
Reliable Two-Dimensional Graphing Methods
for Mathematical Formulae with Two Free Variables

Jeff Tupper†

University of Toronto

Abstract

This paper presents a series of new algorithms for reliably
graphing two-dimensional implicit equations and inequali-
ties. A clear standard for interpreting the graphs generated
by two-dimensional graphing software is introduced and used
to evaluate the presented algorithms. The first approach
presented uses a standard interval arithmetic library. This
approach is shown to be faulty; an analysis of the failure
reveals a limitation of standard interval arithmetic. Sub-
sequent algorithms are developed in parallel with improve-
ments and extensions to the interval arithmetic used by the
graphing algorithms. Graphs exhibiting a variety of math-
ematical and artistic phenomena are shown to be graphed
correctly by the presented algorithms. A brief comparison of
the final algorithm presented to other graphing algorithms
is included.

CR Categories: G.1.0 [Numerical Analysis]: General—
Interval Arithmetic; G.4 [Mathematical Software]: Reli-
ability and Robustness; I.3.3 [Computer Graphics]: Pic-
ture/Image Generation—Display Algorithms

Keywords: interval arithmetic, Tupper interval arith-
metic, interval analysis, implicit curves, algebraic curves,
graphing, relation graphing, formula graphing, GrafEq

1 Introduction

The problem discussed in this paper is a familiar one to
computer graphics researchers: given an equation in x and
y, produce its graph. Given that this problem has been
discussed for centuries, it is unsurprising that there is an
abundance of partial solutions to this problem. It is, how-
ever, surprising that there is no published method capable
of reliably solving this problem even if we restrict our at-
tention to the simple equations encountered in introductory
mathematics courses.

This paper presents a method that correctly graphs a wide
variety of equations, including all of the equations encoun-
tered in typical introductory mathematics courses. More-

†The author may be reached at: Department of Computer Science,
University of Toronto, 10 King’s College Circle, Toronto ON M5S 1A4,
Canada; or via email at mooncake@dgp.toronto.edu.

over, when confronted with a difficult equation that is be-
yond the capabilities of the presented method, the portions
of the graph that are not known to be correct will be marked
clearly.

Many students currently studying mathematics are using
automated graphing tools that produce incorrect graphs for
some of the equations discussed in their curricula. I have
written this paper in the hope that, in the future, more stu-
dents will have access to graphing tools that work correctly.

The methods described in this paper are used in
GrafEqTM . [Ped]. Except for branch cut tracking, I first
implemented these methods in  and publically demon-
strated their use with GrafEq . in . My M.Sc. thesis
[Tup96] provides more details about graphing with Tupper
interval arithmetic1 and includes a discussion of Tupper lin-
ear interval arithmetic.

2 Formula Syntax

To be general-purpose tools, our graphing methods must
handle implicit equations of the form f = g, where f and g
are given symbolically using standard mathematical opera-
tors, constants, and the variables x and y.

The operators that I have implemented for the graphing
algorithms we will discuss include + ,−, ±, ×, ÷, exponenti-
ation, nth root, log, min, max, median, minn (nth smallest),
maxn (nth largest), ||, � �, � 	, !, Γ, seventy-two trigonomet-
ric (multi-)functions (the six basic functions sin, cos, tan,
csc, sec, cot; their functional partial inverses Arcsin, Arccos,
Arctan, Arccsc, Arcsec, Arccot; and their multi-functional
inverses arcsin, arccos, arctan, arccsc, arcsec, arccot; for
trigonometry based on the unit circle x2 + y2 = 1, the unit
hyperbola x2 − y2 = 1, the unit diamond |x|+ |y| = 1, and
the unit square max(|x|, |y|) = 1), sgn, mod, gcd, and lcm.

I have implemented the preceeding operators so that the
user can directly enter a wide range of equations. Re-
stricting the user to a special class of equations, such as
algebraic equations, can allow the development of better
special-purpose algorithms, but this paper presents general-
purpose graphing algorithms. Arbitrarily removing some
of the preceeding operators will not, in many cases, sim-
plify the problem as the user may be able to emulate the
missing operators with the remaining ones. For example,

max(f, g) ≡ 1
2
(f + g + |f − g|), while |f | ≡

√
f2 ≡

√
ff .

My implementations of the graphing algorithms allow the
user to enter inequalities as well as equations: any of the
seven different comparisons =, <, ≤, >, ≥, ≶, and � can
be used; conjunctions, disjunctions, logical negations, and
conditional definitions are also available to the user. This
does not increase the true difficulty of the graphing problem

1I have been asked by members of the interval arithmetic com-
munity to refer to my generalization of interval arithmetic in this
way to distinguish it from other generalizations of interval arith-
metic.

as these constructs can be emulated if they are not directly
available,as [f ≥ 0] ≡ [f − |f | = 0], [(g = 0) ∧ (h = 0)] ≡
[|g| + |h| = 0] and [(g = 0) ∨ (h = 0)] ≡ [gh = 0] if g and h
are well-defined. Many other mathematical constructs can
be emulated; for example, [f ∈ Z] ≡ [sin(πf) = 0] and
[f(±x) = 0] ≡ [f(x)f(−x) = 0].

3 Formula Semantics

Any formula r(x, y), when evaluated with specific real num-
bers x and y, is always either false (F) or true (T). Based on
my experience discussing these topics with others, I would
like to discuss a few of the rules I use to evaluate formulae
before continuing so that the meaning of formulae are clear.

Over the years, I have asked many mathematicians to
graph y <

√
x and y ≥

√
x over [−1, 1] × [−1,1] and have

always received a pair of graphs similar to those shown in fig-
ure . No points with a negative x coordinate have ever been
included in either graph since neither y <

√
x nor y ≥

√
x is

true when x is negative, regardless of the value of y.

(a) (b)

Figure : Graphs of (a) y <
√

x and (b) y ≥
√

x.

My rules for evaluating expressions involving “undefined”
quantities are:

1. a mathematical operator is “undefined” if any of its
arguments are, and

2. the boolean result of comparing an “undefined” quan-
tity to any other quantity, including another “unde-
fined” quantity, using =, <, ≤, >, ≥, ≶, or � is F.

Here are three ways of defending these rules:

• A comparison evaluates to T if and only if the or-
dered pair being compared is a member of the set
defining the comparison; for example, = is defined by
{(x, x) : x ∈ R}. In Prolog parlance, we will make a
closed-world assumption, namely that we have a com-
plete understanding of all available mathematical op-
erators. This assumption is reasonable as we have no
obligation to consider any other model of arithmetic.
When given with an “undefined” quantity, we cannot
produce an ordered pair that is a member of the com-
parison’s defining set, so the result of evaluation is F.

• With the mathematical operators we are considering,
each partial operator can be rewritten using operators
that are always well-defined. For example, the formula
y <

√
x may be expanded out to ∃s[y < s] ∧ [s2 =

x]∧[s ≥ 0]; this formula is false when x < 0 and involves
no undefined quantities. Rewriting all of the partial
operators in this manner produces results equivalent to
the above evaluation rules.

• Pragmatically, we want expressions such as
[
y =
√

x
]
∨[[

y = 3
√

x
]
∧ [x < 0]

]
to be well-defined for all x; this

occurs when using the rules above.

My rules for evaulating gcd and lcm are based on Euclid’s
definition. My rules for evaluating exponents with nega-
tive bases agree with those taught in many high-schools: for
a < 0, ab is well-defined if and only if b is equal to a rational
number with an odd denominator; for a < 0, ab is negative
if and only if b is equal to a rational number with an odd
numerator. These rules for evaluating exponents can be de-
fended, but would take us too far afield. I do not know of any
evaluation rules that prescribe different values. I accept that
00 = 1. Nevertheless, the graphing techniques presented in
this paper can be adapted to different evaluation rules.

4 Computed Graph Semantics

Given a mathematical formula r and a rectangular region
[L,R]× [B,T], of the Cartesian plane R

2, our graphing algo-
rithm will produce an illustration that consists of a W ×H
rectangular array of pixels. We will refer to this illustration
as a computed graph of r.

Each pixel of the computed graph represents a closed rect-
angular region of the plane. To simplify the ensuing discus-
sion, we will often refer to points as being inside or outside
of a pixel rather than the region the pixel represents.

It would be very natural to require correct computed
graphs to satisfy the following two rules, with each pixel
being either white or black:

• if a pixel is white, there are no solutions of r within the
pixel; and

• if a pixel is black, there is at least one solution of r
within the pixel;

A point (x, y) is a solution of r if r(x, y) is true. If we
place these semantics on computed graphs, users will nat-
urally interpret computed graphs correctly. Unfortunately,
these näıve semantics are unrealistic. Now that we have
formalized the equation graphing problem, it can be shown
that the problem, as formalized, is not computable: no fixed
algorithm can produce correct black and white graphs of ar-
bitrary formulae, even if given an arbitrary amount of time
and memory. We will give our algorithms a way out by al-
lowing them to color some pixels red:

• if a pixel is red, there may or may not be solutions of r
within the pixel.

With these new semantics, computed graphs can be itera-
tively refined, as shown in figure . A graphing algorithm
can begin by presenting the user with a solid red image, and
then, over time, gradually reveal the behavior of r by re-
placing red pixels with either white pixels or black pixels.
With this approach, information is presented to the user as
it is discovered and the user will intuit that the red pixels
show where the computer is “unsure” or “not yet finished.”
These precise semantics also allow us to numerically gauge
the performance of different graphing algorithms.

Figure : A sequence of computed graphs of y = x2− 1
3 over

[−1, 1]× [−1, 1] with an 8× 8 pixmap; the thin black curve
shows the true graph.

5 Interval Arithmetic

Our algorithms will use interval arithmetic [Moo66, Moo79,
Tup96] with IEEE 754 floating-point [IEE85]. I will use
an analogous two-digit base-ten floating-point number system
for numerical examples in this paper.

The guiding principle behind interval arithmetic is to
represent quantities, and perform computations, using only
lower and upper bounds: a quantity q can be represented
by any interval 〈a, b〉 with a ≤ q ≤ b, where a and b are
floating-point values. I will use a teletype font for the
members of intervals that are explicitly represented and pro-
cessed by the computer. For example, π is best represented
by 〈3.1, 3.2〉, but can also be represented by 〈3.0, 4.0〉 or
even by 〈−∞,+∞〉; π is not represented by 〈3.2, 3.4〉 or by
〈3.2, 3.1〉. IEEE 754 provides both −∞ and +∞ as floating-
point values.

Interval arithmetic routines work solely with the lower
and upper bounds and do not require any other information
about the actual quantity being represented, as illustrated
by the following pseudo-code:

Subtract(〈a, b〉, 〈A, B〉)

1. return 〈a−↓ B, b−↑ A〉
The small arrows next to the floating-point subtraction op-
erators specify whether the floating-point operation should
round the true mathematical result down (towards −∞)
or up (towards +∞). For example, Subtract(〈3.1, 3.2〉,
〈0.11, 0.12〉) returns 〈2.9, 3.1〉 while the true mathematical

result would be 〈2.98, 3.09〉. IEEE 754 provides +↓, +↑, −↓,
−↑, ×↓, ×↑, ÷↓, ÷↑, ↓√x, and ↑√x through rounding mode
control. After we have implemented interval arithmetic rou-
tines for all of the mathematical operators we allow, we can
compute guaranteed bounds for arbitrary expressions; see
the references cited at the start of this section for further in-
formation about implementing interval arithmetic routines.

We will use interval arithmetic with boolean values to
represent, and process, the results of formula evaluations,
as shown by the following pseudo-code: (GreaterThan takes
floating-point intervals as arguments)

GreaterThan(〈a, b〉, 〈A, B〉) And(〈a,b〉, 〈A, B〉)
1. return 〈a > B,b > A〉 1. return 〈a ∧ A,b ∧ B〉
Booleans are ordered with F < T; three boolean intervals
are possible: 〈F,F〉, 〈F,T〉, and 〈T,T〉.

6 Pixel Boundaries

Since the rectangular graphing area is partitioned into a reg-
ular grid of rectangles, pixel (x, y) corresponds to the re-
gion [L + x(R − L)W−1, L + (x + 1)(R − L)W−1] × [B +
y(T − B)H−1, B + (y + 1)(T − B)H−1], where pixel (0, 0)
is the bottom-left pixel and pixel (W − 1,H − 1) is the top-
right pixel. As shown in figure , even if the bounds of the
graphing area (L, R, B, and T) are given as floating-point
numbers, the bounds of individual pixels may not be repre-
sentable exactly using floating-point numbers.

Carrying out the calculations using floating-point, with
round-to-nearest as the rounding mode, will show that the
center-bottom pixel of figure  corresponds to [0.33,0.67] ×
[0.0, 0.33] instead of

[
1
3 ,

2
3

]
×

[
0, 1

3

]
— some points that do

belong have been excluded and some points that do not be-
long have been included. As this incorrect correspondence
may easily cause an incorrect graph to be generated, we will
not use this approach, which will often lead to significant

0 1
3

2
3

1
0

1
3

2
3

1

0
.0
0

0
.3
3

0
.3
4

0
.6
6

0
.6
7

1
.0
0

0.00

0.33

0.34

0.66

0.67

1.00

Floating-Point Coordinates

Real Coordinates

Floating-
Point

Coordinates

Real
Coordinates

Figure : The graphing area [0, 1]× [0, 1] partitioned into a
3× 3 array of pixels, not to scale.

errors when only a few floating-point numbers separate L
and R or B and T .

We will instead use inner and outer bounds of the rect-
angular region that corresponds to each pixel.2 The inner
bounds of the center-bottom pixel of figure  are [0.34, 0.66]×
[0.0, 0.33]; the outer bounds are [0.33, 0.67]× [0.0, 0.34]. Our
algorithms will use the inner bounds to show the existence
of solutions and the outer bounds to show the absence of
solutions. Since we are using inner and outer bounds, it is
natural to allow L, R, B, and T to be given using intervals;
this allows y = sin x to be graphed over [−π, π] × [−1, 1]
where L = 〈−3.2,−3.1〉, R = 〈3.1, 3.2〉, B = 〈−1,−1〉, and
T = 〈1, 1〉.

7 Procedure 1

All of our graphing procedures have the same high-level
structure that is shown in the pseudo-code for Graph be-
low: the computed graph is first painted red and then a set
of uncertain regions Uk is maintained that keeps track of
which regions of the graph are undecided.

Graph(r, L, R, B, T , W , H)

1. PaintRed([0,W],[0,H])
2. k ← gcd(W,H)

3. k ← �lg(gcd(k, 2�lg k�))�
4. Uk ←

{[
a2k, (a+ 1)2k

]
×

[
b2k , (b+ 1)2k

]
5. :

(
0 ≤ a2k < W

)
∧

(
0 ≤ b2k < H

)}
6. while (k ≥ 0) ∧ (Uk �= ∅)
7. Uk−1 ← RefinePixels(r, Uk)
8. k ← k − 1

The Graph pseudo-code given assumes that W and H are
chosen / adjusted so that the starting Uk has only a few
regions. The RefinePixels procedure checks each of the re-
gions in Uk and colors portions of the graph black or white
if the existence or absence of solutions of r can be established
throughout an entire region; regions that remain undecided
are subdivided and put into Uk−1 for processing later. With

2We could ensure that all pixel boundaries are exactly repre-
sentable if we graph r(L+x(R−L)W−1, B +y(T −B)H−1) over
[0,W]×[0,H] instead of graphing r(x, y) over [L, R]×[B,T]. But,
as such preprocessing actually spreads the uncertainty that was
confined to the pixel boundaries to the rest of the graphing area
by introducing the inexact calculations into every evaluation of r,
I have chosen to handle imprecise pixel boundaries directly.

each region u, r is evaluated over u
↑ = (〈l, r〉, 〈b, t〉) where,

as discussed in the previous section, [l,r]× [b,t] is an outer
boundary of the region represented by u.

RefinePixels(r, Uk)

1. Uk−1 ← ∅
2. for each u ∈ Uk

3. if (r(u↑) = 〈T,T〉) PaintBlack(u)
4. else if (r(u↑) = 〈F,F〉) PaintWhite(u)
5. else Uk−1 ← Uk−1∪ FourSubsquares(u)
6. return Uk−1

Figure  shows a sequence of computed graphs from proce-
dure .

Figure : A sequence of computed graphs, from procedure
, of y < x + 1

3
over [−1, 1] × [−1, 1] with an 8× 8 pixmap;

the thin black line shows the true graph of y = x+ 1
3
.

When graphing a formula with a one-dimensional solution
set, procedure  only establishes the absence of solutions and
not the presence of solutions, as shown in figure b.

(a) (b)

Figure : Computed graphs, from procedure , of
(a) f(x, y) > 0 and (b) f(x, y) = 0, both over
[−10, 10] × [−10, 10] with 512 × 512 pixmaps; f(x, y) =
cos cosmin(sinx+y, x+sin y)−cos sinmax(sin y+x, y+sinx).

One approach to removing the uncertain pixels that re-
main after U0 has been exhausted is to declare, by fiat, that
the remaining uncertain pixels are “close enough” and to
color all remaining red pixels black. All other “interval”
graphing approaches that I have seen take an approach sim-
ilar to this — an unreliable heuristic is applied so that graph-
ing may terminate. Although such approaches are certainly
expedient, they fails to meet our standards of rigor. Instead,
we will extend our procedure; but before we do, we will in-
vestigate the interval arithmetic system that provides the
foundation for our procedures.

Although it may seem that our procedure is infallible, and
that a correctness proof would be trivial, a little testing will
reveal that we have overlooked a limitation of standard inter-
val arithmetic. Consider the computed graph shown in fig-
ure ; one of the elements of U1 has been misclassified. The
computation for that element, with pixel coordinates [2, 4]×
[0, 2], is r(〈−0.48, 0.05〉, 〈−1.0,−0.47〉) ❀ [〈−1.0,−0.47〉 <√
〈−0.48, 0.05〉] ❀ [〈−1.0,−0.47〉 < 〈0.0, 0.23〉] ❀ 〈T,T〉;

the error is caused by the assumption that all quantities are

well-defined. But when we take the square root of x, the
result is not well-defined when x < 0 as we are modelling
real arithmetic.

Figure : A sequence of computed graphs, from procedure
, of y <

√
x over [−1, 1.1]× [−1, 1.1] with an 8× 8 pixmap;

the thin black curve shows the true graph of y =
√

x. The
computed graph on the right is incorrect.

When confronted with the task of computing the interval
result of a mathematical operation that may not be well-
defined, standard interval arithmetic libraries will halt, is-
sue an exception, return an overly-wide result, or simply
act as though the result is well-defined. Most libraries act,
when possible, as though the result is well-defined, as we did
above, under the assumption that only well-defined expres-
sions will be evaluated. Returning an overly wide result,
such as 〈−∞,+∞〉 would keep our procedure from incor-
rectly graphing the example above, but would not help with
other graphs, such as y < 0

√
x, and would hinder the graph-

ing of y =
√

x. Issuing an exception would not be of much
direct help, as it is unclear what action our graphing proce-
dure should then take. Halting is not a useful option for our
application.

8 Domain Tracking; Algorithm 1.1

We will extend our interval arithmetic system to keep track
of whether or not a quantity is well-defined. The interval
〈val ∈ 〈a, b〉;def ∈ 〈c, d〉〉 represents a quantity q

• that is well-defined if 〈c, d〉 = 〈T,T〉,

• that is not well-defined if 〈c, d〉 = 〈F,F〉, and

• that may or may not be well-defined if 〈c, d〉 = 〈F,T〉;
if q is well-defined, a ≤ q ≤ b. The standard interval 〈a,b〉
corresponds to 〈val ∈ 〈a, b〉; def ∈ 〈T,T〉〉 if we assume that
intervals always represent well-defined quantities. When
evaluating r, leaf intervals have def ∈ 〈T,T〉 as constants
and the variables x and y are always well-defined. An inter-
val with domain tracking is stored using two floating-point
values and two boolean values; “val ∈” and “def ∈” are not
stored as part of an interval and are used only as notational
aides.3 Here is example psuedo-code for a square-root rou-
tine with domain tracking:

SquareRoot(〈val ∈ 〈a, b〉;def ∈ 〈c, d〉〉)
1. if (b < 0) return 〈val ∈ 〈a, b〉;def ∈ 〈F,F〉〉
2. else if (0 ≤ a) return 〈val ∈ 〈 ↓

√
a, ↑√b〉; def ∈ 〈c, d〉〉

3. else return 〈val ∈ 〈0, ↑√b〉; def ∈ 〈F, d〉〉
Keeping track of whether or not a represented quantity is
well-defined is a simple example of domain tracking.

With standard interval arithmetic, procedure  will cor-
rectly graph any formula that is well-defined for all x and y.
Algorithm . carries out the same steps as procedure , but
uses an interval arithmetic with domain tracking. Algorithm
. will graph any formula correctly.

3My M.Sc. thesis used a more compact notation that many
have found difficult to remember and use.

9 Subpixel Computation; Algorithm 2

Our next algorithm, algorithm , will extend algorithm .
by working with subpixel regions. We do this by adding the
following three lines to Graph:

9. while Uk �= ∅
10. Uk−1 ← RefineSubpixel(r, Uk)
11. k ← k − 1

The new routine, RefineSubpixel, is similar to RefinePixels,
but it must take into account any other remaining subpixel
elements.

RefineSubpixel(r, Uk)

1. Uk−1 ← ∅
2. for each u ∈ Uk

3. p← PixelContaining(u)
4. if (r(u↑) = 〈T,T〉 ∧ (u↑ ∩ p

↓ �= ∅))
5. then ShowSubpixelSolution(p, Uk , Uk−1)
6. else if (r(u↑) = 〈F,F〉)
7. then Remove(u,Uk)
8. if (Absent(p,Uk) ∧ Absent(p,Uk−1))
9. then PaintWhite(p)
10. else Uk−1 ← Uk−1∪ FourSubsquares(u)
11. return Uk−1

PixelContaining([, r]× [b, t])

1. return [� �, �r]× [�b�, �t]

ShowSubpixelSolution(p, Uk , Uk−1)

1. PaintBlack(p)
2. Remove(p,Uk)
3. Remove(p,Uk−1)

Absent(p,U) returns true if and only if no subpixel elements
of p are in U. Remove(u, U) removes u from U; Remove(p,U)
removes all subpixel elements of p from U.

To determine u
↑, we can use a grid that covers p, as shown

in figure . We need not ensure that u
↑ covers the region

represented by u, but merely that the entire grid covers the
region represented by p. Using such a grid will minimize the
overlap between subpixel regions of p and can consequently
improve rendering times and rendering results.

0.33 0.41 0.50 0.59 0.67

0.33

0.41

0.50

0.59

0.67

Figure : A 4× 4 subpixel grid for the center pixel of figure
, not to scale. With this grid, u↑ = 〈0.33, 0.41〉, 〈0.33, 0.41〉
for u =

[
1, 1 1

4

]
×

[
1, 1 1

4

]
even though [0.33, 0.41]×[0.33,0.41]

does not cover
[
1
3
, 5
12

]
×

[
1
3
, 5
12

]
, the region that u represents.

For inequalities, algorithm  is quite capable of producing
finished computed graphs, where no red pixels remain, as
shown in figure ; algorithm  will also finish the inequality
of figure a.

(a) (b)

Figure : Finished 512 × 512 pixmap computed graphs,

from algorithm , of (a) (y − 5) cos
(
4
√

(x− 4)2 + y2
)

>

x sin
(
2
√

x2 + y2
)
over [−10, 10]× [−10, 10] and (b) 1

15 [6−

y] + 1
6400000 [8x

2 + 4(y − 3)2]
3
+ cosmax(β cosα,α cos β) <

sinmin(β sinα,α sinβ), α = y − x, β = x + y over [−5, 5] ×
[0, 10].

10 Continuity Tracking; Algorithm 3

When applied to the equation of figure b, algorithm  will
whiten all pixels that lack solutions, but will still leave red
all pixels that contain solutions.

To extend algorithm  so that it can finish graphing one-
dimensional sets, we will extend our interval system so that it
provides continuity tracking. The interval 〈val ∈ 〈a, b〉;def ∈
〈c,d〉; cont ∈ 〈e, f〉〉 represents a quantity q

• that is continuous if 〈e, f〉 = 〈T,T〉,

• that is not continuous if 〈e, f〉 = 〈F,F〉, and

• that may or may not be continuous if 〈e, f〉 = 〈F,T〉;

〈c,d〉 states whether or not q is defined while 〈a, b〉 provides
us with a bound on q when it is defined. Example psuedo-
code for the addition and floor operators follow:

Add(〈val ∈ 〈a,b〉; def ∈ 〈c, d〉; cont ∈ 〈e, f〉〉,
〈val ∈ 〈A, B〉;def ∈ 〈C, D〉; cont ∈ 〈E, F〉〉)

1. return 〈val ∈ 〈a+↓ A, b+↑ B〉;def ∈ 〈c ∧ C,d ∧ D〉;
cont ∈ 〈e ∧ E,T〉〉

Floor(〈val ∈ 〈a,b〉; def ∈ 〈c, d〉; cont ∈ 〈e, f〉〉)
1. return 〈val ∈ 〈�a�, �b�〉;def ∈ 〈c,d〉;

cont ∈ 〈c ∧ (�a� = �b�), d〉〉
Algorithm  extends algorithm  by using continuity

tracking to try to prove that solutions of r exist. Line 10 of
RefineSubpixel is replaced with the following pseudo-code:

10. else if SubpixelSolutionExists(f , p
↓, u

↑)
11. then ShowSubpixelSolution(p, Uk, Uk−1)
12. else Uk−1 ← Uk−1∪ FourSubsquares(u)

SubpixelSolutionExists(f , p
↓, u

↑)

1. if (p↓ ∩ u↑ = ∅) return F
2. [, r]× [b, t]← p

↓ ∩ u
↑

3. if (f(u↑).cont �= 〈T,T〉) return F
4. return (f(〈 , 〉, 〈b, b〉)f(〈r, r〉, 〈t, t〉) ≤ 0) = 〈T,T〉
The above pseudo-code assumes that r is given as f = 0.
In general, when r is not given as a single equation, but is

given as a logical combination of equations and inequalities,
the above steps are carried out on the equations within r and
any proof of a solution of an equation causes a 〈T,T〉 to be
propagated up through the higher levels of r before any final
decision can be made regarding p. My implementations look
for a sign change of f by evaluating f over several points in
[, r]× [b, t].

Snyder [Sny92a] discusses a “continuity operator” that
seems to be similar to our continuity tracking: only a few
details are given, but Snyder seems to use the information at
a higher-level than we do. It is not clear if, or how, Snyder
deals with domain tracking.

(a) (b)

Figure : Finished computed graphs, from algorithm , of
(a) x cos y cos xy ± y cos x cos xy ± xy cos x cos y = 0 over
[−10, 10] × [−10, 10] and (b) sin((x ± sin y)(sin x ± y)) =
cos sin((sinx±cos y)(sin y±cosx)) over [4, 6.5]×[2,4.5], both
with 512 × 512 pixmaps.

11 Interval Sets; Algorithm 3.1

As shown in figure , algorithm  fails to whiten pixels
that lie along discontinuities, even for the simple case of
y = 1

x
. Algorithm  does not break discontinuous curves

apart as the underlying interval arithmetic does not break
discontinuous evaluations apart. With interval sets, our
interval procedures can break discontinuous evaluations
apart by returning a set of intervals whose union covers the
true result, as shown by the following pseudo-code which
replaces our previous Floor procedure:

Floor(〈val ∈ 〈a,b〉; def ∈ 〈c, d〉; cont ∈ 〈e, f〉〉)
1. if (�b� − �a� = 0)

return {〈val ∈ 〈�a�, �b�〉;def ∈ 〈c,d〉; cont ∈ 〈c,d〉〉}
2. if (�b� − �a� = 1)

return {〈val ∈ 〈�a�, �a�〉;def ∈ 〈F, d〉; cont ∈ 〈F, d〉〉,
〈val ∈ 〈�b�, �b�〉; def ∈ 〈F, d〉; cont ∈ 〈F, d〉〉}

3. return {〈val ∈ 〈�a�, �b�〉;def ∈ 〈c,d〉; cont ∈ 〈F, d〉〉}

To evaluate a mathematical operator with interval set
arguments, our interval library can loop over all possible
combinations of interval arguments and repeatedly invoke
the appropriate interval evaluation routine.

Using this approach with binary operators, such as mul-
tiplication, can produce sets with many members since the
product of an interval set with m elements and an interval
set with n elements would be an interval set with mn ele-
ments. If an interval set contains too many elements, the set
can be simplified by merging some of the interval elements
together; after simplification, the set will use fewer memory
but may also be less precise. Judicious simplification can
minimize the loss of precision: for example, merging over-

lapping intervals with similar properties together will not
affect precision.

I will clarify the role that domain tracking plays now that
interval sets are available to our interval library. First, in-
tervals with def ∈ 〈F,F〉 can now be omitted; the empty
set can be returned for quantities that are not well-defined.
Second, an interval with def ∈ 〈T,T〉 will only be returned
if it is known that the quantity represented is well-defined
and lies within the interval about to be returned. This ap-
proach is used for several reasons: it will generalize nicely
when we later modify our underlying interval arithmetic; it
allows multifunctions to be modelled directly; and it allows
intervals to be considered individually rather than as part of
a set — this improves modularity and simplifies the intro-
duction of interval sets to an interval library. Other forms of
property tracking, such as continuity tracking, are similarly
applied to individual interval elements. If desired, property
tracking can be applied to interval sets.

(a) (b) (c)

Figure : Computed graphs, from algorithm , of (a)
x sec x ± y sec y ± xy sec xy = 0 over [−10, 10] × [−10, 10],
(b) y = 1

x
over [−4, 7] × [−4, 7], and (c) y = �x� over

[−4, 7]× [−4,7]; all with 384×384 pixmaps. Compare figure
a with figure a.

Algorithm . carries out the same procedure as algorithm
, but uses interval sets when evaluating r. Given any of the
graphing problems of figure , algorithm . produces a
finished computed graph.

Other researchers have also used interval set approaches
[Kah68, Han80, RR88]. For example, when evaluating ra-
tional polynomials, Kahan [Kah68] uses 〈a, b〉 with b < a to
represent {〈−∞, b〉, 〈a,+∞〉}.

12 Branch Cut Tracking; Algorithm 3.2

By keeping track of the circumstances surrounding interval
evaluations, our interval library can reduce the number of
intervals kept in interval sets while simultaneously increasing
the precision of computed bounds. Consider the following
evaluation, which occurs while trying to decide one of the
red pixels of figure a: (for clarity, property tracking has
been omitted)

r(〈0.99,1.0〉, 〈1.3, 1.4〉)
❀ 〈1.3,1.4〉+ �〈0.99, 1.0〉� = 〈0.33, 0.34〉+ �〈0.99, 1.0〉�
❀ 〈1.3,1.4〉+ {〈0, 0〉, 〈1, 1〉} = 〈0.33, 0.34〉+ {〈0, 0〉, 〈1, 1〉}
❀ {〈1.3,1.4〉, 〈2.3, 2.4〉} = {〈0.33, 0.34〉, 〈1.3, 1.4〉}
❀ 〈F,T〉.

The result of the evaluation is 〈F,T〉 as the routine testing
for equality is unaware of the correlation between the two
interval sets.

When an evaluation routine breaks a discontinuous
evaluation apart into pieces, no information is kept that
keeps track of which branch each piece belongs to. We
will extend our interval library to keep track of which
branch each interval belongs to by adding a partial function
branch : Z → Z to each interval. This function maps from

(a) (b)

Figure : Computed graphs, from algorithm ., of
(a) y + �x� = 1

3 + �x� over [−10, 10] × [−10, 10] with
a 128 × 128 pixmap and (b) the bi-infinite binary tree

sin
(
2�y�x± π

4
(y − �y�)− π

2

)
= 0 over [−8, 8]× [−2, 6] with

a 256× 128 pixmap.

branch cut sites to chosen branches; branch cut sites are
identified during formula preprocessing: each operator that
can perform branch cuts that occurs more than once with
the same arguments within the formula being evaluated is
assigned a unique integer that identifies the branch cut site.
This preprocessing occurs within the framework of common
subexpression elimation. Pseudo-code for evaluating a floor
operation with branch cut tracking follows:

Floor(〈val ∈ 〈a, b〉; def ∈ 〈c, d〉; cont ∈ 〈e, f〉; branch = g〉, site)

1. if (�b� − �a� = 0)
return {〈val ∈ 〈�a�, �b�〉; def ∈ 〈c, d〉; cont ∈ 〈c, d〉; branch = g〉}

2. if (�b� − �a� = 1)
return {〈val ∈ 〈�a�, �a�〉; def ∈ 〈F, d〉;

cont ∈ 〈F, d〉; branch = g ∪ {site → 0}〉,
〈val ∈ 〈�b�, �b�〉; def ∈ 〈F, d〉;
cont ∈ 〈F, d〉; branch = g ∪ {site → 1}〉}

3. return {〈val ∈ 〈�a�, �b�〉; def ∈ 〈c, d〉; cont ∈ 〈F, d〉; branch = g〉}

When evaluating a binary operation with interval sets, only
intervals that can belong to the same branch are considered
for evaluation, as the following pseudo-code shows: (the
resulting intervals have branch = gi ∪ Gj)

Add({〈val ∈ 〈a, b〉; def ∈ 〈c, d〉; cont ∈ 〈e, f〉; branch = g〉i : 1 ≤ i ≤ m},
{〈val ∈ 〈A, B〉; def ∈ 〈C, D〉; cont ∈ 〈E, F〉; branch = G〉j : 1 ≤ j ≤ n})

1. S← ∅
2. for i← 1 to m

3. for j ← 1 to n

4. if (IsAFunction(gi ∪ Gj))

5. S← S ∪
6. Add(〈val ∈ 〈a, b〉; def ∈ 〈c, d〉; cont ∈ 〈e, f〉; branch = g〉i ,
7. 〈val ∈ 〈A, B〉; def ∈ 〈C, D〉; cont ∈ 〈E, F〉; branch = G〉j)
8. return S

With my implementations, the branch function is repre-
sented using two bit-fields, cut and chosen; branch cut
site i corresponds to the ith bit of each bit-field. cut
remembers which cuts have been performed while chosen
remembers which branch the interval belongs to. With
this representation, the pseudo-code for IsAFunction is as
follows:

IsAFunction(g, G)

1. m← g.cut∧ G.cut
2. return (g.chosen∧m) = (G.chosen ∧m)

When evaluating r, leaf evaluation intervals, which corre-
spond to constants and the variables x and y, have empty
branch functions as they belong to all branches.

Algorithm . uses branch functions while evaluating r,
but is otherwise the same as algorithm .. Algorithm .
finishes both graphs of figure ; figure a shows a finished

computed graph of the bi-infinite binary tree from figure
b. Graphs based on enumerations, such as figure b, can
be improved significantly by keeping tracking of branch cuts
as discontinuous elements of r usually reoccur several times.

Figure  shows a computed graph based on enumerat-
ing all j × 17 bi-level grids; a high-precision floating-point
package must be used to finish this computed graph. The
interval routines must also use the same branch cut sites for⌊

y
17

⌋
and mod (�y� , 17), which is possible as

⌊
y
17

⌋
≡

⌊ �y�
17

⌋
and mod (�y� , 17) ≡ �y� − 17

⌊ �y�
17

⌋
. The formula of figure

 can be modified to enumerate all possible j × k binary
grids with both j and k varying.

(a) (b)

Figure : Computed graphs, from algorithm ., of (a)
the bi-infinite binary tree from figure  over [−5.1, 5.1] ×
[−2.1,8.1] and (b) the integer squares in binary rb(�y�2)
over [−15, 0]× [1,16], both with 512× 512 pixmaps; rb(n) =[
n ≥ 2−�x�] ∧ [(

1 + 99
⌊
mod

(
n2�x�, 2

)⌋) (
x− �x� − 1

2

)2
+(

y − �y� − 1
2

)2
= 0.15

]
. The graph of rb(�y�) ∧ [y > 2] ∧[

gcd
(
�y� ,

⌊√
2 �y� − 1

2

⌋
!
)
≤ 1

]
shows all prime numbers

in binary.

Figure : Finished computed graph, from algorithm ., of
1
2

<
⌊
mod

(⌊
y
17

⌋
2−17�x�−mod(�y�,17), 2

)⌋
with a 1696 × 272

pixmap over [0, 106]× [k, k +17], k = 960 939 379 918 958 884 971
672 962 127 852 754 715 004 339 660 129 306 651 505 519 271 702 802 395 266
424 689 642 842 174 350 718 121 267 153 782 770 623 355 993 237 280 874 144
307 891 325 963 941 337 723 487 857 735 749 823 926 629 715 517 173 716 995
165 232 890 538 221 612 403 238 855 866 184 013 235 585 136 048 828 693 337
902 491 454 229 288 667 081 096 184 496 091 705 183 454 067 827 731 551 705
405 381 627 380 967 602 565 625 016 981 482 083 418 783 163 849 115 590 225
610 003 652 351 370 343 874 461 848 378 737 238 198 224 849 863 465 033 159
410 054 974 700 593 138 339 226 497 249 461 751 545 728 366 702 369 745 461
014 655 997 933 798 537 483 143 786 841 806 593 422 227 898 388 722 980 000
748 404 719 .

Affine arithmetic [CS93], which is another generalization
of standard interval arithmetic, also uses common subex-
pression analysis to improve the bounds returned from inter-
val evaluations. As with linear interval arithmetic [Tup96],
affine arithmetic uses functions to bound quantities, but in-
troduces a new dependent variable for each common subex-
pression.

13 Halftoning

Algorithm . can correctly graph a wide variety of formulae,
as shown by figures  and .

(a) (b)

Figure : Computed graphs, from algorithm ., of (a) the
bi-level torus 2 > f◦(x, y) and (b) the hexagonally halftoned
torus h6 > f◦(x, y), both over [−41, 43] × [−42, 42]
with 1024 × 1024 pixmaps. For both formulae,

f◦(x, y) = 1 +

{
3
2 sin 1

4

√
(x+3)2+2(y−3)2 if d≤0

2 Arctan
(

1
8

√
4(x−2)2+10(y+4)2−9

)2
if d>0

}
,

d = (x2 + 2y2 − 1600)(x2 + 3(y − 2)2 − 700), and

h6 = cos 5x+ cos 5
2

(
x −
√
3y

)
+ cos 5

2

(
x+
√
3y

)
.

Figure : Computed graphs, from algorithm ., of (a)
tan[
√

x2+y2sgn(sin 12(x−y) sin 13x sin 14y)]<max(sin[x cos y],cos[y sinx])

over [−4.7, 7.3] × [−2, 10] and (b) the patterned star[
0.15>

∣∣median(cos 8y,cos 4(y−
√
3x),cos 4(y+

√
3x))−cos

⌊
3
π p−0.5

⌋
−0.1

∣∣]
∧[median(|2x|,|x−√

3y|,|x+√
3y|)<10],p=Arctan(x,y) ; both with

1024× 1024 pixmaps.

14 Exponentials; Algorithm 3.3

Still, a few formulae from introductory mathematics courses
remain beyond the reach of our graphing algorithms; these
remaining formulae involve exponentials; several are shown
in figure .

Algorithm . will not finish graphing y = x
1
3 because the

underlying interval arithmetic cannot decide if x〈0.33,0.34〉

is well-defined when x < 0. Clearly explaining all of the
details involved with evaluating exponentials with interval
arithemetic would unacceptably lengthen this paper and is
a likely topic for a future presentation towards an audience
focused on mathematical computation. It is sufficient, for
many graphs, for our graphing algorithm to to analyse r
symbolically before graphing and to add, when possible, a
tag to each exponent: this tag would state the parity of the
numerator and the denominator of the exponent when it is
in lowest terms. This modification allows algorithm . to

finish graphing y = x
1
3 as the interval exponentiation rou-

tine can determine that x〈0.33,0.34〉 is well-defined and nega-
tive when x < 0 if it knows that the exponent is a rational
number with an odd numerator and denominator. Further
preprocessing and tagging, based on noticing that y = xx is
of the form f(y) = g(x)g(x) where g is a non-constant an-

(a) (b) (c) (d) (e)

Figure : Computed graphs, from algorithm ., of (a)

y = x
1
3 and (b) y = x

2
3 and finished computed graphs, from

algorithm ., of (c) y = x
1
3 , (d) y = x

2
3 , and (e) y = xx; all

over [−2, 3]× [−2,3] with 128× 128 pixmaps.

alytic function, allows algorithm . to manipulate y = xx

into a form that it can use to generate finished computed
graphs.

15 Optimization; Algorithm 3.4

I have not yet discussed the many ways in which our graph-
ing algorithms can be optimized. Some optimization sug-
gestions that will usually reduce the amount of memory and
time required to graph a formula follow: (see [Sny92a] for
additional hints)

1. Common subexpressions should be folded together and
only evaluated at most once per evaluation of r. This
is required for tracking branch cuts.

2. Constants in r should be computed once and then
cached for future use; they should not be computed
each time r is evaluated.

3. Evaluated subexpressions that depend only on x or
y should be cached. As an example, consider figure
a; while processing each Uk , sin 13x will be evaluated
many times with the exact same interval for x.

4. Using a multigrid approach, as we have, for subpixel
computations does not fully exploit our lack of interest
in subpixel geometry. Recursively probing a pixel for
solutions of r is generally much faster as we are inter-
ested in at most one solution of r.

5. A separate explicit graphing algorithm should be used
when r can be expressed as either y � f(x) or x � f(y),
where � is a comparison. More generally, any explicit
disjuncts of r can be removed and handled by an ex-
plicit graphing algorithm while the remainder of r is
handled by our implicit graphing algorithm.

6. Symbolic preprocessing should be done to simplify r;
many of the examples used to disparage interval meth-
ods are based on symbolic reasoning. Appropriate sym-
bolic preprocessing will nullify these examples. As a
simple example, if f−f occurs within r, and f is known
to be well-defined, f−f may be replaced with 0. Many
algorithms have been developed to massage r into var-
ious well-behaved forms for certain classes of r. See
[Arn83, Tau93] for when r is algebraic.

16 Comparisons with Other Work

Other researchers have presented algorithms for graphing
formulae. The approach I present in this paper differs from
these other approaches in the following ways:

1. I assign a clear meaning to the color used for each pixel.
With this meaning, it is possible to prove that algo-
rithms .–. are all correct and never produce incor-
rect graphs.

Fateman [Fat92] argues for “honest” plotting that faith-
fully represents all significant features of a graph. This
is desirable, but it is clearly impossible in general as
our display can only present a limited amount of infor-
mation; nevertheless, algorithms .–. can faithfully
represent some features of a graph, such as local ex-
trema, when the resolution of the graph is sufficient; al-
gorithms .–. will never misrepresent any features of
a graph, given our semantics behind computed graphs.

Arnon [Arn83] argues for a “topologically reliable” dis-
play. Although this too, due to the limitations of our
display device, is clearly impossible, even for algebraic
curves, algorithms .–. will, for example, never show
a computed graph that disconnects connected compo-
nents of the graph being plotted.

I have taken the liability of a limited-resolution display
device and turned it into a valuable asset: its limita-
tions provides a terminating criterion for our graphing
algorithm. Approaches based on computing significant
features or topological characteristics of a graph will be
unable to handle graphs with infinite amounts of de-
tail. Even smooth one-dimensional manifolds with no
horizontal or vertical segments, the type of graphs that
Snyder’s “Implicit Curve Approximation Algorithm” is
intended to address [Sny92b], can contain an infinite
number of disjoint components and have an infinite
number of local extrema, as exemplified by the graph
of sin 1

x2+y2 = 0. Algorithms .–. can, of course,

be stymied by difficult formulae, but it is reassuring
to know that, for every formula, there is a unique fin-
ished computed graph of that formula and that that
finished computed graph can be produced by some re-
liable graphing algorithms, even if we have not yet im-
plemented those algorithms.

2. Algorithms .–. correctly handle formulae that con-
tain subexpressions that are undefined and/or discon-
tinuous for some values of x and y.

Approaches based on standard interval methods [Fat92,
Sny92b, ABK95, HQvE00] will generally not be able
to break discontinuous evaluations apart and will not
break discontinuous curves apart, as discussed in sec-
tion 11 and shown in figures  and a,b.

Other approaches explicitly limit themselves to formu-
lae which are well-defined, such as algebraic equations
[Arn83, Tau93].

(a) (b) (c)

Figure : Computed graphs of y = x − Arctan tan x over
[−4, 5] × [−4,5] from (a) Graphing Calculator .., with a
145 × 145 pixmap; (b) IAsolver .beta, with a 128 × 128
pixmap; and (c) algorithm ., with a 128× 128 pixmap.

Table  summarizes how quickly graphing results are pre-
sented to the user, for two different algebraic equations,
using several different graphing algorithms. The equations
were chosen from [Tau94] as Taubin provided concrete tim-
ing results for the RecursivePaintZeros graphing algorithm
he presented, along with the equations, pixmap dimensions,
and graphing areas used to produce those results. I chose
two equations of high degree; with Taubin’s lower-degree
examples, the differences between the methods are similar,
but less pronounced. One notable example is the equation
shown in his figure i4, x2 + y2 + y3 = 0, which contains
a singularity: although algorithm . will generally not fin-
ish equations with singularities, it can finish this example
as the singularity lies on a point with floating-point coordi-
nates. As suggested in section 15, algorithm . could be
improved by adding symbolic preprocessing.

Arnon [Arn83] presents some timing results as well, but
the machine he uses, a VAX / minicomputer running
UNIXTM, is quite different than the Macintosh I am using
to time algorithm .; any comparisons are tenuous. A VAX
/ with a floating-point accelerator running UNIXTM is
capable of around 0.11 Linpack MFlops/s [Don00]; a Pow-
erMac G/300 is capable of 70.7–77.1 Linpack MFlops/s
[Met99, Mic00]. Arnon reports, for his example , a running
time of around 8 minutes; algorithm ., with a 512 × 512
pixmap representing [−2.5,2.5]× [−2.5, 2.5], begins subpixel
processing after 2.3 seconds and presents a finished com-
puted graph after 37.8 seconds. The computed graph pre-
sented by algorithm . shows that the illustration given in
Arnon’s figure  misrepresents the geometry of the graph,
although Arnon states that the illustrations given in his fig-
ures – were copies made by a draftsman working from the
output of the algorithm he presents in his section . Arnon’s
figure  shows a graph with several long horizontal and ver-
tical segments when there is more than enough resolution to
show the gentle curves of the graph.

17 Conclusion and Future Work

Algorithm . correctly graphs the mathematical formulae
encountered in introductory mathematics courses; when ap-
plied to a difficult formula that is beyond its capabilities,
algorithm . clearly marks the pixels that it cannot decide.
At no point does the algorithm use any approximations that
may cause it to produce an incorrect graph.

Given that equation graphing, as formalized herein, is not
computable, there is a never-ending stream of improvements
that could be made to algorithm . that would allow it to
produce finished graphs for an ever-larger set of formulae.
Improvements in this direction can be made by introduc-
ing more features into the interval library underlying algo-
rithm .; with some thought, many symbolic techniques
that could be applied to the formula prior to graphing can
be adapted to work within our interval library: continu-
ity tracking and domain tracking are both examples of this.
Adapted techniques can often then be applied to a wider
variety of situations and are available to other applications
that are clients of the interval library.

The semantics we use for computed graphs are quite sim-
ple. Although this allows mathematics students, one of the
primary users of this technology, to quickly gain a complete
understanding of the information presented by computed

4The graph given in [Tau94] actually shows y2 + x2 + x3 = 0;
several of the equations and graphs in [Tau94] do not match up
precisely.

First First Graph Graph Linpack

Algorithm Update Covering Approx- Finished (MFlop/s)

(s) (s) imated (s) (s)

Algorithm . 0 0 1.2 2.2 70.7–77.1

GCalc 0 1–2 1–2 ∞ 70.7–77.1

IAsolver 0 0–1 50 ∞ 28.6

RPZ2 N/A N/A 12.5 ∞ 15

RPZ10 N/A N/A 24.9 24.9∗ 15

(a)

First First Graph Graph Linpack

Algorithm Update Covering Approx- Finished (MFlop/s)

(s) (s) imated (s) (s)

Algorithm . 0 0 5.5 13.9 70.7–77.1

GCalc 0 6–7 6–7 ∞ 70.7–77.1

IAsolver 0 76 635 ∞ 28.6

RPZ2 N/A N/A 757.1 ∞ 15

RPZ50 N/A N/A 6,234.6 6,234.6∗ 15

(b)

Table : Timing results for graphing (a) (2y − x ± 1)(2x + y ±
1)

∏
j∈{−1,0,1}

(
(5x+ 2j)2 + (5y + 6j)2 − 10

)
= 0 over [−5, 5] ×

[−5, 5] and (b)
∏

(j,k)∈{−2,−1,0,1,2}2

(
(x+ j)2 + (y + k)2 − 0.4

)
=

0 over [−3, 3]× [−3, 3], both with 512× 512 pixmaps.

First Update gives the elapsed time, in seconds, until the al-

gorithm first begins updating the display; algorithm ., GCalc, and

IAsolver all show graphing as it progresses. First Covering gives

the elapsed time, in seconds, until the algorithm first covers every

pixel with graphing information; a quick covering provides the user

with an over-all view of the graph. Graph Approximated gives the

elapsed time, in seconds, until the computed graph closely approxi-

mates the finished graph; with algorithm ., this is when subpixel

computations start. Graph Finished gives the elapsed time, in

seconds, until the graph is finished. All elapsed times are measured

from when graphing begins. Linpack gives the reported Linpack

benchmark results, in megaflops per second, for each platform used

[Don00, DWM00, Mic00, Met99].

Algorithm . was timed on a PowerMac G/300. GCalc is

Graphing Calculator [ABK95] .., timed on a PowerMac G/300.

IAsolver is IAsolver [HQvE00] .beta, timed on a PowerMac

G/300 with MRJ .. RPZk is the RecursivePaintZeros procecure

[Tau94] used with an order k distance-approximation, timed on an

IBM RS/ model ; the timing results for RPZk are from

[Tau94].

∗RPZ does not take into account the limited precision of floating-

point.

graphs, a clear direction for future research is to enrich the
semantics of computed graphs so that topological informa-
tion and other significant features of the graph are also pre-
sented.

Another clear direction for future work is to develop algo-
rithms that can interactively display three-dimensional for-
mulae with the same degree of mathematical rigor.

Acknowledgements I would like to thank John Hughes, for
his practical suggestions on restructing the presentation of
the material; the paper reviewers, for their comments; and
my supervisor Eugene Fiume, for his support and advice.

References

[ABK95] Ron Avitzur, Olaf Bachmann, and Norbert Kajler. From
Honest to Intelligent Plotting. In A. H. M. Levelt, edi-
tor, Proc. of the International Symp. on Symbolic and

Algebraic Computation (ISSAC’95), Montreal, Canada,
pages 32 – 41. ACM Press, 1995.

[Arn83] Dennis S. Arnon. Topologically Reliable Display of Alge-
braic Curves. Computer Graphics (SIGGRAPH 83 Con-
ference Proceedings), 17(3):219–227, July 1983.

[CS93] J. Comba and J. Stolfi. Affine Arithmetic and its Appli-
cations to Computer Graphics. In Anais do VI Simpósio
Brasileiro de Computação Gráfica e Processamento de
Imagens (SIBGRAPI ’93), pages 9–18, 1993.

[Don00] Jack J. Dongarra. Performance of Various Computers Us-
ing Standard Linear Equations Software. Technical Report
CS-89-85, University of Tennessee, 2000.

[DWM00] Jack Dongarra, Reed Wade, and Paul McMa-
han. Linpack Benchmark — Java Version.
http : //www.netlib.org/benchmark/linpackjava, 2000.

[Fat92] R. Fateman. Honest Plotting, Global Extrema and Inter-
val Arithmetic. In P. S. Wang, editor, Proc. of the Inter-
national Symp. on Symbolic and Algebraic Computation
(ISSAC’92), Berkeley, USA, pages 216 – 223. ACMPress,
1992.

[Han80] Eldon Hansen. Global Optimization Using Interval Anal-
ysis — The Multi-Dimensional Case. Numerische Mathe-
matik, 34(3):247–270, 1980.

[HQvE00] Timothy J. Hickey, Zhe Qiu, and Maarten H. van Emden.
Interval Constraint Plotting for Interactive Visual Explo-
ration of Implicitly Defined Relations. Reliable Comput-
ing, 6(1):81–92, 2000.

[IEE85] IEEE Task P754. ANSI/IEEE 754-1985, Standard for
Binary Floating-Point Arithmetic. IEEE, New York, NY,
USA, August 1985. Revised 1990. A preliminary draft was
published in the January 1980 issue of IEEE Computer, to-
gether with several companion articles. Also standardized
as IEC 60559 (1989-01) Binary floating-point arithmetic
for microprocessor systems.

[Kah68] W. M. Kahan. A More Complete Interval Arithmetic. Lec-
ture notes prepared for a summer course at the University
of Michigan, June 17–21, 1968.

[Met99] Metrowerks. Macintosh Linpack Benchmark.
http://www.metrowerks.com/benchmarks/desktop/
mac linpack.html, 1999.

[Mic00] Tom Michiels. http://www.cs.kuleuven.ac.be/∼tomm/
bench.html, 2000.

[Moo66] R. E. Moore. Interval Analysis. Prentice Hall, Englewood
Cliffs, New Jersey, 1966.

[Moo79] R. E. Moore. Methods and Applications of Interval Anal-
ysis. SIAM, Philadelphia, 1979.

[Ped] Pedagoguery Software Inc. GrafEqTM.
http://www.peda.com/grafeq.

[RR88] H. Ratschek and J. Rokne. New Computer Methods for
Global Optimization. Ellis Horwood Ltd., Chichester,
1988.

[Sny92a] John M. Snyder. Generative Modeling for Computer
Graphics and CAD: Symbolic Shape Design Using In-
terval Analysis. Academic Press, San Diego, 1992.

[Sny92b] John M. Snyder. Interval Analysis for Computer Graphics.
Computer Graphics (SIGGRAPH 92 Conference Pro-
ceedings), 26(2):121–130, July 1992.

[Tau93] Gabriel Taubin. An Accurate Algorithm for Rasterizing
Algebraic Curves. In Second Symposium on Solid Model-
ing. ACM SIGGRAPH and IEEE Computer Society, May
1993.

[Tau94] Gabriel Taubin. Distance Approximations for Rasteriz-
ing Implicit Curves. ACM Transactions on Graphics,
13(1):3–42, January 1994.

[Tup96] Jeffrey Allen Tupper. Graphing Equations with Gener-
alized Interval Arithmetic. Master’s thesis, University of
Toronto, 1996.

