object, and capture images from many light source positions. We

accomplish this by finding correspondences between the example object and the target object

where the irradiance is the same in all input images. Thus, bythe orientation-consistency in-

variant, the normal on the unknown object can be copied from the normal of the example object

producing a normal map for the unknown object. This work was extended to deal with self-

shadowing in [122] and to allow multiple BRDFs on the target object [46]. The approach is

limited by the strong orthographic viewing assumption; again, specular objects are challenging

to reconstruct for the reasons mentioned in Section 2.5.1.

In [48], BRDF slices are acquired from a fixed viewpoint by varying the illumination source

position. Then surface normals and tangent vectors are found photometrically, by taking advan-

tage of symmetry in the BRDF slices. While this method is not completely BRDF-invariant, a

wide variety of materials can be dealt with. In [5] photometric stereo is extended to estimate

the surface normals of spatially varying isotropic materials. The technique utilizes the inherent

symmetry of isotropic BRDFs, and does not apply to more general, potentially anisotropic

BRDFs that may be spatially varying. Photometric stereo has also been extended to deal

with glossy surfaces by taking advantage of light ray direction cues from the target object’s

shadow [22].

Based on the observation that color space transformations can be used to effectively sep-

arate diffuse and specular reflection [80], various color space invariants have been used to

reconstruct some non-diffuse scenes [140]. The performance of these approaches depends on

the angular difference in the color space between the diffuse and specular colors.
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2.6 Shape Reconstruction of Specular Scenes

While many of the techniques described in the previous section are not suitable for reconstruct-

ing perfectly specular objects, there is a significant body of work that has been dedicated to the

reconstruction of such scenes. Perceptual analysis of specular scenes shows that the movement

of specular highlights improves human observers’ shape discrimination [32, 57]. This suggests

that there are shape cues available to artificial systems beyond the standard shading cues [51].

2.6.1 Highlight Tracing

A highlight is a distorted reflection of a point light source on a specular surface. Stereoscopic

observations of specular highlights have been used to infersurface curvature information [12].

Highlights have also been used to iteratively grow the shapeof specular surfaces from known

“seed points” on the surface using several images from different viewpoints [108]. Sanderson

showed how specular highlights could be used to recover sparse depths on the surface using

stereo views, showing that with a single view there is an inherent ambiguity between surface

orientation and depth. More recently, highlights of a knownlight source on a specular sur-

face were tracked and used to iteratively update a hypothesized model of the specular object’s

surface [113]. One of the main drawbacks of these methods is that they deal with point light

sources. This makes it is difficult to get broad coverage of the surface since highlights are gen-

erally very localized. In [137], a toroidal light source wasused to create extended highlights

on specular objects and then used to recover depth as the object was rotated relative to the

source and camera. While this improves coverage, many imagesare still required as the object

is rotated.

Recently, dense specular flow caused by relative motion between a smooth specular object
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and its surrounding, unknown environment has been shown to enable shape estimation of the

surface by solving a PDE [1]. This has since been simplified bycombining several distinct

flows that allow for a linear solution [127].

The analysis of specular highlights has also been applied toglossy surfaces in [18, 33]. A

dense sampling of highlights was used in [18] and in [33] a polarizing filter was used to isolate

the specular component and recover surface orientation. A related approach for recovering

fine scale depths of specular or partially specular objects,[129], uses a parabolic mirror to

focus coaxially aligned illumination rays and viewing raysto a point on the target surface.

The incident illumination is varied over the surface of the mirror, covering a range of incidence

angles and the response measured. A dense normal map is foundover the surface by computing

the bisectors of the incident and outgoing rays for points onthe surface as the position of the

mirror is shifted to scan the surface.

2.6.2 Laser Scanning of Specular Scenes

Laser range-finders have also been adapted to reconstruct the shape of specular objects [7].

This is done by restricting the angle of the incident light toa single direction by attaching

several parallel plates at an angle in front of the CCD elements. The vertical plates, along with

a horizontal slit collimate the incident light to a narrow range of angles, allowing approximate

surface triangulation. The problem with this approach is that the object must be rescanned

many times from different angles to capture all of the surface normals present on the object.
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2.6.3 Dense Calibrated Pattern Approaches

More recent work has approached the problem by using dense, calibrated patterns placed so

that their reflection can be observed from the camera. Knowing the 3D location of points

on the reflected pattern is still insufficient to overcome thedepth/normal ambiguity from a

single view (Section 2.6.1), since there are a family of depths and normals that could explain

the given reflection. This problem is solved by either movingthe pattern to a second position,

constraining the reflected rays, or by using a second view to verify hypothesized depths [15, 16,

62, 69, 119]. These techniques are advantageous because they recover dense depth and normal

maps and make no assumptions about surface continuity.

By calibrating a dense geometric pattern of lines, it is possible to recover the shape as well

as curvature properties of a specular object that reflects the pattern by observing the distortion

this reflection causes [103].

In [77] an object was illuminated by a sequence of dense gradient patterns and observed

with and without a polarization filter. The addition of the polarization filter allows for both

specular and diffuse image normal maps to be created.

2.7 Shape Reconstruction of Transparent Media

While transparent objects are specular in nature and it may appear that many of the specular re-

construction algorithms in Section 2.6 can be directly applied to them, the algorithms were not

intended to be robust to the additional optical phenomena associated with transparent objects.

Early work on the reconstruction of refractive surfaces began in photogrammetry [31, 47,

78, 93]. These techniques assume a low-parameter model for atransparent surface (e.g., a

plane) and solve a generalized structure from motion problem in which camera parameters,
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surface parameters, and 3D coordinates of feature points below the surface are estimated si-

multaneously.

2.7.1 Tomographic Reconstruction

Transparent objects have been reconstructed using tomography-based approaches that measure

the attenuation of light passing through the object [14, 123]. In [123], transparent objects were

immersed in a cylindrical column of liquid that was matched to the object’s refractive index.

Assuming that the object has homogeneous density and is colored, images of the object with

back-lighting allow for a tomographic reconstruction. Whenthe object is not colored, a dye

can be used in the immersing liquid instead. Again, the object must be homogeneous and any

opaque parts would prevent reconstruction. Requiring liquid immersion limits this technique’s

applicability.

2.7.2 Fluorescent Immersion

In related work [52], transparent objects were immersed in aliquid matching the object’s re-

fractive index. The liquid was infused with a dye that fluoresces when illuminated by a laser.

Then the object was scanned by sheets of laser light and viewed from a perpendicular direc-

tion. Since only the liquid contains the dye and lights up, the transparent objects leave voids

in the images and a volume representing the object can be reconstructed. Even if the liquid

is not matched in refractive index, the object’s surface nearest to the laser scanner can still be

recovered.
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2.7.3 Polarization-based Reconstruction

When light reflects off of a surface, a fraction of the light becomes polarized in the direction

of the surface normal. The phase of the reflected polarized light encodes the orientation of the

reflection plane which is defined as the plane spanned by the surface normal and the incident

ray [100].

Several methods exist for determining the surface normal once the reflection plane is deter-

mined. One technique is to use a second view to constrain the normal to an epipolar line

and then use a global minimization approach to solve for the surface normals as well as

depths [100].

Another approach assumes surface smoothness and that the normals on the object’s silhou-

ette are perpendicular to the viewing angle. Once the silhouette normals are determined, degree

of polarization images are used to propagate the reconstruction to the rest of the object [83].

2.7.4 Shape from Distortion

The apparent distortion of the background by a refractive object has led to a number of methods

for recovering the shape of the transparent object. One suchmethod for inferring the shape and

pose of transparent objects uses a sequence of images of the object from a moving camera [9].

Features are tracked throughout the sequence as they are distorted by the transparent object

and an objective function that characterizes the shape and pose of the transparent object is

minimized. In order for this procedure to be tractable, the target objects are constrained to

single parameter, homogeneous shapes such as super-quadrics.

An alternative approach models the distortion caused by a refracting surface as a multi-

perspective projection of the background. In the case of a scene immersed in a planar refractive
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medium, the projection associated with this as well as a calibration procedure is outlined in

[121].

A framework for reconstructing homogeneous transparent objects was also proposed in [70]

where light rays are traced through the target object and intersected with a pair of known pat-

terns (Figure 2.5). The rays are assumed to have exactly two intersections with the transparent

object, entering and exiting it. Three viewpoints are then needed to reconstruct the 3D positions

and normals of the intersections with the refractive object. While, this work contributes to the

reconstruction of more general transparent objects, it is still limited to homogeneous objects

with only two surface interfaces per ray.
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2.7.5 Reconstruction of Dynamic Transparent Media

Shape from distortion techniques have also been applied to the problem of 3D reconstruction

of dynamic refractive surfaces, most often for water, whoserefractive index is often assumed to

be known [3, 59, 87, 93, 132]. In these approaches, the 3D shape of the water surface is recov-

ered by analyzing the distortion of a planar pattern that is immersed in the water. Since a single

image is insufficient to fully reconstruct the 3D shape, a variety of assumptions have been used

to constrain the problem. These include statistical assumptions about the pattern’s appearance

over time [87], known average water height [59, 93], and special optics [64, 136]. These as-

sumptions break down when the refractive index is unknown orwhen the liquid undergoes

significant deformations that cause changes in shape and height.

Another approach uses the idea of multi-perspective cameras to model the distortion caused

by a refractive surface. This is done by tessellating the target surface into a triangulated mesh

and treating each triangle as a linear warping function. Thewarping can simulate either re-

fraction or reflection and can be modeled as multi-perspective projection [27, 28]. Once the

parameters of the warping functions are estimated this leads to measures for the Gaussian and

mean curvatures of the surface. While these measurements give important information about

the surface, they are insufficient to reconstruct an unambiguous 3D surface.

Yet another technique for reconstructing dynamic transparent surfaces is known as “shape-

from-refractive-irradiance” [23, 58, 64, 136]. This approach utilizes a gradient pattern beneath

the surface. Light is emitted from this pattern and passes through a collimating lens so that

certain intensities or colors correspond to parallel lightrays and are then refracted by the sur-

face to the distant camera. This has the result of associating color or intensity with particular

surface slopes.

While the tomographic approaches in Section 2.7.1 were constrained to static objects, to-
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mographic approaches have also been adapted to work with dynamic transparent liquids [38,

54]. If the liquid is infused with fluorescent dye and viewed through a filter, it can be consid-

ered self emitting. Then image irradiance can be related to the distance the observed rays travel

within the liquid. This distance is also dependent on the incident angle, since refraction occurs

at the liquid surface. Images from multiple viewpoints are used to minimize the error between

the expected emission from a hypothesized surface and the actual observations. In [6], dynamic

sequences of transparent gas flows with spatially varying refractive index were captured using

Schlieren tomography with input from an array of cameras.

2.8 Summary

While the work presented in this chapter represents significant progress toward reconstructing

scenes with truly general reflectance properties and transparency, there are still significant gaps

remaining. Most of the methods described cannot span the full range of materials from diffuse

to fully specular and isotropic to anisotropic. In addition, inter-reflections between objects

violate the assumptions of most of the algorithms describedabove. In some cases this could be

overcome by performing a layer decomposition of the direct and indirect light as described in

Section 2.3.2, before running the reconstruction algorithms on the direct component. However,

this would still be subject to the same shortcomings of the layer decomposition algorithm such

as in the case of specularities or caustics.

The current state of the art for 3D reconstruction of transparent scenes has either a limited

scope of what can be measured (normal maps, curvature parameters or parametric properties),

or special equipment required for scans such as liquid immersion. In addition there are con-

straints on the properties of target objects, such as homogeneous materials, planar faces, and
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number of ray intersections. This raises several questions: How we reduce the constraints im-

posed by current methods, especially those restricting transparency to homogeneous materials

and simple geometric shapes? Can we apply stereo or multi-view techniques to this problem

and that of dynamic transparent scenes?

Further measurement of optical properties of transparent objects such as dispersion and

refractive index estimation has yet to be fully explored. Finally there has been little work on

creating unified reconstruction algorithms for both diffuse and specular materials as well as

transparent objects.



Chapter 3

Dynamic Refraction Stereo

“Only a fool tests the depth of the water with both feet.”

-African Proverb

3.1 Introduction

Modeling the time-varying surface of a liquid has attractedthe attention of many research

fields, from computer graphics [21, 30, 76, 86] and fluid mechanics [41] to oceanography [23,

58, 64, 136]. While great strides have been achieved in the development of computer simulators

that are physically accurate and visually correct [30, 76],capturing the time-varying behavior

of a real liquid remains a challenging problem.

From the point of view of computer vision, analyzing the behavior of liquids from videos

poses several difficulties compared to traditional 3D photography applications:

• No prior scene model:Spatio-temporal evolution is constrained only by the laws of fluid

mechanics, making it difficult to assume a low-degree-of-freedom parametric model for

29
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Figure 3.1: Geometry of refraction stereo. The goal is to reconstruct for each pixelq, the 3D

position and surface normal of pointp on the refractive surface.

such a scene [9, 135].

• Non-linear light path:Liquid surfaces bend the incident light and, hence, a point below

the surface will project along a non-linear path to a viewpoint above it.

• Shape-dependent appearance modulation:Absorption, scattering and Fresnel transmis-

sion cause the appearance of points below the surface to depend on the light’s path and,

hence, on the surface shape [34].

• Turbulent behavior:Liquid flow is an inherently volumetric phenomenon whose com-

plete characterization requires capturing both its time-varying surface and a vector field

describing internal motion [138].

• Instantaneous 3D capture:Since liquids are dynamic and can flow rapidly, shape recov-

ery must rely on instantaneously-captured information.

As a first step, in this paper we consider the problem of reconstructing the time-varying

3D surface of an unknown liquid by exploiting its refractiveproperties. To do this, we place a
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known, textured pattern below the liquid’s surface and capture image sequences of the pattern

from two known viewpoints above the liquid (Figure 3.1). Ourfocus is on imposing as few

restrictions as possible on the scene—we assume that the liquid has a constant but unknown

index of refraction and that its instantaneous 3D shape is arbitrary, as long as light coming from

the pattern is refracted at most once before reaching the input viewpoints.

The reconstruction of refractive surfaces from photographs has a long history in photogram-

metry [31, 47, 78, 93]. These techniques assume a low-parameter model for the surface (e.g., a

plane) and solve a generalized structure from motion problem in which camera parameters, sur-

face parameters, and 3D coordinates of feature points belowthe surface are estimated simulta-

neously. In related work, Treibitz et al. [121], show how a vision system observing a scene im-

mersed under a planar refractive surface becomes multi-perspective. They present a calibration

technique to estimate the geometry involved and then recover 3D position of objects immersed

in the refractive medium. In computer vision, the reconstruction of time-varying refractive sur-

faces was first studied by Murase [87], whose seminal work focused on water (whose refractive

index is known) and followed a “shape-from-distortion” approach [3, 59, 87, 93, 132]. In this

approach, 3D shape is recovered by analyzing one distorted image of a known pattern that is

placed underwater. Unfortunately it is impossible, in general, to reconstruct the 3D shape of a

general refractive surface from one image, even if its refractive index is known. The inherently

ill-posed nature of the problem has prompted a variety of assumptions, including statistical as-

sumptions about the pattern’s appearance over time [87], known average water height [59, 93],

known points on the surface or surface integrability [120],and special optics [64, 136]. These

assumptions break down when the refractive index is unknownor when the liquid undergoes

significant deformations that cause changes in shape and height (e.g., pouring water in an

empty tank). A different way to approach refractive distortion is to break up the observed sur-
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face into a triangulated mesh, where each triangle acts as a general linear camera that warps the

background [27, 28]. Solving for the parameters of these GLCsgive the Gaussian and mean

curvature but the 3D shape remains ambiguous. Another common technique for reconstructing

water surfaces is known as “shape-from-refractive-irradiance” [23, 58, 64, 136]. This approach

utilizes a gradient pattern beneath the water surface. Light is emitted from this pattern and

passes through a collimating lens so that certain intensities or colors correspond to parallel

light ray columns and are then refracted by the water surfaceto the distant camera. This has

the result of associating color or intensity with particular surface slopes. This method is most

appropriate for measuring small capillary or wind driven waves and is unsuitable for more gen-

eral use that we are aiming for. Specifically, the lens prevents reconstruction of shallow water

as well restricting natural flow in the liquid. Also, the complex nature of an external lens is

bound to introduce additional errors due to distortion as well as light attenuation in the liquid.

More recent work has focused on tomography based approaches. First, Trifonov et al. [123]

immerse target transparent objects in transparent liquid with a matching refractive index and

measure the attenuation of a back light through the objects from various views. Then, in [52],

objects are scanned by again immersing them in liquid infused with a Fluorescent dye that

responds to laser light. When a laser sheet is passed over the object only the dye responds and

contours of the object can be recovered.

A closely related problem is the reconstruction of highly specular surfaces such as mir-

rors [12, 40, 55, 96, 104, 108, 112, 120]. Mirrors interact with light in much the same way that

refractive surfaces do—light incident at a point is reflected according to the point’s surface

normal, thereby tracing a non-linear path. Blake [12] proposed using a moving observer to

recover the differential properties of a smooth mirror surface from the observed motion of

specularities. Sandersonet al [102] were the first to analyze the ambiguities in single-view
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mirror reconstruction and to propose a stereo camera configuration for resolving them. Our

work, which is based on a novel analysis of two-view ambiguities for refractive scenes, ex-

ploits some of the same basic insights. Recently, there have been several approaches that use

multiple views to recover the 3D shape of mirror surfaces [15, 16, 62]. While Wang and Dana

use a single view, a parabolic mirror allows surface points to be viewed from multiple angles

enabling recovery of high resolution relief and texture on specular surfaces [129]. These ideas

have also been extended to deal with near-specular and glossy surfaces [18, 33]. In addition,

the specular flow of the environment viewed on a mirror surface has been shown to give shape

cues even for unknown environments [1, 127].

Reconstructing transparent liquid surfaces is even more challenging than mirrors for three

reasons. First, the interaction between light and a mirror does not depend on the mirror’s ma-

terial properties but it does depend on a liquid’s refractive index. When this index is unknown,

it must be estimated along with 3D shape. Second, the non-linearity of light paths cannot be

taken for granted in the case of fluctuating liquid surfaces,whose distance from a pattern below

the surface may approach zero, diminishing the effect of refraction. To guarantee stable shape

solutions, a reconstruction algorithm must be immune to such degeneracies. Third, establish-

ing accurate pixel-wise correspondences between patternsand their distorted images is much

easier in the case of a mirror. In liquids, the distortions are both geometric and radiometric

(due to absorption, Fresnel effect, etc.) and can vary significantly from one instant to the next.

The starting point for our work is a novel geometrical resultshowing that two viewpoints

are sufficient to compute both the shape and the refractive index of an unknown, generic re-

fractive surface. The only requirements are (1) knowledge of a function that maps each point

on the image plane to a known 3D point that refracts to it, and (2) light is refracted only once.

Compared to mirrors, this is a stronger two-view result because it shows that the refractive
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index ambiguity, not present in mirror scenes, can be resolved without additional views.

On the practical side, our interest is in algorithms that cancapture the detailed dynamic

behavior of free-flowing liquids. To this end, our work has four contributions. First, we for-

mulate a novel optimization criterion, calledrefractive disparity, appropriate for refractive

scenes, that is designed to remain stable when refraction diminishes. Second, we develop an

optimization-based algorithm for individually reconstructing the position and normal of each

point projecting to the input views. The algorithm is closerto traditional triangulation [44]

and bundle adjustment [43, 124] than to voxel-based stereo [15], and imposes no constraints

on the liquid’s shape or its evolution. Third, we show that refraction stereo can produce a de-

tailed, full-resolution depth map and a separate, full-resolution normal map for the unknown

surface. To our knowledge, only one other shape recovery method, Helmholtz stereopsis [141],

has demonstrated the ability to compute dense normal maps along with some depth informa-

tion (although its depth maps were low resolution and deemedinaccurate). Fourth, we present

experimental results for a variety of complex, deforming liquid surfaces. These results sug-

gest that refraction stereo can yield detailed reconstructions that capture the complexity and

dynamic behavior of liquids.

3.2 Refraction Stereo Geometry

Consider an unknown, smooth, transparent surface that is viewed by two calibrated cameras

under perspective projection (Figure 3.1). We assume that the surface bounds a homogeneous

transparent medium (e.g., water or alcohol) with an unknownrefractive index. Our goal is

to compute the refractive index of the medium and the 3D coordinates and surface normal at

each point on the unknown surface. To do this, we place a knownreference pattern below the
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surface and compute a pixel-to-pattern correspondence function,C(q, t), that gives us the 3D

coordinates of the point on the pattern that refracts to pixel q at timet. In the following, we

assume that this function is known and concentrate on the instantaneous reconstruction problem

at timet. We consider the problem of estimating the correspondence function in Section 3.5.

To simplify notation, we omit the time parameter in the following discussion.

Let q be a pixel in the input views, letC(q) be the point refracting toq, and suppose that

this refraction occurs at distanced from the image plane, at a pointp(d) on the ray through

pixel q (Figure 3.1). The relation between pixelq and pointsC(q) andp(d) is governed

by Snell’s law which describes how light is redirected at theboundary between two different

media [34]. Snell’s law can be expressed as two independent geometric constraints:

• adeflection constraint, establishing a sinusoidal relation between incoming and outgoing

light directions:

sin θo = r sin θi (3.1)

whereθi is the angle between the surface normal and the ray throughC(q) andp(d);

θo is the angle between the surface normal and the ray through pixel q; and r is the

refractive index;

• and aplanarity constraint, forcing the surface normal atp(d) to lie on the plane defined

by pointC(q) and the ray throughq; we call this plane therefraction planeof pixel q.

These two constraints give us a relation between the pixel, aknown 3D point that refracts

to it, and the unknown surface. Unfortunately, they are not sufficient to determine how far

from the image plane the refraction occurs, even when we do know the refractive index. This

is because for every hypothetical distance there is a 1D set of possible normals that satisfy

the planarity and deflection constraints. Each of these normals lies on the pixel’s refraction
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Figure 3.2: Single-viewpoint ambiguities.Left: A view of pixel q’s refraction plane is shown.

Middle: Given a refractive indexr1, we can find, for each distanced2 to the surface, a normal

that refracts pointC(q) to its corresponding pixelq. Right: Similarly, given a distanced1, we

can find, for each refractive indexr2, a normal that refracts pointC(q) to pixelq.

plane and satisfies Eq. (3.1) for some value of the refractiveindex (Figure 3.2). Hence, the unit

surface normal that satisfies Snell’s law for pixelq can be expressed as a two-parameter family,

n(d, r), parameterized by the distanced and the unknown refractive index,r. A closed-form

expression for this normal as

n(d, r) = r ‖ i(d) ∧ o‖
( i(d)−

[

i(d) · o
]

o

‖i(d)−
[

i(d) · o
]
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)

+
(

r
[

i(d) · o
]

− 1
)

o (3.2)

where∧ denotes vector product;o is the direction of the ray through pixelq; andi(d) is the

direction of the ray incident to the surface pointp(d):

o =
c− q

‖c− q‖
, (3.3)

i(d) =
c− do−C(q)

‖c− do−C(q))‖
. (3.4)

When the refractive index has a known valuer0, there is only one consistent normal,

n(d, r0), for each distanced. Sandersonet al [102] were the first to point out that this distance-



CHAPTER 3. DYNAMIC REFRACTION STEREO 37

normal ambiguity for a pixelq can be resolved with the help of a second viewpoint.1 Intuitively,

a second viewpoint allows us to “verify” whether or not a particular distance hypothesisd is

correct (Figure 3.1): given such a hypothesis and given the projectionq′ of pointp(d) in the

second camera, we simply need to verify that pointC(q′) on the reference pattern refracts to

pixel q′.

While this hypothesis-verification procedure leads directly to an algorithm when the surface

has a known refractive index, it leaves open the question of how to reconstruct surfaces whose

3D shapeand refractive index are unknown. In this case, the surface normal lies in the full,

two-parameter family,N = {n(d, r) | d, r ∈ R
+}. One approach would be to use a third

viewpoint to verify that a hypothetical refractive indexr and distanced are consistent with the

pixel-pattern correspondences in the three views.

Rather than use a third viewpoint, we prove that two views are,in fact, sufficient to estimate

the 3D shape and refractive index of an unknown, generic surface. Intuitively, generic surfaces

embody the notion ofnon-degeneracy—they are smooth surfaces whose differential properties

remain unchanged if we deform their surface by an infinitesimal amount [66]. As such, they

are especially suitable for modeling the complex, unconstrained shape of a liquid. Theorem 1

tells us if the liquid’s surface is generic, the family,N , of ambiguous solutions is discrete:

Theorem 1 N is a zero-dimensional manifold for almost all pixels in the projection of a

generic surface.

Theorem 1 holds for continuousC(q) and suggests that it might be possible to compute the

refractive index of a surface by choosing a single pixelq and finding the distance and refractive

1Sandersonet al [102] made this observation in the context of reconstructing opaque specular, rather than
refractive, surfaces. Their analysis applies equally wellto the case of refractive surfaces with a known refractive
index.
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index that are consistent withC(q) and the pixel-to-pattern correspondences in the second

viewpoint2. In practice, image noise and the possibility of multiple discrete solutions dictate

an alternative strategy, where measurements from multiplepixels contribute to the estimation

of the refractive index. We consider the algorithmic implications of this result below.

3.3 Dynamic Refraction Stereo Algorithm

In order to reconstruct a liquid’s surface at a time instantt, we need to answer three basic

questions: 1) how to compute the pixel-to-pattern correspondence functionC(q, t), 2) how to

compute the refractive index and 3) how to assign a distance and a normal to each pixel?

To computeC(q, t) we rely on a procedure that computes the correspondences fortime

t = 0 and then propagates them through time using optical flow estimation.

Since the refractive index is the same for all pixels, we seeka value that most closely

satisfies the refractive stereo geometry across all pixels and all frames. We perform a discrete

1D search in an interval of plausible refractive indices and, for each hypothetical value, attempt

to reconstruct the scene for all pixels and frames. We then choose the value that produces the

smallest reconstruction error. This leads to the followinggeneral algorithm, whose steps are

discussed in the following sections.

Step 1 Initialize pixel-to-pattern correspondences,C(q, 0).

Step 2 For each framet > 0, estimate 2D optical flow to computeC(q, t) fromC(q, t− 1).

2See Appendix A for the proof
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Step 3 For every refractive indexr ∈ {r1, . . . , rn}, every framet and every pixelq,

• assuming refractive indexr for the liquid, estimate the 3D positionp and normaln

of the surface point projecting to pixelq at timet

• estimate the reconstruction error (Section 3.4.2),

e(r, t, q) = RE(p,n) . (3.5)

Step 4 Set r∗ = argminr

∑

t,q e(r, t, q) and return the distances and normals reconstructed

with this index value.

Step 5 For each timet, fuse the pixel-wise 3D position and normal estimates to obtain a 3D

surface.

3.4 Pixel-wise Shape Estimation

The key step in refraction stereo is an optimization procedure that assigns a 3D pointp and a

surface normaln to each pixel. The procedure assumes that the refractive index has a known

valuer and computes thep,n that are most consistent with Snell’s law and the pixel-to-pattern

correspondence function for the input views.

For a given pixelq, the optimization works in two stages. In the first stage, we conduct a

1D optimization along the ray through pixelq. The goal is to find the distanced that globally

minimizes a novel criterion, called therefractive disparity (RD). This criterion is specifically

designed to avoid instabilities due to degenerate refraction paths (e.g., when the liquid’s surface

is close to the reference pattern).

The optimald-value gives us initial estimates,p(d) andn(d, r), for the 3D coordinates

and surface normal of a point that projects to pixelq. These estimates are further refined in a
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second, bundle adjustment stage in which all five parameters(two for the normal, three for the

position) are optimized simultaneously.

3.4.1 Measuring Refractive Disparity

Each value ofd defines an implicit correspondence between four known points (Figure 3.1):

pixel q, pointC(q) on the reference pattern that refracts toq, the projection,q′ of p(d) in the

second viewpoint, and pointC(q′). This correspondence must be consistent with Snell’s law.

In their work on reconstructing mirror-like surfaces, Bonfort and Sturm [15] noted that such

a correspondence gives us two “candidate” normals forp(d) which must be identical when this

hypothesis is correct. These normals are obtained by applying Eq. (3.2) twice, once for each

viewpoint. Specifically, the first normal,n1 = n(d, r), ensures that pointC(q) on the reference

pattern refracts to pixelq via pointp(d). The second normal,n2, enforces a similar condition

for the second viewpoint, i.e., it ensures that pointC(q′) refracts to pixelq′ via pointp(d). We

obtainn2 by applying Eq. (3.2) to pixelq′, using its distance from pointp(d). Since points

on a smooth surface have a unique normal, a necessary condition forp(d) being on the “true”

surface is thatn1 = n2.

Unfortunately, even though it is possible, in principle, todirectly measure the alignment

of vectorsn1 andn2, such a measurement becomes unstable when the distance between the

surface and the reference pattern approaches zero. This is because as refraction diminishes,

Eq. (3.2) becomes singular, normals cannot be estimated accurately, and the 3D reconstruc-

tion problem degenerates to standard stereo. In practice, this causes instability for low liquid

heights, making direct comparison of normals uninformative and inappropriate for reconstruc-

tion.

Instead of measuring the alignment of the two normalsn1 andn2 directly, we perform an
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Figure 3.3:Optimization criteria for refraction stereo. (a) Measuring refractive disparity. Normals are

drawn according to the refractions they produce. (b) For small surface-to-pattern distances, swapping

n1 andn2 does not influence the distance betweenC(q) and t significantly. (c) Measuring image

re-projection error at one of the viewpoints.

indirect measurement that is not singular when refraction diminishes. The main idea is that

if n1 andn2 were truly aligned, “swapping” them would still force pointC(q) to refract to

pixel q and pointC(q′) to pixelq′. We therefore define the criterion by asking two questions

(Figure 3.3a):

• suppose the normal atp(d) is n2; which point on the reference pattern will refract toq?

• suppose the normal atp(d) is n1; which point on the reference pattern will refract toq′?

Now suppose that pointst, t′ are the points that refract to pixelsq,q′, respectively. The dis-

tance betweent andC(q) and, similarly, the distance betweent′ andC(q′), can be thought of

as a measure of disparity. Intuitively, this distance tellsus how swapping the normalsn1,n2 af-

fects consistency with the available pixel-to-pattern correspondences. To evaluate a hypothesis

d we simply sum these distances:

Refractive Disparity

RD(d) = ‖t−C(q)‖2 + ‖t′ −C(q′)‖2 . (3.6)
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When the distance between the true surface and the reference pattern is large, refractive

disparity is equivalent to a direct measurement of the alignment between vectorsn1,n2, i.e.,

it is zero if and only ifn1 = n2. On the other hand, as the liquid’s true surface approaches

the reference pattern, refractive disparity diminishes. This is because the refractive effect of

changing a point’s surface orientation diminishes as well (Figure 3.3b). As a result, the mini-

mization can be applied to any image pixel for whichC(q) is known, regardless of whether or

not the ray through the pixel actually intersects the liquid’s surface.

To compute pointt for a givend-value, we trace a ray from the first viewpoint through pixel

q, refract it at pointp(d) according to normaln2, and intersect it with the (known) surface of

the reference pattern. Pointt′ is computed in an identical manner. To find the distanced that

globally minimizes refractive disparity along the ray we use Matlab’sfminbnd() function,

which is based on golden-section search [99].

3.4.2 Computing 3D Position and Orientation

Even though refractive disparity minimization yields goodreconstructions in practice, it has

two shortcomings. First, it treats the cameras asymmetrically because optimization occurs

along the ray through one pixel. Second, it only optimizes the distance along that ray, not the

3D coordinates and orientation of a surface point. We therefore use an additional step that

adjusts all shape parameters (p andn) in order to minimize a symmetric image re-projection

error.

To evaluate the consistency ofp andn, we check whether the refractions caused by such a

point are consistent with the refractions observed in the input views. In particular, letqp,q
′
p

be the point’s projections in the two cameras and suppose that t, t′ are the points on the ref-

erence pattern that refract toqp,q
′
p, respectively, via pointp. To compute the re-projection
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error we measure the distance between pixelsqp,q
′
p and the “true” refracted image oft, t′

(Figure 3.3c):

RE(p,n) = ‖qp −C−1(t)‖2 + ‖q′
p −C−1(t′)‖2 + βG(‖p− p0‖; σ)

−1 (3.7)

whereC−1(.) denotes the inverse of the pixel-to-pattern correspondence function,G(.; σ) is

the Gaussian with standard deviationσ, andp0 is the starting point of the optimization. The

Gaussian term ensures that the optimization will return a point p whose projection always

remains in the neighborhood of the originally-chosen pixelq in Steps 1 and 2 of the algorithm

(Section 3.3). We usedσ = 4 andβ = 200 for all our experiments. To minimize theRE

functional with respect top andn we use the downhill simplex method [99].

3.5 Implementation Details

3.5.1 Estimating Pixel-to-Pattern Correspondences

Accurate 3D shape recovery requires knowing the pixel-to-pattern correspondence function

C(q, t) with high accuracy. While color-based techniques have been used to estimate this

function for image-based rendering applications [21], they are not appropriate for reconstruc-

tion for several reasons. First, different liquids absorb different wavelengths by different

amounts [116], altering a pattern’s appearance in a liquid-dependent way. Second, since light

absorption depends on distance traveled within the liquid and since this distance depends on

the liquid’s instantaneous shape, the appearance of the same point on a pattern will change

through time. Third, the intensity of light transmitted through the surface depends on the Fres-

nel effect [34] and varies with wavelength and the angle of incidence. This makes it difficult to

use color as a means to localize points on a pattern with near-or sub-pixel accuracy.
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Figure 3.4: (a) Experimental setup. (b) Typical close-up view of pattern, seen through water

surface. (c) Distorted view, corresponding to tracking failure at the central corners.

In order to avoid these complications, we use a monochrome checkered pattern and rely

on corners to establish and maintain pixel-to-pattern correspondences (Figures 3.4a,b). We

assume that the liquid’s surface is undisturbed at timet = 0 and use the Harris corner de-

tector [42] to detect corners at sub-pixel resolution. Thisgives us the initial pixel-to-pattern

correspondences. To track the location of individual corners in subsequent frames while avoid-

ing drift, we estimate flow between the current frame and the frame at timet = 0, using the

flow estimates from the previous frame as an initial guess. Wecompute flow with a translation-

only version of the Lucas-Kanade inverse-compositional algorithm [8] and use Levenberg-

Marquardt minimization to obtain sub-pixel registration.This algorithm is applied to an11×11

pixel neighborhood around each corner. We use the registration error returned by the algorithm

as a means to detect failed localization attempts. In the case of failure, the flow computed

for that corner is not used and the corner’s previously knownlocation is propagated instead.

This allows our tracker to overcome temporary obscurationsdue to blur, splashes or extreme
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refractive distortions (Figure 3.4c). The above proceduregives values of the correspondence

functionC(q, t) for a subset of the pixels. To evaluate the function for everypixel, we use

bilinear interpolation.

3.5.2 Fusing 3D Positions and Orientations

Refraction stereo yields a separate 3D position and 3D normalfor each pixel. While this is a

richer shape descriptor, the problem of reconstructing a single surface that is consistent with

both types of data is still open. A key difficulty is that pointand normal measurements have

different noise properties and hence a surface computed vianormal integration and a surface

computed by fitting a mesh to the 3D points will not necessarily agree. As a first step, we used

simulations and ground-truth experiments to estimate the reliability of each data source as a

function of surface height, i.e., distance from the plane ofthe reference pattern (Figure 3.6).

Since reconstructed normals are highly reliable for large heights, we used this analysis to set

a height threshold below which normals are deemed less reliable than positions. That portion

of the surface is reconstructed from positional data. For the remaining pixels, we reconstruct

the surface via normal integration using the Ikeuchi-Horn algorithm [56] and merge the results.

In cases where all reconstructed positions are above the height threshold, we rely on normal

integration to compute 3D shape and use the average 3D position to eliminate the integrated

surface’s height ambiguity.
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3.6 Experimental Results

3.6.1 Simulations

To evaluate the stability of our algorithms, we performed simulations that closely matched the

experimental conditions in the lab (e.g., relative position of cameras, pattern-to-camera dis-

tances, feature localization errors, etc.). We simulated the reconstruction error for planar water

surfaces as a function of the surface-to-pattern height, and for various levels of error in cor-

ner localization and camera calibration. We modeled the localization error by perturbing the

image coordinates of the projected corners by a Gaussian with a fixed standard deviation. For

each height, we reconstructed 10000 individual points and measured their deviation from the

ground-truth plane (Figure 3.6). These simulations confirmthat the accuracy of reconstructed

normals degrades quickly for water heights less than4mm. Importantly, the accuracy of dis-

tance computations is not sensitive to variations in water height, confirming the stability of

our optimization-based framework for refractive stereo (Section 3.4.1). We also compared the

effect of localization error on the results (Figure 3.5).

In addition, we ran simulations to test the stability of refractive index estimation. We sim-

ulated a stationary sinusoidal surface whose average height was40mm and whose amplitude

was2mm. We then computed the total reconstruction error for various combinations of true

and hypothesized refractive index values (Figure 3.7). We used a localization error of0.1

pixels for these simulations, to reflect our actual experimental conditions. These simulations

show that our objective function has a minimum very close to the expected refractive index.

Note also that the valley around the minimum becomes more shallow as the refractive index

increases.
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Figure 3.5: Left: Reconstruction accuracy as a function of water height, for the following

values of pixel localization error from bottom to top0.06, 0.08, 0.1, 0.12. Right: Normal re-

construction error for the same pixel localization error values.

3.6.2 Experimental setup

Figure 3.4a shows our setup. The checkered pattern at the bottom of the tank was in direct

contact with the water to avoid secondary refractions. During our experiments, the pattern was

brightly lit from below to avoid specular reflections and to enable the use of a small aperture

size for the cameras (and, hence, a large depth of field). Images were acquired at a rate of

60Hz with a pair of synchronized Sony DXC-9000 progressive-scan cameras, whose electronic

shutter was set to1/500sec to avoid motion blur. Both cameras were approximately 1 meter

above the tank bottom and were calibrated using the Matlab Calibration Toolbox [17].

3.6.3 Accuracy experiments

Since ground truth was not available, we assessed our algorithm’s accuracy by applying it to

the reconstruction of flat water surfaces whose height from the tank bottom ranged from4 to

15mm. For each water height, we reconstructed a pointp and a normaln independently for
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Figure 3.6: Reconstruction accuracy as a function of water height, for real (dotted line) and

simulated (solid line) flat water surfaces. Bars indicate standard deviation. Simulations are for

a0.08-pixel localization error; in real flat water experiments, corner localization precision was

measured to be approximately0.1 pixels.

each of 1836 pixels in the two image planes, giving rise to as many 3D points and normals.

No smoothing or post-processing was performed. To assess the accuracy of the reconstructed

points, we fit a plane using least squares and measured the points’ RMS distance from this

plane. To assess accuracy in the reconstructed normals, we computed the average normal and

measured the mean distance of each reconstructed normal from the average normal. These

results, also shown in Figure 3.6, closely match the behavior predicted by our simulations.
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Figure 3.7: Total reconstruction error as a function of estimated refractive index for several

indices increasing from left to right.
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They suggest that reconstructions are highly precise, withdistance variations around0.25mm,

(i.e., within99.97% of the surface-to-camera distance) and normal variations on the order of 2

degrees for water heights above8mm.

3.6.4 Experiments with dynamic surfaces

Figures 3.10, 3.11 and 3.12 show reconstructions for several dynamic water surfaces. The ex-

periments test our algorithm’s capabilities under a variety of conditions, from rapidly-fluctuating

water that is high above the tank bottom, to water that is being poured in an empty tank, where

the water height is very small and refraction is degenerate or near-degenerate for many pixels.

Several observations can be made from these experiments. First, our tracking-based frame-

work allows us to maintain accurate pixel-to-pattern correspondences for 100s of frames, en-

abling dynamic reconstructions that last several seconds.Second, the reconstructed distances

remain stable despite large variations in water height, andare accurate enough to show fine

surface effects even in cases where the total water height never exceeds6mm (e.g., the “pour”

sequence). Third, the reconstructed normal maps, as predicted, show fine surface fluctuations

at larger heights but degrade to noise levels for water heights near zero.

Qualitatively, when there is sufficient water in the tank, they appear to contain less noise

than depth maps. Fourth, the normal integration algorithm that we are currently using seems to

over-smooth fine surface details that are clearly present inthe depth and normal maps. Hence,

the question of how to best extract surfaces from the raw dataprovided by refraction stereo

is still open. Our results suggest that a hybrid model that combines the benefits of the posi-

tional and normal data is necessary for accurate reconstruction such as [91]. In the following

paragraphs, we present further analysis result sequences and their reconstructions [84].

Ripple sequence: The ripple sequence shows a drop of water dripping into a tank with
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approximately25mm of water in it. The drop causes layers of circular waves to emanate from

the point of contact. There are a combination of large and finescale waves in the sequence,

making for an interesting reconstruction problem. We achieved a good reconstruction of depth

and normals since the surface depth provided sufficient refraction for reliable readings in both

categories. The normals provide better resolution of the fine ripples. The initial splash caused

when the drop first hit the water produced strong distortionsof the underlying pattern which

our system was unable to track. We thus reinitialized the system immediately after the worst

distortions had elapsed and were able to capture the expanding circular waves.

In the depth maps, at points of greatest distortion of the ripple, depth errors are more com-

mon, causing sharp peaks in the depth maps (bright or dark spots in Figure 3.10). Despite

these depth errors, the corresponding normals appear to be correct and the normal maps are

very smooth, allowing tiny leading ripples to be easily identified.

Pour sequence: This sequence shows water being poured into an empty tank, spreading

across the pattern from left to right. This sequence tests our system’s ability to cope with water

heights of zero and close to zero. The sequence also exhibitslarge surface shape variation due

to the ripples and several bubbles also formed on the surfaceduring the sequence. Our recon-

struction successfully handled the height variations using the refractive disparity. Our normal

readings exhibited increased noise in the shallow portions, however we were able to reconstruct

accurate depths (Figure 3.11). The large regions of noise inthe normal maps correspond to ar-

eas with no water, however the heights are correctly recovered. Notice that the reconstructed

height map is smooth at the water edges, showing robustness to shallow water.

The normal maps provide excellent fine detail of the water surface, lacking much of the

noise evident in the height maps. Fine waves and ripples are visible in the normal maps in all

three time instants of the pour sequence (Figure 3.11). Onlythe larger scale waves appear in
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Figure 3.8: Total reconstruction error as a function of refractive index.Left: Combined error

of several frames from the RIPPLE sequence.Middle: Combined error of several frames from

the POUR sequence.Right: Combined error of several frames from the WAVES sequence.

the height map, where noise tends to obscure these details. Note that while our system is not

designed to handle bubbles, the reconstruction actually captured indentations corresponding to

the bubbles as well as the resulting ripples when they burst (see the middle of the normal map

in the second time instant).

Waves sequence: This sequence shows waves propagating from the left to the right on a

water surface at a height of approximately24mm. There are several interleaving wavefronts

of various scales. This sequence provides the greatest variation in water height and overall

roughness. Reconstructions from this dataset suffered frommore calibration error and thus

exhibit stronger noise. This is most noticeable in the moirépatterns appearing in both the

depth and normal maps. Despite this, we did obtain interesting reconstructions of the rough

water surface. We recover both the large and small scale wavefronts, which can be visually

tracked across the sequence in the normal maps.
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3.6.5 Refractive index determination

In addition to reconstructing both surface and normal data,our system was able to obtain an

estimate of the refractive index of the transparent medium.We ran our algorithm on all three

sequences of Figures 3.10-3.12, over a range of seven framesfor each. Figure 3.8 shows

the total reconstruction error corresponding to specific values of the refractive index, for the

each dataset. The curves exhibit a minimum near the correct refractive index for water, 1.33,

confirming the predictions of Theorem 1. This is because Step4 of our algorithm enforces a

very strongglobal constraint: the light path of every pixel at every time instant and at every

viewpoint must be consistent with thesamerefractive index value.

3.7 Discussion

3.7.1 Ambiguous surfaces

In refractive index determination we must examine the possibility that two surfaces with dif-

ferent refractive indices produce the same observed stereoimage pair. Our initial analysis,

described below, indicates that pairs of surfaces with different refractive indices that produce

the same images do exist, but they do not have a “simple” shape: indeed, the points on a pair

of ambiguous surfaces must satisfy a joint system of very complex trigonometric equations for

such an ambiguity to exist.

We use a numerical approach to construct point samples on such surface pairs as follows:

given the refractive indexr of the true surfaceS and the refractive indexra of an ambiguous

surfaceR, we construct points and normals that lie on bothS andR. First we begin with a

seed pointp1 on S which is imaged atq1 in c (Figure 3.9). Then we find a second pointa1
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Figure 3.9: (a) Ambiguous surface construction: Pointsp1, p2 andp3 lie on surfaceS, points

a1 anda2 lie on the ambiguous surfaceR. Note that correspondence functionsC(q′
2), C(q′

3),

C(q1) andC(q2) all agree with both the true and ambiguous surface points andtheir normals.

(b) Ambiguous surface pairs constructed according to Section 3.7.1. Left : The depths ofS

were chosen to fit a plane.Right: The depths ofS were chosen to fit a sinusoidal surface.

that lies along the ray fromq1 to p1 and on the ambiguous surfaceR. The depth ofa1 and

its normalm1 must be chosen such that the pixel ray refracts to the same location on the tank

bottom described byC(q1). Next, we projecta1 into view c′ and intersect this ray withS

to obtain another pointp2. The normal ofp2 is constrained by the condition that it refract

the pixel ray fromc′ must refract toC(q′
1). From our initial seed point, this process gives

us two new points:a1 onR andp2 on S. We can repeat this process given additional new

seed points or by extending the construction by repeating the above steps withp2 as the seed.

Figure 3.9(a) shows this construction repeated twice. Since we have one degree of freedom in
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the depth/normal ofa1, this means there is a family of surfaces that are ambiguous,yet highly

constrained. For instance, if we attempt to createS andR as parallel planes, the normals

associated with the points cannot satisfy these constraints and agree with the global planar

normal. Figure 3.9(b) shows two surface pairs created from asparse set of points as described.

Intermediate surface points were interpolated according to the sparse points and their normals.

These examples show global fitting of a desired shape (e.g. plane or sinusoidal surface) but

locally it does not match since the ambiguity must be maintained by specific curvature at these

sparse points. If we were to construct these surfaces as shown and then test for ambiguity at

the intermediate points, the surfaces would not be ambiguous

So, while ambiguities exist they are not as important in practice because in our context

the scene is dynamic: in our algorithm, a single refractive index value must account for the

refractions produced by theentire sequenceof 3D surfaces of the liquid, not just the 3D surface

in a single instant. In fact, refractive index estimation exploits the dynamic/statistical nature of

liquids in three ways: 1) the surface is highly variable and hence we observe many different,

complex surfaces with thesamerefractive index during image acquisition, 2) their deforming

surface is unlikely to globally match one of the “special,” ambiguous shapes and 3) even if it

does, it is unlikely that such a “special” shape will occur for many time instants. In practice,

this allows us to side-step the issue of ambiguities by enforcing refractive index consistency

with all available data (multiple time instants, even multiple acquisition experiments) using our

search-based refractive index estimation algorithm. Experimentally, the lack of shape-index

ambiguities over an acquired dataset is confirmed by error curves that have only one (global)

minimum, as in Figure 3.8.
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3.7.2 Pixel-to-pattern function

In the description of the algorithm and implementation, we assumed thatC() was invertible.

We note, however, thatC() can be many-to-one and not generally invertible. The conditions

that causeC() to be invertible were noted by Murase, deemed reasonable, and used in his work

on liquid reconstruction. From a technical standpoint, however, our analysis does not require

C() to be globally invertible: all we need is that it islocally invertible, i.e., for almost all pixels

q (in a measure-theoretic sense), the restriction ofC() to some open neighborhood of q is an

invertible function. This does permit the occurrence of isolated singularities (i.e., pixels or

image curves whereC() is not invertible for any neighborhood).

For example, if we were to take a simple 2D scene such as a surface defined byy = cos(x)

with the camera looking down the−y axis,C() is not globally invertible. The scene is, how-

ever, locally invertible for all values ofx except two: for a given refractive index value and

a camera located at infinity, there are only two incoming rays/pixels where local invertibility

breaks down: these rays hit thecos(x) curve near its inflection points, where the mapping

from incoming rays to points on thex-axis “folds” onto itself. More generally, the singulari-

ties where local invertibility breaks down have propertiesanalogous to the singularities of the

Gauss map where, generically, the mapping from surface points to their normals is singular

either on parabolic curves, corresponding to “folds” of theGauss map, or on isolated points,

corresponding to “cusps” of the map.

We also examine in further detail, how the flow propagates from C(t− 1) to C(t). There

are two cases: (1) The Lucas-Kanade algorithm is able to localize in framet a corner that

was also localized in framet − 1. In this case, the flow vector assigned to the corner at time

t− 1 is its displacement between the two frames. This process is completely local and is well

defined whereverC() is locally- (but perhaps not globally-) invertible. (2) TheLK algorithm
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fails to localize the corner at framet. This doesnot cause a breakdown of flow estimation for

subsequent frames. In this case, the algorithm interpolates the flow vectors computed at four

neighboring corners in framet − 1 in order to assign a flow vector to the corner that was lost

in frame t. Bilinear interpolation is used, with weights determined bythe corners’ distance

from each other. We then use the position in framet− 1 of the lost corner and the interpolated

flow vector to assign it a “virtual” position in framet. This position is used to initialize the

LK algorithm in framet + 1, in an attempt to re-localize the lost corner. In case of failure at

t + 1, propagation is repeated until the corner is re-acquired. Since these distortions are local

and persist for just few frames, we have found that the strategy works well in practice and has

enabled propagation of pixel-to-pattern correspondencesfor 100s of frames.

Our current implementation does not check for the possibility that after a tracking failure

(i.e., singularity ofC()) a corner at framet − 1 appears in more than one location in framet

(or vice-versa). While is certainly possible to do so, the sequences we have acquired suggest

that such events are very transient and cause significant distortions in the local neighborhood

of a corner, making it very hard to localize it, let alone identify multiple images of it. In such

cases, flow propagation allows the corner to be re-acquired when distortions are reduced.

3.8 Concluding Remarks

Liquids can generate extremely complex surface phenomena,including breaking waves, bub-

bles, and extreme surface distortions. While our refractionstereo results are promising, they

are just an initial attempt to model liquid flow in relativelysimple cases. Our ongoing work

includes (1) reconstructing surfaces that produce multiple refractions [69], (2) reconstructing

liquids by exploiting their refractive and reflective properties (e.g., by also treating them as
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mirrors), and (3) “reusing” captured 3D data to create new, realistic fluid simulations.
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Figure 3.10: RIPPLE Sequence. All maps correspond to a top view of the tank and show raw,

per-pixel data. The mesh images show a surface fit to the data scaled by5 in the vertical axis.
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Figure 3.11: POUR Sequence. All maps correspond to a top viewof the tank and show raw,

per-pixel data. The mesh images show a surface fit to the data scaled by5 in the vertical axis.
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Figure 3.12: WAVES Sequence. All maps correspond to a top view of the tank and show raw,

per-pixel data. The mesh images show a surface fit to the data scaled by5 in the vertical axis.



Chapter 4

Scatter-Trace Photography

“Don’t tell me the moon is shining; show me the glint of light on broken glass.”

-Anton Chekhov

4.1 Introduction

A major ingredient in the success of recent 3D photography algorithms is their ability to deal

with surface inhomogeneity, i.e., to produce accurate 3D models even when a scene’s sur-

faces span a broad range of shape and material properties [24, 67, 141]. These algorithms

apply exclusively to opaque surfaces that scatter incidentlight, and cannot handle scenes

that contain transparent or highly-reflective media. For such scenes, the state of the art in

reconstruction [9, 69, 83, 84, 111, 123, 137] is still confined to the simplest possible case—a

surface bounding a single, homogeneous, transparent volume with no internal structures and

no occlusion—and even this case cannot be solved without further assumptions (e.g., partially-

known geometry [9, 83], a volume that causes no more than two refractions [69], or ability to

61



CHAPTER 4. SCATTER-TRACE PHOTOGRAPHY 62

Figure 4.1:Three objects used in our experiments: A hand-made solid crystal sculpture with a painted

interior (about 30cm tall), a partly-full juice bottle, and a decorative glassbottle with an opaque hand-

painted interior. The red arrow highlights the pixel used in the example of Figure 4.16, bottom right.

immerse in a refractive-index-matched liquid [123]). Unfortunately, while objects with trans-

parent media are very common (Figure 4.1), they rarely appear in isolation and rarely have a

simple enough shape to fall within the realm of existing techniques. For such objects, research

has concentrated on capturing their appearance rather thanreconstructing them [82, 143].

The difficulty in reconstructing such scenes stems from the complex relation between their

appearance, their exterior 3D shape, and the structure of their interior. This appearance can

be heavily influenced by several light transport phenomena,including one or more refractions;

total internal reflection; absorption and scattering at an interior interface; and reflection at an

exterior surface. Inverting the interior light transport process under these conditions has proved

very difficult.

Motivated by these difficulties, this paper develops an approach for reconstructing the ex-

terior of general, inhomogeneous transparent scenes with three basic goals in mind:

• Invariance to scene interior: To the extent possible, reconstruction performance should

depend on the scene’s exterior surfaces, not the structure and complexity of media in the

interior.
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• Robustness to spatially-varying reflectance and transmittance:Reconstruction algo-

rithms should be able to handle a wide range of surface reflectance and transmittance

properties.

• Compatibility with existing methods: It should be possible to leverage developments

in 3D photography of opaque scenes to treat issues such as noise, missing data, and

occlusions.

To achieve these goals, we rely on the well-known fact that transparent scenes reflect some of

the incident light, thereby behaving as partial, non-idealspecular reflectors [40, 117]. Using

this as a starting point, we develop a novel technique based on scatter-trace photographythat

is specifically designed to analyze these reflections.

Scatter-trace photography involves capturing images of the scene from one or more view-

points while moving a proximal light source to a 2D (or 3D) setof positions. This produces a

2D (or 3D) set of measurements per pixel, which we call the pixel’s scatter trace.Intuitively,

the scatter trace of a pixel can be thought of as a “photograph” of the trajectories that light

followed before interacting with the scene, and before arriving at the given pixel (Figure 4.2).

The key property of the scatter trace is that direct surface reflection leaves a highly-constrained

geometric “signature” in it, even when light transport within the scene’s interior is exceedingly

complex. Moreover, this signature is especially prominentwhen the direct reflection compo-

nent includes a non-negligible contribution from specularreflection. This observation leads

to three main results. First, it gives rise to a geometry-based method for enhancing the con-

trast of the direct reflection component in each scatter trace, relative to all other modes of

light transport. Second, it allows us to reduce reconstruction of inhomogeneous scenes with

non-negligible specular reflectance to a generalized form of stereo matching, where we es-
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tablish correspondences by comparing appropriately-processed scatter traces rather than raw

pixel intensities. Third, we show that this process provides detailed information about surface

orientation, at sub-pixel resolution.

Our work relies on the existence of a non-negligible specular reflection component to re-

cover 3D shape and, as such, it is closely related tospecular stereomethods [15, 102, 103, 120].

These methods recover shape by analyzing the distorted appearance of patterns placed near an

opaque, mirror-like scene. Of particular relevance is the work of Bonfort, Sturm and Gar-

gallo [16] and Kutulakos and Steger [69], whose goal is to reconstruct the light path that con-

nects each pixel in the image with two known 3D points that project to it. Both approaches

rely on an idealized image formation model, where light is transported along an infinitely-thin,

single-bounce path corresponding to direct specular reflection off a mirror. Our approach can

be thought of as generalizing these methods to the case of non-ideal inhomogeneous scenes,

i.e., scenes whose interior contributes significantly to appearance and whose exterior is not

perfectly specular.

Although we do not explicitly decompose photos into direct,indirect, and specular com-

ponents, a weaker form of separation—relative contrast enhancement—occurs implicitly as

part of our generalized stereo matching procedure. In this respect, our work can be viewed

as a geometry-driven alternative to existing layer decomposition methods (direct vs. indi-

rect [89, 110], specular vs. diffuse [25], reflected vs. transmitted [94, 117]). These methods

employ a variety of tools, including active illumination [89, 110], polarization analysis [25],

optical flow estimation [117], and natural image statistics[73]. Unfortunately, none of them

apply to the case of general, inhomogeneous transparent scenes. For example, recent algo-

rithms for direct/indirect separation [89, 110] break downin the presence of strong specular

reflection, and polarization state stops being a robust separation cue in the presence of refrac-
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tion, reflection and scattering in a scene’s unknown interior.

Our work offers four main contributions over the current state of the art. First, we de-

rive a simple “scatter-trace stereo” algorithm for reconstructing the exteriors of scenes with

transparent surfaces and inhomogeneous interiors. Second, we show that scatter-trace pho-

tography provides a natural means for revealing the scattering properties of complex scenes.

Third, by reducing the reconstruction problem to a simple pairwise pixel-matching criterion,

our work suggests that reconstruction of inhomogeneous scenes is possible by simply replac-

ing the “data term” in existing stereo formulations. Fourth, our results show that scatter trace

analysis enables reconstruction in the presence of complexshapes and spatially-varying sur-

face reflectance and transmittance properties. We are not aware of other image-based methods

capable of reconstructing scenes of this optical complexity.

4.2 Scatter-Trace Photography

Scatter-trace photography provides a convenient way to capture the interaction of a scene with

proximal point light sources and viewpoints. The most general way of “probing” this interac-

tion is to place a point light source at some position near thescene, emit radiance only within a

differential solid angle along some direction, and then measure incident radiance at some other

position and direction (Figure 4.3a). The set of all such measurements is a ten-dimensional

function that we call theplenoptic scatter function. This function describes how the scene

scatters incident light and takes into account distance-dependent effects (e.g., that objects ap-

pear dimmer as the point light source moves farther away fromthem). As such, the plenoptic

scatter function generalizes the familiar notions of the 4Dlight field [74], the 5D plenoptic

function [2], and the 8D reflectance field [25, 143].
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Figure 4.2:Center, back to front: a teapot made of thin glass about 2mm-thick; a solid crystal ornament

with an internal air bubble; a mug with a 2mm-thick enclosure made of clear plastic and an opaque

interior cavity made of a purple specular material (see Figure 4.16, bottom right for another view).

Sidebars:Scatter traces for the four pixels indicated by arrows. These pixels receive light (1) by direct

reflection at an opaque point; (2) by direct reflection and by internal reflection at the back-surface of

the thin teapot wall; (3) by direct reflection and by a secondary internal reflection; and (4) by direct

reflection, internal reflection at the back-surface of the clear enclosure, and internal reflection off the

purple interior. Note the distinct “traces” associated with each propagationmode.

The plenoptic scatter function has extremely high dimensionality and would be very diffi-

cult to capture. Scatter-trace photography captures a specific 5D (or 4D) “slice” of this function

that is both easy to capture and provides strong informationabout scene geometry. In partic-

ular, suppose that we observe the scene from a single viewpoint while illuminating it with

an isotropic point light source (Figure 4.3b). In this case,every position(x, y, z) of the light

source produces a distinct image. This image represents radiance that leaves the source equally

in all directions and reaches the camera’s image plane afterinteracting with the scene.1

Scatter-trace photography involves moving such a light source to every position within a

1To simplify our discussion, we assume here that image pixelshave been calibrated to measure radiance
directly [26].
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Figure 4.3: (a) To obtain a sample of the plenoptic scatter function we must choose a position and

orientation for both the light source and the sensor (five degrees of freedom each). (b) To measure the

scatter trace of pixels from a fixed viewpoint, we move the light source to every point inside a region of

space (shaded).

volume of space, to obtain a 3D set of 2D images. Every pixelq on the camera’s image plane

is then associated with a volume of measurements, one for each light source position. We call

these measurements the scatter trace of pixelq:

Definition 1 (Scatter Trace of pixelq) Tq(L) is the incident radiance atq when the light source is at

pointL.

Note that if a pixel’s scatter trace is zero for some light source position, then no light

passing through that position can possibly contribute radiance to that pixel. Therefore, the

non-zero region of a pixel’s scatter trace is the set of all points that light can pass through to

reach that pixel.
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Figure 4.4:(a) Scatter trace due to reflection off a planar mirror. The radiance contributing to a finite-

sized pixelq is transported along a bundle of rays that originate atq; pass through the lens aperture;

are specularly reflected at a small in-focus planar facetp; and converge at the light source position. The

radiance at pixelq is therefore bounded from above by the total radiance incident atp, i.e., the radiance

transported along the blue-shaded region. In the limit, as the size ofq,p and the aperture goes to zero,

the scatter trace becomes concentrated on a single rayξ and defines theimpulse scatter tracealong

ξ. (b) Generalized specular reflection produces a “fan” of impulse scatter traces (only 3 are shown, for

clarity). (c) The indirect scatter trace produced by light transport along 3 paths ending atq.
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4.2.1 Direct and Indirect Scatter Traces

Since light transport is linear, we can express the scatter trace as a sum of two components

Tq = TD
q + T I

q , (4.1)

whereTD
q represents the contribution of direct surface reflection andT I

q represents the contribu-

tion of indirect light transport (i.e., refraction, total internal reflection, surface inter-reflection,

caustics, etc).

In general, the indirect component will be a significant fraction of the total scatter trace, and

this fraction will vary from pixel to pixel (Figure 4.2). Fortunately, the direct and the indirect

components of the scatter trace have a distinct spatial structure. Here we exploit this differ-

ence to enhance the contrast of the direct component and use it for single-view reconstruction

(Section 4.3.2) and multi-view stereo matching (Section 4.4).

Since our analysis relies on the spatial structure of the scatter trace, we consider below the

scatter trace produced by three basic types of light transport.

Direct reflection without scattering Consider an infinitesimally-small pixelq that is perfectly

focused at a point on a planar mirror. As the lens aperture shrinks to a zero, only light sources

along one incident rayξ will contribute to the pixel’s radiance (Figure 4.4a). Thisray is along

the direction of specular reflection. We call the resulting scatter trace theimpulse scatter trace,

T ξ
q , of pixelq.

For a given light source position along this ray, the radiance received at the in-focus surface

point obeys a squared-distance falloff [50]. Since the radiance atq cannot be larger than this

radiance, the impulse scatter trace is a single “streak,” whose intensity diminishes with distance

from the point of reflection.
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Generalized specular reflection If the surface point projecting to an infinitesimally-small

pixel q is not a planar mirror, the pixel will receive light even fromlight sources that are not

along a single ray. To account for this behavior, we model surface micro-geometry as a dis-

tribution of planar micro-facets that vary arbitrarily from point to point on the surface [29].

Furthermore, we assume that each micro-facet acts as a mirror reflector, with minimal mask-

ing or shadowing [88]. This model accurately represents thereflectance properties of smooth

surfaces (e.g., glass, polished metal) and accounts for high-curvature reflectors.

Consider the surface pointp that projects to pixelq. We can express the point’s micro-facet

distribution as a probability distributionD(θ, φ) over the unit sphere, with the angles(θ, φ)

corresponding to a unique normal. In this case, the scatter trace is a weighted superposition of

impulse scatter traces, one for each incoming ray (Figure 4.4b):

TD
q (L) =

∫

rays throughp
D(θξ, φξ) T ξ

q(L) dξ , (4.2)

where the normal(θξ, φξ) is the bisector of rayξ and the visual ray through pixelq.

Intuitively, as the surface at the point departs from a planar mirror, the scatter trace spreads

into a “fan” of converging streaks (Figure 4.2, pixel 1). Thepoint of convergence of this fan is

always the surface point projecting to pixelq. Moreover, the fan’s intensity decreases mono-

tonically in a radial direction away from that point.

General indirect reflection/transmission Now suppose that all light received at pixelq is

due to one or more indirect reflection and/or transmission events. Again, we can express the

scatter trace as a weighted combination of impulse scatter traces, although the set of scatter

traces participating in this combination is much more general: each impulse scatter trace in

this set represents the contribution of light that travels along an arbitrary rayξ until it hits the
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object, and then follows a general piecewise-linear path topixel q (Figure 4.4c):

T I
q(L) =

∫

all rays
τq(ξ) T

ξ
q(L) dξ . (4.3)

Here, the weightτq(ξ) is the fraction of radiance transported to pixelq from the point of first

contact of rayξ with the object.

Unlike the case of direct reflection, the scatter trace produced by indirect reflection is much

less constrained (Figure 4.2, pixels 2-4). In general, the “streaks” it contains willnot converge

to a single point and, even if they do (which is a non-generic event), their point of convergence

is not constrained to lie on the visual ray through pixelq.

2D scatter traces So far, we have assumed that the point light source moves to a 3D set of

positions. This is rather inefficient. In practice, we obtain an equivalent set of measurements

by illuminating the scene with alinear light source (e.g., aligned with thez-axis) and moving

it to a 2D set of positions (e.g., on thexy-plane). This procedure gives us a reduced, 2D scatter

trace per pixel that has exactly the same properties as its 3Dcounterpart (see Appendix B). Our

analysis below applies both to 3D and 2D scatter traces.

4.3 3D Shape from Scatter-Trace Constraints

The previous section showed that the direct component of a pixel’s scatter trace is a superposi-

tion of impulse scatter traces (i.e., “streaks”) that satisfy three basic constraints:

• Viewing-ray intersection: They must all intersect the pixel’s viewing ray.

• Convergence:They must converge to a single point on the viewing ray, and this point

must coincide with the surface point that caused the direct reflection.
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Figure 4.5: Basic steps in scatter-trace analysis. Each step corresponds to a transformation of the

pixel’s original scatter trace, for a specific depth hypothesis. Red, green and blue colors indicate three

impulse scatter traces that contribute to the pixelq’s direct scatter trace for the “true” depthd. The

indirect scatter trace component is shown in white. Colored vectors in the leftmost figure are along the

bisector of the viewing ray and the similarly-colored impulse scatter trace(seeSection 4.4 for details

and Figure 4.16, bottom right for a real-scene example).
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• Monotonicity: Their intensity must decrease monotonically in a radial direction away

from the convergence point.

Given a hypothesized depth for a pixelq, it is possible to use these constraints to decom-

pose its scatter trace into two components—an estimated direct component,TD
qd, that is fully-

consistent with both the hypothesized depthd and the above constraints, and a component that

is not:

Tq = TD
qd + T I

qd . (4.4)

This observation, which forms the key idea of our shape recovery approach, allows us to assign

a “consistency measure” to each depth hypothesis. In the single-view case, we use a measure

that evaluates the consistency of the estimated direct component with pixel’s entire scatter

trace. When multiple views are available, our measure evaluates the mutual consistency of the

estimated direct component at corresponding pixels in the input views. Since both measures

depend on the problem of estimating the direct scatter trace, we consider this problem first.

4.3.1 Estimating the Direct Scatter Trace

In the absence of additional information about the scene, the decomposition of Eq. (4.4) is not

unique.2 In light of this ambiguity, we compute the most conservativeestimate of the direct

component, i.e., an estimate that is guaranteed to be at least as large as that of the “true” direct

scatter trace when the hypothesis corresponds to the correct depthd∗:

TD
qd∗(L) ≥ TD

q (L) for all L . (4.5)

We do this by enforcing the convergence and monotonicity constraints in succession.

2For example, an estimated direct component that is zero everywhere trivially satisfies the three constraints,
for any depth.
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In particular, each depthd defines a unique 3D convergence point,pd, for all “streaks” of

the direct component. These streaks must therefore lie on the pencil of rays throughpd. To

enforce the convergence constraint, we rectify the pixel’sscatter trace so that all these rays

become parallel to thex axis of the coordinate system. This is a linear projective warp that

maps pointpd to the point at infinity alongx. In two dimensions, it corresponds to standard

epipolar image rectification [43] with the epipole atpd (Figure 4.5-1).

Every line parallel to thex axis in this rectified scatter trace corresponds to a distinct ray

throughpd. Geometrically, the rectification operation converts the scatter trace’s original spa-

tial (x, y, z) coordinates into coordinates(x′, y′, z′) that encode ray direction (coordinatesy′

andz′) and position along the ray (coordinatex′). In this coordinate system, the monotonicity

constraint tells us that the intensity of the direct component must be non-increasing along the

x′-axis. Since we are dealing with discrete measurements, we enforce the constraint recur-

sively by simply computing a “running minimum” across points of the rectified scatter trace in

thex′-direction (Figure 4.5-2):

TD
qd( L

′) = min
(

Tq( L
′) , TD

qd( L
′ −X′ )

)

, (4.6)

whereL′ denotes a scatter trace point in rectified coordinates andX′ is the unit vector along

thex′-axis.

Note that the computation in Eq. (4.6) leaves unaffected anysignal that decreases monoton-

ically along thex′-axis. As such, it will not attenuate the pixel’s “true” direct scatter trace when

rectification occurs at the correct depth. Intuitively, this maximally-conservative, depth-based

estimate of the direct scatter trace can be thought of as a scatter trace whose direct component

is contrast-enhanced at the correct depth. This is because the “true” indirect scatter trace will

typically not satisfy all three constraints (ray intersection, convergence, monotonicity) and,

hence, will be attenuated for every depth hypothesis.
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4.3.2 Single-View Shape from the Scatter Trace

If we know in advance that a pixel’s indirect scatter trace isnegligible (e.g., we know that the

point projecting to the pixel is opaque and receives few inter-reflections), the above estimation

procedure leads to a very simple single-view depth estimation algorithm—we just search for

the depth along each pixel’s viewing ray that best explains the scatter trace as a pure direct

component.

In practice, we discretize the depths and evaluate the consistency betweenTq andTD
qd for

each pixelq and depthd. To do this, we first measure the point-wise consistency between these

two scatter traces under the assumption of additive Gaussian noise with standard deviationσ,

W (d, L′) = exp−
1

σ2

[

Tq(L
′)− TD

qd(L
′)
]2
, (4.7)

and then use this consistency to enhance the direct component in the original scatter trace

measurements (Figure 4.5-3):

T qd(L
′) = W (d, L′) Tq(L

′) . (4.8)

In effect, this enhancement operation weighs each originalscatter trace measurement by

an upper-bound estimate of the likelihood that it was due to direct reflection. Our final metric

aggregates the weighted measurements in Eq. (4.8) across all positions:

C1(d) =
∑

L′

T qd(L
′) . (4.9)

The metric computes the total mass of measurements explained by a given depthd, under the

condition that they are due to direct reflection. To assign depth, we maximize it.
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4.4 Scatter-Trace Stereo

The indirect component of the scatter trace cannot be ignored when reconstructing scenes with

transparent surfaces. This means that we cannot use the criterion in Eq. (4.9) to assess the valid-

ity of a given depth hypothesis. We therefore generalize oursingle-view analysis by evaluating

the mutual consistency of scatter traces at corresponding pixels in two or more views.

In particular, letq1,q2 be a hypothesized correspondence between two pixels in a pair

of views, letd be the depth implied by this correspondence, and letT q1d andT q2d be their

rectified and depth-enhanced scatter traces (Eqs. (4.6)-(4.8)). To compare these two scatter

traces, we first warp them in a way that makes point-wise comparisons meaningful and then

simply compute their cross-correlation:

C2(d) =
∑

L′′

T q1d(L
′′) T q2d(L

′′) , (4.10)

whereL′′ denotes positions in warped coordinates andT q1d , T q2d denote the “aligned” ver-

sions ofT q1d , T q2d . At a superficial level, the metric in Eq. (4.10) can be thought of as a direct

extension of traditional correlation-based stereo matching to multi-view scatter-trace photog-

raphy.

The two outstanding questions are how to define the alignmentwarps in the two views,

and under what conditions is the cross-correlation in Eq. (4.10) physically meaningful? We

answer both questions by observing that the depth-enhancedscatter traces strongly constrain

the normal(s) of the surface pointpd, projecting to the two pixels.

Every line along thex′-axis of the rectified coordinate system corresponds to a unique ray

of incidence at pointpd. Given a pixelqi and such a ray, there is a unique surface normal that

specularly reflects light to pixelqi from light sources on that ray (Figure 4.5, far left). This
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normal is the bisector of the ray of incidence and the visual ray through pixelqi, and can be

represented by two angles,θi(y′, z′) andφi(y
′, z′).

A high value of the direct scatter trace for a position(x′, y′, z′) along a specific ray of

incidence can be interpreted as a “vote” for its corresponding normal. More generally, the

depth-enhanced scatter trace along viewi can be thought of as voting for the micro-facet dis-

tribution at pointpd. To compare two such scatter traces point by point, we align them so that

points in two different scatter traces correspond to the same normal. This alignment operation

transforms rectified coordinates(x′, y′, z′) into a surface-centered,x′θφ-coordinate system that

is defined in terms of the surface normal at the hypothesized depth (Figure 4.5-4):

T qid(x
′, θi(y

′, z′), φi(y
′, z′)) = T qid(x

′, y′, z′) . (4.11)

In this coordinate system, the cross-correlation of Eq. (4.10) can be thought of as measuring

the intersection of two micro-facet distributions. It willbe maximized at the depth where

there is maximal overlap between them, i.e., where their intersection maximally accounts for

the estimated direct scatter traces in both views. The distribution itself can be computed by

aggregating the votes for each normal at the depthd that maximizes Eq. (4.10), i.e.,

D(θ, φ) =
∑

x′

T q1d(x
′, θ, φ) T q2d(x

′, θ, φ) . (4.12)

Therefore, maximizing Eq. (4.10) leads to a highly-detailed description of the local surface

projecting to each pixel—both a depthd and its micro-facet distribution.

4.5 Implementation Details

In this section we discuss how we practically implemented the scatter trace stereo algorithm

and applied it to multi-camera reconstruction. We also discuss how to obtain sub-pixel depths
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and then present a phase unwrapping technique to reduce the number of required images for a

scatter trace.

4.5.1 Multi-view Reconstruction

We applied the stereo metric to a multi-view camera arrangement in order to further constrain

it and reduce ambiguities especially in the presence of strong caustics.

For a given reference viewi we compute the stereo metric between this view and all other

viewsj, which is the cross-correlation ofT qid(x
′, θ, φ) andT qjd(x

′, θ, φ) for all pixelsq. This

effectively gives us a metric response for a set of stereo volumes each of which has viewi as the

reference. The rectifications between each stereo pair willbe different so we need to re-sample

each stereo volume so they lie on the same discrete image coordinate space as the reference

view i. Once we do this, we have metric responses along rays from each stereo volume. We can

then use the cross-correlation between metrics as our multi-view metric. Figure 4.6 illustrates

the improvement of a trinocular reconstruction over the stereo reconstruction from the same

reference view. Notice how much smoother the depth map is. The recovered area in the

trinocular version is also slightly expanded since an additional view is considered.

4.5.2 Sub-pixel Reconstruction

In addition, we perform reconstructions at sub-pixel resolution by upsamplingscatter trace

slices. A scatter trace sliceTQ is a 2D array of scatter trace responses for a row of pixelsQ

in the image as the light source moves to a 1D set of positions,see Figure 4.7. In a stereo

system we have two such scatter trace slices, and so by increasing the resolution of the pixel

row dimension we also increase the depth resolution. Scatter trace slices exhibit strong spatial
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Trinocular depth mapStereo depth map

Figure 4.6:Juice reconstruction results. This figure also illustrates the improvement in reconstruction

between two and three view reconstructions using the same reference view.

coherence, since streaks correspond to traces of the reflection off of continuous surfaces. This

allows us to use a form of anisotropic diffusion [65] in orderto get a smooth interpolation

that preserves image gradients. Figure 4.7 also shows the up-sampled scatter trace slice after

anisotropic diffusion.

4.5.3 Efficient Capture by Phase Unwrapping

In order to make data capture efficient as well as to reduce storage space, we present another

method for reducing the number of required images to obtain effective scatter traces. This

reduction makes full object scanning far more practical.

So, rather than scanning an object by displaying a single moving light source, we illuminate

it with ρ sources simultaneously (we useρ = 20 in our experiments), moving each the small
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Scatter-trace Slice Upsampled Scatter-trace Slice

yy

qwqw

Figure 4.7:A scatter trace slice shows the response for each pixel on a rowqw and each light source

positiony. Left: Original slice. Right: Up-sampled slice by4 in the pixel dimensionw.

amount necessary to cover the same volume as the original scan. The captured trace we call

Tm
Q. This results in far fewer images necessary to capture the same number of light source

positions, however there are significant ambiguities generated in the scatter trace. This new

scatter trace essentially consists ofρ copies of the original signal repeated across it. While the

application of the scatter trace constraints (Section 4.3)through scatter trace stereo do constrain

the metric to the part ofTm
Q corresponding to the object’s direct reflection, strong caustic effects

become a much bigger problem when duplicated across the scatter trace. In order to combat

these ambiguities, we capture a second scanT ǫ
q, where the scatter trace volume is illuminated
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by a larger light source that incrementally illuminates each region covered by theρ previously

displayed sources. This allows us to unwrap the phase of the first scan. So, our final scatter

trace is composed as:T ˜
q = Tm

q ⊗ T ǫ
q, where⊗ represents element-wise multiplication (See

Figure 4.8).

TQ Tm
Q T ǫ

Q T ˜
Q

yyyy

qwqwqwqw

Figure 4.8:From left to right: The original full resolution scatter trace slice. Scatter trace slice with

multiple sources. Unwrapping scatter trace slice. The reconstructed scatter trace resulting fromTm
q ⊗T ǫ

q.

This method is significantly different from many coded pattern techniques, since these

generally require threshold decisions to determine whether or not a pixel receives light from a

particular source. We wish to avoid this type of decision, since the dynamic range of scatter

traces may be very large, depending on the reflectance properties and internal light, so making

a binary decision is not appropriate.
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4.6 Experimental Results

We acquired 2D scatter traces using the acquisition setup inFigure 4.9, bottom right, with the

camera about1m away from the objects. A 2-pixel-wide vertical stripe on theLCD monitor

acted as our light source, giving us797 distinct positions that spanned a range of41cm in the

y-direction. The monitor was physically translated in thex-direction to 3-6 positions, spanning

a range of 3-6cm depending on the scene. Instead of displaying vertical stripes individually, we

used Schechner and Nayar’s illumination multiplexing method [107]. This is also true of the

efficient acquisition mode, where multiple light sources are each multiplexed in the same way.

Objects were placed on a turntable and rotated by incrementsof 5◦ or 10◦ from their initial

position to obtain additional views.

x

y

Figure 4.9:Acquisition setup

Since depth can be computed only for pixels that receive somelight, pixels whose entire

scatter trace was below an intensity threshold were pruned prior to reconstruction. We used a

threshold equal toK times the median intensity across all scatter traces and allpixels. This

“global” median can be thought of as providing an estimate ofthe noise level in the dataset—
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since each pixel receives light from only a small subset of light source positions, intensities

below this median are effectively due to noise. We usedK = 10 for all experiments.

We assigned depth independently to each pixel in the first view by first evaluating metric

C2(d) in Eq. (4.10) at every possible integer disparity, and then “naively” choosing the disparity

that maximized this metric. To assign a surface normal, we used the peak of the pixel’s normal

distribution,D, computed for that disparity.

Since we simultaneously recover both depth and normal information we look at the consis-

tency between these shape measures to validate our results and as a natural outlier filter. Our

approach was to locally fit planes to the geometry around eachpixel to give geometry based

normals. These normals were then directly compared to the normals we recovered from the

scatter traces. We then reject surface points whose angulardistance between the geometry

based normals and the reconstructed normals was greater than 15◦.

We did not apply any other post-processing to the computed points and normals (e.g.,

smoothing, cleaning, etc). Our reconstruction procedure did not involve any tunable parame-

ters.

Fish sculpture This scene represents an “easy” case for our method: its shape allowed a

reasonably complete reconstruction because most pixels inits footprint received some illumi-

nation via direct specular reflection (Figures 4.1 and 4.10). Note that our reconstructions are

based on a single stereo pair in this case and we used 1/8 pixeldepth resolution. Despite the

fact that all pixels were reconstructed independently, both the depth map and the normal map

are highly uniform and capture fine surface details, including high-curvature regions near the

beak and the eye.

Failures of the method correspond to (1) “missing” pixels, that were not reconstructed at

all because they did not receive any light from the light source, and (2) reconstructed points
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that deviated significantly from their “true” positions. The latter type of failure occurs at pixels

near the object’s silhouette, where the surface is viewed very obliquely, and at pixels where

the direct reflection component has small magnitude. These pixels are readily identifiable

because the magnitude of the matching criterion at the optimal depth,maxd C
2(d), is very low

(Figure 4.10). Although we did not attempt to do so, it shouldbe possible to use this magnitude

as a confidence measure for outlier rejection.

We compared our reconstruction with laser scans completed after coating the object with a

white spray-on powder. Figure 4.10 shows the depth and normal maps side-by-side for these

two methods as well as the difference images and a cross section of the reconstructions. The

depth maps closely align, with an RMS error of0.51mm and standard deviation of0.35mm.

The depths match well over large areas, however there are noticeable ‘stepping’ artifacts that

correspond to areas of higher curvature and those regions where the scatter trace metricC2(d)

has a broad peak. The reconstructed normals match well in terms of low frequencies, however

there is higher frequency noise in the laser scan that does not exist in our reconstructed normals

(or on the true surface). We also computed the Poisson reconstruction that combines both the

depth and normal data into a mesh [63] using default settings. The comparison with the laser

depths show even closer alignment and most of the surface artifacts are gone. In addition the

fine detailed features such as the ridges on the bottom of the fish are clearly recovered (shown

in the insets in Figure 4.10 and meshes shown at the top of Figure 4.11).

Decorative bottle This scene had a curved transparent exterior with a painted interior with

similar challenges to thefish sculpture. We present this dataset to show that the efficient capture

process described in Section 4.5 works, and to demonstrate the metric quality of our reconstruc-

tions for a full model. The bottle has four distinct sides andwe were able to recover trinocular

depth maps of each side using scatter traces captured with the efficient method shown in Figure
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4.8. We estimated depths using upsampled scatter trace slices giving us 1/4 pixel depth reso-

lution. Figure 4.12 shows the depth and normal maps of one side of the bottle, as well as the

reconstructed Poisson surface and comparisons to laser scan data. We aligned our recovered

point set of the full object with the laser point set using a least squares best fit. Figure 4.13

show the 3D surfels for all four sides of the bottle combined as well as cross section compar-

isons of one side with the laser scan. Some parts of the top of the bottle had no visible direct

reflections and only “phantom” points were recovered in these areas. The very bottom also

exhibits error in the normal map since double reflections occurred off of the stand the bottle

rested on. Also, there is some bias in the depth differences toward the top of the bottle, this

may be due to misalignment between the reconstructions or errors in either the laser scan or

our depths. Despite these issues, the four sides match well,showing that our method is able to

recover, metric results without skew.

Juice bottle The primary challenges in this scene were the rather complexgeometry of the

bottle’s upper section and the presence of an opaque label onthe surface. Our method was able

to reconstruct the label’s surface quite well, albeit with more noise compared to the regions

of exposed glass. While depths and normals in those regions were reconstructed well, the

presence of self-occlusions and high curvatures meant thatrelatively few visible surface points

reflected light toward the camera. This caused significant gaps in the reconstruction, which

would require additional viewpoints to complete. In this respect, our approach is significantly

less efficient than techniques for reconstructing opaque non-specular scenes, where almost

all surface points visible to a pair of views can be reconstructed in one step. The depth and

normal maps presented show our reconstructions using trinocular stereo and the surfels are the

combination of three such trinocular reconstructions (Figure 4.14).

Multiple objects This was by far the most challenging scene, with a variety of complex light
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transport phenomena and occlusions. Three observations can be made about our results. First,

despite this complexity, we obtained detailed reconstructions for significant parts of the scene,

including small high-curvature structures (e.g., a portion of the teapot lid).

Second, the specular reflectance properties of the scene’s opaque regions were not suffi-

cient to enable their reconstruction in this case, because of the low magnitude of their scatter

trace. Third, the high curvature of the interior bubble and the lack of direct reflection at pixels

in its footprint led to the reconstruction of a “phantom” surface. This artifact can be mitigated

by collecting additional views that cause more points on theexterior surface to reflect light

directly toward the camera. More generally, however, we believe that correct treatment of inte-

rior structures should involve reasoning analogous to occlusion handling in multi-view stereo,

where depth hypotheses are analyzed globally, and reconstructed front-to-back (or outside-in).

The reconstructions in Figure 4.15 are obtained from a stereo pair of views and depth

estimated at pixel resolution.

4.7 Concluding Remarks

A key contribution of our work is to show that, despite the highly-complex optical properties

of inhomogeneous transparent scenes, accurate reconstruction is indeed possible with simple

algorithms. Looking forward, we believe that even more general reconstruction problems are

now coming within reach. We are currently investigating thereconstruction of complete sur-

face models in the presence of occlusions, and the reconstruction of scene interiors, along with

their surface.
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Depth map Laser Depth map |Depths - Laser depths|
3mm

0mm

Normal map Laser Normal map |Normals - Laser normals|
20◦

0◦

Poisson reconstructed depths Laser Depth map |Poisson - Laser depths|
3mm

0mm

Figure 4.10:Fish reconstruction results using stereo and 1/8 pixel depth resolution. The results show a

striking improvement over the basic depth map when the depths and normal arecombined in the Poisson

reconstruction. Note the detail in the inset region, where the ridge detail is exaggerated and noisy in

the depth map but the Poisson map is smoothed by the accurate normals and closely matches the laser

depths. The insets show how our recovered normals are much cleaner than the laser normals and are

able to improve the depth map when combined.
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Depth Reconstruction Laser Reconstruction Poisson Reconstruction

maxd C
2(d) 3D Surfel view

Cross sections of Depth map, Poisson reconstruction and Laser depth map

Fish top

Poisson Reconstruction

Depth map
Laser depths

Figure 4.11:Top: Mesh reconstructions showing the inset regions from Figure 4.10.Notice how the

Poisson surface preserves more detail than the laser reconstruction withless noise. Cross sections are

from column indicated on depth map (top left Figure 4.10), showing the depth map aligned with the

laser depths and the Poisson map also compared with the laser depths. Theseshow good alignment

between the Poisson surface and the laser scan, with improved smoothnessin the Poisson surface over

the laser depths.
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Depth map Laser Depth map |Depths - Laser depths|
3mm

0mm

Normal map Laser Normal map|Normals - Laser normals|
20◦

0◦

Poisson depths Laser Depth map |Poisson - Laser depths|
3mm

0mm

Figure 4.12:Reconstruction results for decorative bottle using high speed capture, trinocular stereo

and 1/4 pixel depth resolution.
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maxd C
2(d) 3D Surfel view

Cross section

Poisson Reconstruction

Depth map
Laser depths

Figure 4.13:Reconstruction results for decorative bottle using high speed capture, trinocular stereo and

1/4 pixel depth resolution. 3D surfel view shows all four reconstructedsides together. The cross section

is from row indicated on depth map (Figure 4.12 top left) and the left cross section shows a comparison

between depths and laser depths and the right compares the Poisson surface with laser depths, showing

improved alignment and smoothness.
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Depth map maxd C
2(d) Normal map 3D Surfel view

Figure 4.14:Reconstruction results for juice bottle using trinocular stereo and 1/4 pixel depth resolu-

tion. The 3D surfel view combines three neighboring trinocular datasets.
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Depth map maxd C
2(d)

Normal map 3D Surfel view

Figure 4.15:Reconstruction results for multiple object scene using a stereo view pair andpixel depth

resolution.
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Figure 4.16:Scatter traces and intermediate results of applying the scatter trace stereo algorithm to the

highlighted pixel in Figure 4.1(left). Scatter trace resolution was6× 797. Note the double streaks, cor-

responding to a direct reflection component and a secondary component due to indirect reflection (this

occurs for almost all pixels in this scene). Also shown are the values of thematching criterion across

disparities and the recovered normal distribution (only one angle is shown). Note the unambiguous peak

at the true disparity,d = 18, despite the presence of strong secondary illumination.



Chapter 5

Depth from Reflectance Magnification

“Don’t stare into a mirror when you are trying to solve a problem.”

-Mason Cooley

5.1 Introduction

The problem of recovering the 3D shape of scenes that containa wide variety of materials

from diffuse to highly specular using simple and accessibleequipment remains an open prob-

lem in computer vision. Previous work in this area can be divided into two classes, those

that attempt to extend Lambertian approaches to non-Lambertian using stereo-based meth-

ods [19, 24, 39, 141] or photometric stereo or monocular methods [4, 5, 46, 48, 77] and those

that build on techniques designed for recovering specular objects [18, 33, 85]. There is little

reason to expect scenes to be exclusively Lambertian or specular and while progress has been

made in both these areas, there is no one method that spans thefull range from Lambertian to

specular with a single, simple capture setup. Such scenes are especially challenging because

94
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there is often a high dynamic range of brightness [26] and theappearance varies significantly

depending on viewpoint and with changes in illumination. Thus it is difficult to make assump-

tions about the reflectance that holds for all the materials.Furthermore, the complexity of

the capture process is a factor that varies significantly between 3D reconstruction techniques,

with some requiring multiple views [24, 85, 141], exemplar materials [46], light source calibra-

tion [18, 85, 141], polarization filters [33, 77], hemispherical illumination gantries [77], and a

significant quantity of images [18, 48, 85].

Motivated by these challenges, we present a novel approach that seeks to meet the following

goals:

• Invariance to the BRDF: The approach should put as few restrictions on the type of

material as possible and be able to recover diffuse as well asspecular materials.

• Simple capture setup:The capture process should be straightforward, without special-

ized equipment and requiring only simple calibration.

• Fast capture: Only a few images should be required.

In this work we present two algorithms that use the same experimental setup shown in

Figure 5.1, one requiring calibration and the other calibration free. The input to both algorithms

is the same, a small number of images are captured from a single camera of the scene as it is

illuminated by a near-field non-uniform planar light source(an LCD monitor) which displays

a sequence of patterns. The source is then translated perpendicularly to its plane, thus altering

its distance to the scene and a second set of images are captured. We define the perpendicular

distance of a scene point from the near source plane assource-relative depth. Our uncalibrated

approach is analogous to depth from defocus [98, 115] but rather than refocusing, we use the
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Figure 5.1: Experimental setup.

change in illumination between the translated source to compute the source-relative depth. In

the calibrated algorithm, the orientation of the source to the camera is known and so for each

pixel we recover a 3D point on the scene surface.

While we seek to be invariant to all BRDFs the range of reconstructable BRDFs differ

between the calibrated an uncalibrated algorithms. In the uncalibrated version, we limit re-

construction to BRDFs that are smoothly varying and without strong skew in exchange for

greater efficiency in capture. In contrast the calibrated version is able to reconstruct non-

smooth BRDFs including specular objects. Both approaches are limited by the following. If

the light source is partially occluded from the perspectiveof a point on the scene it is possible

that that point will be incorrectly reconstructed. The light source size constrains the amount of

the scene we are able to recover, since viable points must reflect light from the source back to

the observer.

Our approach is related to BRDF invariant reconstruction methods that leverage distinc-

tive properties of BRDFs [5, 24, 39, 46, 48, 141]. However many of these approaches rely on
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point light source illumination for their invariants. For instance, the use of Helmholtz reci-

procity [141] is not practical for specular materials because the reciprocity only applies to

pairs of camera and point light source positions. In this case only specular surface points with

a particular normal can be recovered. The same problem occurs when image ratios are used

as in [24] because the assumption is based on changing the illumination of a point source and

enough light must be reflected toward all cameras to measure the ratio. The approach of us-

ing exemplar materials [46] also breaks down when specular objects are considered, since the

only change in appearance would be at the specular highlights when the light source position

is changed.

Dense arrays of point light sources have been used to overcome the above problems in [4,

5, 18, 33, 48], however these methods are based on photometric stereo and either make assump-

tions about the symmetry of the material’s BRDF [4, 5, 48] or only apply to glossy or specular

materials [18, 33]. The output from these algorithms is a normal map rather than a depth map

or point cloud as in our approach. In this respect our work is closer to those algorithms that are

based on specular stereo. These algorithms work by observing specular highlights on the target

surface, allowing depth and normals to be recovered by triangulation [13, 15, 102, 133, 137].

As noted by [102], this triangulation requires either knowledge of the of incident ray direction

or a second view that can verify a hypothesized depth and normal. Rather than using multiple

views, in our calibrated algorithm we use the translated light source to identify the incoming

direction of rays in a similar way to [70, 85]. However we go beyond all these approaches

to demonstrate that even highly diffuse materials along with specular materials can also be

simultaneously reconstructed using a similar capture setup to the specular approaches.

Our work is closely related to [68] where a translated near-field point light source is used

to acquire depth cues for Lambertian scenes. While we use a translated planar source, there
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are similarities such as that both approaches are improved by increasing the distance the source

is translated, and both techniques provide uncalibrated depth cues of the scene by observing

the effect of reflectance changes as the light source is moved. While the method in [68] is

not strictly normal independent our approach is, and while they do apply their method to non-

Lambertian materials, this requires a highlight filtering stage rather than being invariant.

5.2 Reflectance Magnification

Consider a scene that is illuminated by a planar, spatially non-uniform light source (e.g., an

LCD monitor). We assume that the scene is viewed under perspective projection from a

fixed viewpoint and that the scene is static, with an unknown 3D shape, and an unknown and

spatially-varying BRDF.

With the scene static and the viewpoint fixed, there is a one-to-one correspondence be-

tween points in the image and points in the scene. Our goal is to recover two shape quantities

independently for each image point:

• Source-relative depth:the distance of the corresponding scene point from the planeof

the light source;

• Camera-relative depth:the distance of the image point from its corresponding scene

point.

5.2.1 The 4D Reflectance Function for a Proximal Planar Source

The 4D reflectance function was introduced by Debevecet al [25] to represent scene appear-

ance from a fixed viewpoint under directional lighting. In its original definition, this function
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Figure 5.2: Imaging geometry. (a) Quantities involved in expressing the radiance incident at image

pointq due to a patchdA on the light source plane. (b) Our basic acquisition setup involves capturing

images of the scene for two distinct positions—near and far—of a planar light source.

provides the radiance,Rq (θ, φ), arriving at an image pointq when the scene is illuminated

from direction(θ, φ) on the unit sphere. We begin by extending this definition to the case

where illumination originates from a planar, spatially non-uniform source near the scene.

Let (x, y) be the coordinates of a point on the light source plane, expressed in the source’s

internal 2D coordinate system (Figure 5.2a). We model outgoing radiance at(x, y) as the

product

I(x, y) L(θ, φ) , (5.1)

whereI(x, y) is a unit-less modulation factor that describes variationsin radiant exitance across

the light source plane, andL(θ, φ) is a spatially-independent radiance factor that represents the

source’s directional emission characteristics. In practical terms, the modulation factor is simply

the pattern displayed on an LCD monitor; the radiance factor,on the other hand, describes the

directional emittance characteristics of a single monitorpixel, under the assumption that all

pixels emit light the same way.
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The radiance received at an image pointq due to light from a differential patch at position

(x, y) on the light source is equal to

lim
‖A‖→0

∫

A

fp(q− p, p− lxy) L(p− lxy)

‖lxy − p‖2
c(p− lxy) I(x, y) dxdy , (5.2)

wherep is the point projecting toq; A is a patch centered at(x, y); lxy is the 3D point corre-

sponding to source position(x, y); fp is the BRDF atp; andc() is a foreshortening factor that

accounts for the normals of the source plane and the surface at p.1

Intuitively, the integrand in Equation (5.2) describes theimage contribution of light that

leaves point(x, y) on the source, is received directly at scene pointp, and is then reflected

toward pointq on the image plane.

When the integrand is differentiable, the radiance in Eq. (5.2) reduces to

fp(q− p, p− lxy) L(p− lxy) dA

‖lxy − p‖2
c(p− lxy) I(x, y)

def
= (5.3)

Rq (x, y) I(x, y) (5.4)

wheredA is the differential area element on the plane of the light source. In general, none

of the quantities in Eq. (5.3) will be known for an unknown scene, except for the displayed

pattern,I(x, y).

The functionRq (x, y) generalizes the 4D reflectance function in [25] to the case ofa 2D

proximal light source. It is also four dimensional, with twodimensions ranging over the image

plane and two ranging over the light source. For a fixed image point,Rq can be thought of as

a 2D “reflectance image” that describes the point’s appearance under illumination originating

from every possible position on the source.

1Specifically, ifρ1, ρ2 are the angles that vectorp − lxy forms withp’s normal and with the normal of the
light source plane, respectively, thenc(p− lxy) = cos ρ1 cos ρ2.
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Below we consider how this image is affected by a translation of the light source plane away

from the scene under the assumption of a differential BRDF (i.e., where Eq. (5.3) applies). We

revisit the case of a pure-specular BRDF, which is a delta function and thus non-differentiable,

in Section 5.4.2.

5.2.2 Geometry of a Translating Planar Source

Suppose we move the planar light source away from the scene bytranslating it along its normal

by a displacementt (Figure 5.2b). This translation will change the reflectancefunction of the

scene, assigning a new, “far” reflectance image,R̂q, to pointq.

The key observation in our approach is that the relation between the “near” and “far” re-

flectance images atq depends only the point’s source-relative depth and is independent of the

BRDF and the emission properties of the source. In particular,the far reflectance image can

be thought of as a magnified and uniformly-dimmed version of the near reflectance image,

with both magnification and dimming determined by the point’s source-relative depth. We first

express the source-relative depth as a fractionσ of the translation between the near and far

planes:

s = σt . (5.5)

Observation 1 (Reflectance Magnification)If the light source has an infinite spatial extent,

then for every point(x̂, ŷ) on the far reflectance image, there is a point(x, y) on the near

reflectance image such that

R̂q (x̂, ŷ) = Rq (x, y)

(

σ

σ + 1

)2

, (5.6)
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(5.7)

where(a, b) are the coordinates of the orthogonal projection ofp onto the source plane, ex-

pressed in the source’s coordinate system.

Proof Using Eq. (5.3) to expand Eq. (5.6) and re-arranging, we get:

(

σ

σ + 1

)2

=
R̂q (x̂, ŷ)

Rq (x, y)
=

fp(q− p, p− l̂x̂ŷ) L(p− l̂x̂ŷ) c(p− l̂x̂ŷ)

fp(q− p, p− lxy) L(p− lxy) c(p− lxy)
·
‖lxy − p‖2

‖̂lx̂ŷ − p‖2
, (5.8)

wherêlx̂ŷ denotes the 3D point corresponding to position(x̂, ŷ) on the far plane.

From similar triangles, points(x, y) and(x̂, ŷ) on the near and far source planes, respectively, lie

on the same 3D ray through pointp. It now follows that the BRDF, radiance, and foreshortening terms

in Eq. (5.8) cancel, making the fraction dependent only on the ratio of squared distances fromp. Using

similar triangles again, we get

‖lxy − p‖2

‖̂lx̂ŷ − p‖2
=

(

σ

σ + 1

)2

. (5.9)

Reflectance magnification tells us that the transformation relating the near and far re-

flectance images depends on just four parameters—three of which determine the 3D posi-

tion of p uniquely (the source-relative depth andp’s projection on the light source plane) and

one that depends on the light source (light source displacement). This suggests a very sim-

ple BRDF-invariant algorithm for computing 3D shape: (1) capture the scene’s reflectance

function for a near and a far source position, (2) compute thethree transformation parame-

ters relating the near and far reflectance images of every point q on the image plane, and (3)

convert these parameters into a 3D shape. Note that this algorithm does not rely on any cam-

era calibration information—its only requirements are that the light source plane undergoes
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translation along its normal; indirect illumination has a negligible effect on scene appearance

(e.g., inter-reflections, transparency and sub-surface scattering); and the source’s spatial extent

is sufficiently large.

Although it is possible to implement this algorithm directly, this would be very inefficient

because it involves capturing the scene’s full 4D reflectance function. For instance, anN ×N -

pixel LCD acting as the light source would require capturing2N2 images in total,i.e., one

image per pixel per source position. We therefore focus on ways to take advantage of the same

basic principle but with far fewer images captured.

5.2.3 Speedup by Integration

One way to reduce acquisition requirements is to capture line integrals of the reflectance func-

tion rather than the function itself. This is possible because the dimming and magnification

relations in Eqs. (5.6) and (5.7) are preserved under integration:

Observation 2 (Magnification of Reflectance Integrals)If Rx
q (y) and R̂x̂

q (ŷ) are the axis-

aligned integrals ofRq (x, y) andR̂q (x̂, ŷ) respectively, then

R̂x
q (ŷ) = Rx

q (y)

(

σ

σ + 1

)

. (5.10)

See the Appendix for the derivation of Eq. (5.10). The above observation reduces the

reconstruction problem at pointq to the problem of computing the transformation between

pairs of 1D functions, namely the integrals of the near and far reflectance images along the

x- and (possibly) they-axes. These 1D functions can be acquired by capturing images of the

scene while displaying a single stripe on the monitor (i.e., I(x, y) = 1 along a single row or

column and0 everywhere else). For anN ×N -pixel LCD, this requires capturing4N images,

one per row/column per source position.
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Figure 5.3: Reflectance magnification in the spatial and frequency domains. The plots correspond to

the middle example in Figure 5.4, withσ = 2.

Despite the relative efficiency of this general procedure, it still involves capturing a poten-

tially large number of samples of the functionsRx
q andR̂x̂

q, and thus a large number of images

(each image gives us one sample). To reduce sampling requirements even further, we analyze

reflectance magnification in the frequency domain. This allows us to take advantage of the

broad spectral support of these functions and compute depthby sampling just a few of their

Fourier coefficients.

5.3 Reflectance Magnification in the Frequency Domain

How does the spectrum ofRx
q change when the light source moves to the far plane? The fol-

lowing observation shows that as the source moves away from the scene, the spectrum shrinks

linearly according to the source-relative depth (Figure 5.3):

Observation 3 (Reflectance Magnification in the Frequency Domain) If Rx
q andR̂x̂

q are the

Fourier transforms ofRx
q andR̂x̂

q, respectively, then

∣

∣

∣
R̂x

q [ω]
∣

∣

∣
=

∣

∣

∣

∣

Rx
q

[

σ + 1

σ
ω

]∣

∣

∣

∣

. (5.11)
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Figure 5.4: 1D slices of the reflectance function (red) for three different BRDFs (blue)—a diffuse

BRDF on the left, and two BRDFs with an increasingly-narrow specular lobe. Note that the reflectance

function quickly diminishes for points on the light source away fromp.

See the Appendix for a derivation of Eq. (5.11). The simple stretching relation between

near and far spectra makes shape computation especially simple in the frequency domain. We

use three basic ideas to do this.

First, reflectance images include the effects of foreshortening and squared-distance falloff

(Eq. (5.3)) that cause significant spatial attenuation. As aresult, both the images themselves and

their line integrals have limited spatial support—and thusbroad spectral support—regardless

of a point’s BRDF (Figure 5.4). This allows us to estimate spectral stretching from just a few

Fourier coefficients in the vicinity of the DC component.

Second, computing a Fourier coefficientRx
q [ω] can be done optically, by displaying the

patternI(x, y) = cos (2πωy) − j sin (2πωy) on the light source plane and measuring the

(complex-valued) radiance atq. Since we cannot display and capture complex-valued signals
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directly, we capture the coefficient in parts, using four patterns:2

γ+c from max{0, cos(2πωy)} γ+s from max{0, sin(2πωy)} (5.12)

γ−c from max{0,− cos(2πωy)} γ−s from max{0,− sin(2πωy)} (5.13)

with Rx
q [ω] = (γ+c − γ−c )− j(γ+s − γ−s ) . (5.14)

Third, since the line integralsRx
q andR̂x̂

q are typically just an isolated peak, and since this

peak will occur at corresponding positions on the near and far plane,3 it can be localized by

temporal phase unwrapping from the available Fourier coefficients [19, 20, 53].

We turn these ideas into concrete algorithms below.

5.4 Depth from Reflectance Magnification

5.4.1 Source-Relative Depth for Differentiable BRDFs

We apply Eq. (5.11) directly to find the source-relative depth for a particular pixel. Specifically,

each four-pattern sequence in Eqs. (5.12)-(5.14) providesa single Fourier coefficient,Rx
q [ω],

and thus a single sample of the spectrum ofRx
q. We repeat this acquisition procedure for a

fixed set ofn frequencies to obtainn samples of the spectrum, for each of the two light source

positions (8n images in total). To compute the stretch, we fit smoothing splines toRx
q [ω]

andR̂x
q [ω], to obtainSx

q [ω] andŜx
q [ω] respectively according to [101]. We then compute the

following error function between the near spline and the stretched far plane spline:

2Intuitively, this can be thought of as a direct optical implementation of the Fourier transform. An analogous
display procedure was used in [97, 139] for capturing environment mattes.

3Equation (5.10) implies that if a local extremum ofRx
q

occurs at positiony, then a local extremum of̂Rx
q

will
occur at position̂y, with ŷ given by Eq. (5.7).
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E(σ) =
∑

ω

(Sx
q [ω]−

(

σ + 1

σ

)

Ŝx
q [ω])

2 (5.15)

We find theσ that minimizesE, giving the following algorithm:

Step 1 Capture near and far plane frequenciesRx (ω) and R̂x (ω) andRy (ω) andRy (ω)

(Eqs. (5.12)-(5.14))

Step 2 For each pixelq:

Step 2.1 Fit smoothing splines to getSx
q [ω] andŜx

q [ω]

Step 2.2 Perform search forσ that minimizesE

In practice we usedn = 10 frequencies on the near screen, spanning the DC,N/2, N/4 ...

N/512 andn̂ = 5 frequencies on the far screen spanning the DC,N/2,N/4 ...N/16, whereN

is the maximum spatial extent of the monitor screen. Due to the stretching, we required fewer

samples on the far screen to match the near screen curve.

An important feature of this algorithm is that it is completely calibration free: it requires

no knowledge of the intrinsic or extrinsic properties of thecamera and requires no knowledge

of the actual translation of the monitor (source-relative depths are recovered as fractions of this

unknown distance).

5.4.2 Camera-Relative Depth for Differentiable and Specular BRDFs

In order to obtain camera-relative depth, we seek to computeone pair of corresponding points

on the two light source planes (lxy andl̂x̂ŷ in Figure 5.2 (b)). We then intersect the ray passing
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through them with the view ray throughq. This idea has been used repeatedly for reconstruc-

tion in the specular case [15, 69, 85] and here we extend this procedure to the non-specular

cases as well.

In the case of a specular BRDF, the reflectance image will be a delta function on both

planes. In real images, it will correspond to a sharp peak inRq (x, y). We can compute these

peaks by transforming the same frequencies captured in the previous section (Section 5.4.1)

into the spatial domain using the inverse Fourier transform.

So even in the case of non-specular BRDFs the global extrema in the reflectance images

also lie on the same 3D ray, we can apply the same principle forreconstruction here as well.

This leads to the following algorithm:

Step 1 Capture near and far plane frequenciesRx (ω) and R̂x (ω) andRy (ω) andRy (ω)

(Eqs. (5.12)-(5.14))

Step 2 Set the remaining(N−n) and(N−n̂) frequencies to zero and compute approximations

of R′
x, R̂′

x andR′
y, R̂

′
y by the inverse Fourier transform

Step 3 For each pixelq:

Step 3.1 Find lxy andl̂x̂ŷ by taking the maxima ofR′
x,R′

y andR̂′
x, R̂′

y.

Step 3.2 Intersect this ray with viewing ray throughq to obtainp

Note that this does not require more frequencies than those used in Section 5.4.1, and is

equally efficient. The only difference is the calibration requirement.
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5.5 Experiments

In our experiments we used an 20 inch LCD screen as our illumination source and we translated

it on a track perpendicular to the screen’s plane by a distance of t (Figure 5.1). We placed the

objects as close to the near planePn as possible while still being visible to the camera. This

placement is important to minimize the number of incident rays from Pn that are not also

covered byPf since the planes are not infinite (Figure 5.1). We choset based on the size of the

target object, with deeper objects needing a largert.

We corrected the sinusoidal patterns to take into account the LCD’s gamma function and

for each pattern we displayed two images one of the positive component and one of the nega-

tive component and later subtracted the negative componentimage as in [36]. The camera was

radiometrically calibrated using the method described in [26] and for some of scenes we cap-

tured multiple exposures (usually only one or two was sufficient) and created HDR images for

input to our algorithm [26]. For each exposure we required60 images spanning10 frequencies

onPn and5 onPf .

In the following sections we present reconstruction results from both the uncalibrated (Sec-

tion 5.4.1) and calibrated (Section 5.4.2) methods. We showthe recovered depth maps as well

as the half-angle vector maps for each object and we compare to approximate ground truth from

laser scans. The laser scan data was acquired with a Konica Minolta VI-9i at approximately

the same distance as our camera to the scenes. We matched the laser scans to our reconstructed

points by a least squares best-fit approach after manual initialization. For the specular datasets

we had to coat the objects with white powder before scanning.

Orange Dataset This dataset is a scan of the skin of a tangerine orange whose material has

both diffuse and specular components (Figure 5.5). We used an t = 20mm for the scan and
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two exposures. The uncalibrated depth recovery closely matches the laser scan data. The navel

of the orange was not recovered since the signal was too dark at this point. The calibrated depth

map shows the subtle wrinkles of the skin, while the wrinklesare less obvious in the laser scan.

This may be because the sub-surface scattering in the laser scan causes artificial smoothing

making our method more attractive, if slightly noisier (seethe cross section in Figure 5.6).

The half angle vectors here vary significantly from the true normal map because the orange

has a significant diffuse component in addition to the specular component.

Dome datasetThis object is a white plaster dome on a pedestal created by a 3D printer and its

reflectance is very diffuse. This object is a good test for ourapproach in terms of its reflectance

as well as interesting geometry with the planar pedestal andthe intersection with the smoothly

curving dome.

We used two exposures for this scene, witht = 40mm and the depths fromPn varied from

5mm to 85mm. Notice that there are some errors due to indirect illumination, especially at

the intersection of the dome with the pedestal. This datasetillustrates how the accuracy of the

reconstruction degrades as the distance from the illumination source increases, especially when

it approaches2t, see cross section 2 in Figure 5.8. Again the half angle vectors do not model

the normal vectors well here because of the diffuse reflectance of the dome.

Sphere dataset We scanned a mirroring sphere with nearly pure specular reflectance using

a single exposure time andt = 20mm. The laser scan required coating the sphere because

of its high reflectivity. As expected the uncalibrated approach did not recover the depth well,

however the calibrated method achieved good results (Figure 5.9). It is possible to see some

ringing artifacts on the sphere, this is due to the low frequency of the displayed patterns. With

a higher number, such artifact would be reduced but this is a trade-off with capture time. The

half angle vectors in this case give very good estimates of the surface normals as we would
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expect from a specular object.

Cylinder dataset We also scanned a highly specular cylinder (the top of a silver spray paint

can) to further demonstrate our specular reconstruction. Again the laser scan required a coating

on the cylinder. For our scan we used a single exposure time and t = 20mm. Similar ringing

artifacts show up as in the sphere case, however the curvature of the cylinder is correctly

recovered as can be seen in the mesh view and cross section of Figure 5.10. The half angle

vectors again give very good estimates of the surface normals as we would expect.

Can-opener datasetOur final dataset consists of a can-opener lying on top of a towel. This

scene has multiple materials: the glossy metal on the can-opener, the plastic handle is diffuse

and also has significant sub-surface scattering and the towel is also diffuse with highly complex

local geometry that causes inter-reflection and indirect light. Given these materials, this is a

difficult scene to reconstruct for almost all 3D reconstruction methods including ours and the

‘ground truth’ laser scan. We usedt = 40mm for this scan with four exposures. Figure

5.11 shows the recovered depth maps along with the laser scans. The glossy region on the

can-opener was partially recovered by the uncalibrated algorithm and the towel shows some

problems due to the indirect light. The calibrated reconstruction is more robust to the varying

materials and has a close correspondence with the laser scan. Note, however the region of the

towel inside the loop of the can-opener that exhibits errorsbetween the calibrated depth map

and the laser depths. This is caused by partial occlusion of the light source by the can-opener.

The half-angle vectors on the metal of the can-opener match the laser normal map relatively

closely as expected.
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5.6 Conclusion

We have presented a new approach for recovering the shape of general scenes from a single

viewpoint using a moving planar light source (e.g. an LCD monitor). Additionally, when cali-

bration is available 3D points can be reconstructed and further robustness to specular materials

gained. We have shown our method to work under a variety of difficult scenes exhibiting spec-

ular and diffuse materials. We are able to recover depth for each of these materials using a

convenient illumination and capture system.

Our method is limited to direct light and thus inter-reflections and significant subsurface

scattering or refraction can cause errors. Since we limit the number of illumination patterns

to a few low frequencies, some high frequency BRDFs or occlusions can cause errors in the

depths. However more images could be used to reduce this effect in a trade-off with capture

time.

In the future we would like to experiment with broader sampling across the Fourier spec-

trum, rather that just using low frequencies. Testing alternative bases might also improve our

results or be more efficient for capture. In addition we wouldlike to experiment to see how

precise the translation ofPn toPf needs to be to maintain reasonable results, because reducing

the requirement of a translation stage would further simplify the experimental setup.
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Figure 5.5: Orange dataset results
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Figure 5.6: Orange dataset results
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Figure 5.7: Dome dataset results
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Figure 5.8: Dome dataset results
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Figure 5.9: Sphere dataset results
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Figure 5.10: Cylinder dataset results
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Figure 5.11: Can-opener dataset results
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Figure 5.12: Can-opener dataset results



Chapter 6

Conclusions

“It is not by muscle, speed, or physical dexterity that greatthings are achieved, but by

reflection, force of character, and judgment.”

-Marcus Tullius Cicero

In recent years we are finally starting to see the emergence of3D photography systems

with high fidelity that are robust to the kind of complex optics we see every day. Scenes with

complex refractive and reflective properties that were oncethought to be impossible to scan are

now coming within reach.

We have shown how simple multi-view camera systems as well asthe utilization of multi-

planar illumination sources can remove many of the ambiguities inherent in the optical com-

plexity our target scenes. In particular we have shown that:

• We can recover 3D points and normals of temporally dynamic refractive surfaces using

a simple stereo system using a known planar submerged pattern.

• We are able to reconstruct 3D points and normals from complex, inhomogenous trans-

120
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parent objects with a multi-view system by observing “scatter-traces” at each pixel.

• We can reconstruct source-relative depth of scenes with a wide variety of BRDFs from a

single uncalibrated view, and upon calibration we can recover 3D points on the surface

and be more robust to truly specular materials.

While the main goal of this work has been to show how the first steps of tackling such prob-

lems with 3D photography, we have also begun to show how thesetechniques can be improved

with more rapid capture as well as broadening the range of material types that can be scanned

with one capture. It is not hard to see such systems being implemented in important industrial

scanning tasks. All of these approaches require only simplecamera and illumination systems

and can readily be applied to 3D reconstruction tasks in artifact archival, oceanography, medi-

cal instrumentation, manufacturing quality assurance andpossibly in robotic systems.

6.1 Future work

We see great potential in extending the work described here.In many cases we have just

‘scratched’ the surface in terms of what can be achieved.

Interior reconstruction. Our approach to 3D reconstruction of inhomogeneous trans-

parent objects focuses on the exterior surface, leaving theinterior largely unknown despite a

wealth of information in the scatter trace. Given an exterior reconstruction and the refractive in-

dex, some initial experiments have shown that it is possibleto recover opaque interiors through

a modified version of multi-view stereo. This alone prompts interesting problems: how do we

find the 3D pose of a transparent object relative to images of it, and how can we solve for the

refractive index of such an object from photographs. It may also be possible to jointly solve
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for the interior and exterior under some conditions. In addition, we would like to be able to

recover transparent objects with non-opaque interior structure as well.

Material and scattering capture. While our initial work has focused on recovering the

3D shape of target objects, the wealth of information in scatter traces could enable us to simul-

taneously acquire BRDF models for materials on the object. If enough views are available or

sufficient normals can be classified as belonging to the same material a dense sampling of the

BRDF is possible. It would also be interesting to factor in scattering properties of a medium.

It may be possible to estimate this from the indirect component of the scatter traces. Capturing

the material and scattering properties would also enable more accurate rendering of scanned

objects.

Exploring the spectrum. In the work presented here we assume monochromatic light,

however refraction changes its properties according to wavelength. This effect could possible

be used to estimate the refractive index or provide additional cues for depth, making our ap-

proach more efficient. Additionally it would be interestingto make use of infrared illumination

as its transmission is significantly reduced compared to shorter wavelengths.



Appendix A

Proof of Ambiguity Theorem

Proof of Theorem 1The proof uses two basic intuitions. First, given an arbitrary value for the

refractive index, each viewpoint can be thought of as defining a3D constraint curve, represent-

ing all assignments of distances and normals to a pixelq that are compatible with Snell’s law.

Hence, an assignment that is consistent with both viewpoints corresponds to the intersection

of two such constraint curves. Second, and most important, for an arbitrarily-shaped surface,

these 3D curves will be in general position with respect to each other and, therefore, will not

have a common intersection. From these two facts we concludethat when the refractive index

has an arbitrary value, there will be no distance and normal assignment that is consistent with

both viewpoints. Hence, such consistency can only be achieved for isolated refractive index

values. We formalize these intuitions below.

Let r∗ be the true refractive index of the surface and letr 6= r∗ be an arbitrary value of this

index. Without loss of generality, we assume that the function C(q) is known for all pixels

q and is continuous. Letq be an arbitrary pixel in the first viewpoint and letd∗ be its true

distance to the surface. Given valuer for the refractive index, every distanced defines a unique
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normal,n(d, r), compatible with Snell’s law (Figure 3.2 and Eq. (3.2)). Suppose we represent

unit vectors with two angles: an angleθ, corresponding to the angle between the vector and the

ray throughq; and an angleφ, corresponding to the angle between the vector and the normal

of q’s refraction plane. In this representation, the distance and normal assignments toq that

are compatible with Snell’s law define a curveγ in (d, θ, φ)-space. This curve will always lie

on the planeφ = 0 since, by definition, the normaln(d, r) always lies on the refraction plane

of pixel q.

Now let q′(d) be the projection ofp(d) in the second viewpoint (Figure 3.1). Since

C(q′(d)) is known, there is only one normal,n′(d, r), that can be assigned top(d) and is

compatible with Snell’s law in the second viewpoint. This normal will lie on the refraction

plane of pixelq′. Generically, the refraction planes of pixelsq andq′ are distinct. Hence, the

normaln′(d, r) may not lie on the refraction plane of pixelq and, asd varies,n′(d, r) will trace

a general curveγ′ in (d, θ, φ)-space, i.e., a curve that is not restricted to the planeφ = 0.

We now show thatγ andγ′ do not intersect. First note that the two curves cannot intersect

in the neighborhood of the “true” distanced∗ becausen′(d∗, r) 6= n(d∗, r).1

Now consider distances away fromd∗. We show thatγ′ andγ generically will not intersect

there either. In particular, the normaln′(d, r) is completely determined by pointC(q′(d))

which, in turn, is determined by the normal of the true surface point projecting to pixelq′(d).

Sinceq′(d) lies on the epipolar line ofq for all values ofd, it follows that curveγ′ is completely

determined by the surface normal of points at the intersection,C, of this epipolar plane with the

true surface. Forγ′ andγ to intersect there must be a point onC outside the neighborhood of

p(d∗) whose surface normal is identical top(d∗). This condition, however, cannot be satisfied

1Observe thatn′(d∗, r∗) = n(d∗, r∗) since Snell’s law is satisfied for both viewpoints in the truescene.
Now, since there is a 1-1 correspondence between refractiveindices and normals whend∗ is fixed, and since the
refraction planes ofq andq′(d) have only one normal in common, it follows thatn′(d∗, r) 6= n(d∗, r).
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for an open 2D set of points on a generic surface. It follows that γ′ andγ are non-intersecting

for almost all points on the surface and, hence, for almost all pixels in the surface’s projection.



Appendix B

2D Scatter Traces

Suppose we illuminate the scene with a linear light source that is oriented along thez axis and

can move on thexy-plane. The radiance incident at pixelq for light source position(x, y) is

just the integral of the pixel’s 3D scatter traces alongz:

Tq(x, y) =

∫

Tq(x, y, z)dz . (B.1)

Now consider each of the three types of light transport discussed in Section 4.2.1 for the 3D

case. If the point projecting toq is a planar mirror, the above integral is just the 2D analog of

the 3D impulse scatter trace: it is equal to the orthographicprojection ofq’s 3D impulse scatter

trace onto thexy-plane. As such, (1) its value decreases monotonically withincreasing distance

from the point of reflection, and (2) it is non-zero along a single 2D ray that corresponds to

the direction of specular reflection, projected onto thexy-plane. Analysis of the other cases

follows as a direct consequence of these two observations.
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Reflectance Magnification Derivations

Derivation of Eq. (5.10): Using Eq. (5.6) and integrating overx̂ we have

R̂x
q (ŷ) =

(

σ

σ + 1

)2 ∫

x̂

Rq (x, y) dx̂ (C.1)

=

(

σ

σ + 1

)2 ∫

x̂

Rq

(

σ

σ + 1
x̂+

1

σ + 1
a, y

)

dx̂ (C.2)

=

(

σ

σ + 1

)
∫

z

Rq (z, y) dz (C.3)

=

(

σ

σ + 1

)

Rx
q (y) ,

where we used Eq. (5.7) to expressx in terms ofx̂ in Eq. (C.2).
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Derivation of Eq. (5.11):

R̂x̂
q [ω] =

∫

R̂x̂
q (ŷ) exp (−j2πωŷ) dŷ (C.4)

=

(

σ

σ + 1

)
∫

Rx
q (y) exp (−j2πωŷ) dŷ (C.5)

=

(

σ

σ + 1

)
∫

Rx
q

(

σ

σ + 1
ŷ +

1

σ + 1
b

)

exp (−j2πωŷ) dŷ (C.6)

=

∫

Rx
q (z) exp

(

−j2π
σ + 1

σ
ωz

)

exp

(

−j2πω
b

σ

)

dz (C.7)

= exp

(

−j2πω
b

σ

)

Rx
q

[

σ + 1

σ
ω

]

, (C.8)

where we used Eq. (5.10) to obtain Eq. (C.5), and used Eq. (5.7) to expressy in terms ofŷ in Eq. (C.6).

Equation (5.11) now follows by taking the magnitude on both sides of Eq. (C.8).
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