
Multiscale 3D Navigation

James McCrae, Igor Mordatch, Michael Glueck, Azam Khan

Autodesk Research
210 King Street East, Toronto, Ontario, Canada

first.last @autodesk.com

Figure 1: Our scale-sensitive approach allows navigation between scales in 3D scenes. Here, the user navigates from thousands of kilometres
above Earth’s surface to come to rest inside a jug on a table only centimetres in diameter.

Abstract

We present a comprehensive system for multiscale navigation of
3-dimensional scenes, and demonstrate our approach on multiscale
datasets such as the Earth. Our system incorporates a novel image-
based environment representation which we refer to as the cube-
map. Our cubemap allows consistent navigation at various scales,
as well as real-time collision detection without pre-computation or
prior knowledge of geometric structure. The cubemap is used to
improve upon previous work on proximal object inspection (Hov-
erCam), and we present an additional interaction technique for nav-
igation which we call look-and-fly. We believe that our approach to
the navigation of multiscale 3D environments offers greater flexi-
bility and ease of use than mainstream applications such as Google
Earth and Microsoft Virtual Earth, and we demonstrate our results
with this system.

CR Categories: H.5.2 [User Interfaces]: Graphical User Inter-
faces (GUI)—3D graphics;

Keywords: 3D navigation, 3D widgets, Desktop 3D environ-
ments, virtual camera.

1 Introduction

As computers continue to grow in processing and storage capac-
ity, users continue to push the limits creating ever larger data sets
that include both large structures as well as small details. A par-
ticularly compelling large multiscale data set is the Earth itself and
the geospatial information of human activity, including global po-
litical boundaries, roads and motorways, and buildings. With the
advent of Google Earth and Microsoft Virtual Earth, 3D urban visu-
alization and navigation has become mainstream. There are several
scales at which urban environments can be meaningful to users;
at the city scale, neighborhoods, street level, a single building or
home, and a single apartment or room inside a structure. However,
typical 3D software applications do not account for the scale of the
environment within their navigation tools. Some applications sim-
ply do not provide a means for users to modify the navigation tools
in the ways needed to support multiscale navigation. Those that do,
bury these options in several layers of dialog boxes. Even so, users
will need to continuously tweak the settings as the scale of the en-
vironment changes, adding significant effort to the users task. With
the intent of providing a seamless multiscale 3D navigation user
experience going from the planetary scale down to an individual
building and then moving about inside the building (see Figure 1),
we have developed a set of tools that automatically sense the size
of the environment and adjust the viewing and travel parameters
accordingly. Through simple mouse-based controls, a user can not
only navigate through complex environments, but also fly around
objects to inspect them, regardless of size, shape, or scale. To help
achieve this goal, we introduce a new GPU-based environment-size
algorithm to sense and respond, with control-display (C:D) ratio
manipulation and collision-avoidance, to the scale of the surround-
ing environment.

2 Related Work

Virtual 3D environments can be immersive, such as Virtual Real-
ity, or desktop based, such as Google Earth. Interaction is typi-
cally controlled through a 6 degree-of-freedom device, such as a
bat [Ware and Osborne 1990], or a 2D device, such as a mouse.
While we review work covering all combinations of environments
and controllers, our current research focuses on the presentation of



a virtual 3D environment in a desktop setting, using a mouse for
input.

Navigation in 3D virtual space has been the focus of a significant
body of research. Many have investigated mimicking real-world
navigation experiences to help users explore virtual worlds. Early
works focused on using metaphors to help users better understand
the way in which their interactions would take them through vir-
tual space. Egocentric navigation describes the interaction where
a user wants to move through a space, while exocentric navigation
pertains to a user moving around an object. [Ware and Osborne
1990] proposed three general interaction paradigms for 3D virtual
environments: eyeball-in-hand, scene-in-hand, and flying vehicle
control (flying). Flying was found to best support egocentric navi-
gation, while scene-in-hand best suited exocentric inspection. De-
spite the many metaphors available to help users understand navi-
gation, the problem has not been reduced to an intuitive and easy
task [Fitzmaurice et al. 2008]. Navigation aids have also been de-
veloped, to help users better understand the layout and context of
their environment. [Darken and Sibert 1993] provides an overview
of many such techniques, including landmarks, breadcrumbs, and
maps.

Another school of thought proceeds that the authors of a virtual
environment know best what the points of interest are, and should
therefore assist users in reaching them. [Haik et al. 2002] showed
that by sacrificing freedom of navigation, users completed naviga-
tion tasks more quickly and were able to locate and view selected
features of a scene without getting lost or disoriented. ShowMotion
[Burtnyk et al. 2006] and Magallanes [Abásolo and Della 2007]
provide authored viewpoints to users, while StyleCam [Burtnyk
et al. 2002] and the work of [Hanson and Wernert 1997; Hanson
et al. 1997] limited camera movement to two dimensional motion
along 3D surfaces. Path-based camera constraints have been pre-
sented [Salomon et al. 2003; dos Santos et al. 2000], with some
even allowing users some local control to deviate from the path
[Galyean 1995; Hanson et al. 1997; Elmqvist et al. 2008]. Finally,
others have explored determining optimal camera positions based
on content-based constraints [Drucker and Zeltzer 1995; Bares and
Lester 1999; Bares et al. 2000], and even moving the camera by ma-
nipulating objects being viewed [Gleicher and Witkin 1992]. While
these systems focus on navigation through large 3D data sets, they
are not sensitive to the scale of the environment. For example, when
moving to a landmark of a very small object does not change the
C:D ratio of the freeform camera tools.

While authored solutions do minimize the possibility of confusion
in a 3D virtual environment, they require the author to determine
what will be of interest to the user. To avoid this overhead, but still
benefit from constrained navigation, more general solutions have
been sought after. The ViewCube [Khan et al. 2008] is a widget that
supports constrained exocentric inspection of an object, ensuring
the entire object is visible in the viewport. HoverCam [Khan et al.
2005] allows users to inspect objects exocentrically by panning and
zooming, as the camera automatically reorients itself to view the
surface perpendicularly.

[Igarashi et al. 1998; Cohen et al. 2000] provided tools for users to
define constrained camera paths, [Ropinski et al. 2005] automati-
cally generated paths for roads in cities, and [Li and Ting 2000] de-
veloped a system for navigating through environments using prob-
abilistic path planning. Finally, collision detection has been used as
a means of guiding users along uneven terrain [Steed 1997]. Force-
fields have also been investigated as a means of both preventing
collisions and guiding users through obstacles [Li and Hsu 2004;
Li and Chou 2001; Xiao and Hubbold 1998]. While these tech-
niques have been shown benefit users, each have addressed either
exocentric or egocentric navigation, but not both. Speed-coupled

flying with orbit is a technique developed by [Tan et al. 2001] that
allows users access to both egocentric and exocentric navigation,
but requires a discrete modal change of interaction to do so.

As graphics hardware has advanced, techniques to off-load com-
putation to the GPU have been developed. In particular, there is a
growing body of research into image-based solutions to solve such
problems as calculating proximity, collisions, and intersections.
Early work [Baciu and Wong 1997; Baciu et al. 1998; Myszkowski
et al. 1995] used multipass rendering of depth maps to calculate
collisions between convex objects. [Fan et al. 2004] rendered six
view directions inside a convex object to determine when another
object intersects. [Kolb et al. 2004] implemented fragment shaders
to render depth maps and encode normal vectors to simulate collid-
ing particles in real time. [Vassilev et al. 2001] used a similar ap-
proach to animate cloth colliding against moving avatars. [Winter
and Stamminger ] used depth maps to calculate collisions between
user controlled avatars and virtual environments.

Many points of user confusion, when navigating in 3D, are related
to the multiscale nature of a 3D virtual environment. An effect de-
scribed as desert fog occurs when a user is either too close to a
low-detail object or too far from a high-detail object, causing con-
fusion and disorientation resulting from a loss of context [Jul and
Furnas 1998]. In addition to the importance of detail to provide con-
text, speed of motion has also been identified as being important to
effectively navigate 3D environments. [Mackinlay et al. 1990] de-
veloped point of interest movement where the user selects a point
on the geometry and begin to move towards it; their rate of travel
decreasing as they approach the object. This concept was extended
by [Ware and Fleet 1997] who varied the velocity of a user flying
through an environment interactively, slowing their speed as they
neared geometry, and speeding up as they became more distant.
Their approach was based on sampling a subset (15 rows) of the
depth buffer in the viewing direction.

3 Image-Based Environment Representation

Many systems rely on the CPU to perform geometric processing as
the viewer navigates about an environment, but this approach can be
prohibitive for sufficiently complex scenes. Instead, we exploit the
speed of modern graphics hardware and rasterize the environment
geometry into a compact image-based representation. As we will
show, this representation is appropriate for all environment queries
that our algorithms require. In our representation, each image-space
position maps to a 3D vector that points out into the scene from the
viewer’s position. The value at each image-space position in the
map defines the distance to environment geometry in that direction.

Our approach renders environment geometry using a shader that
calculates distance to the viewer for each fragment. Each fragment
is a unique position in the image-based representation. Distances
are normalized by the current frustum near and far plane distance.
The distance d is used as the depth component in the image for
each fragment. To be shown visually, we also set the red colour
component to 1.0− d (so “redness” corresponds to closeness to the
viewer).

We call our representation the cubemap as the scene is rendered
with a camera that faces each of six canonical directions whose
projection planes correspond to the faces of a cube. We use a
perspective camera with 90 degree field of view positioned at the
viewer’s eye. The combined frusta of the cameras completely cover
the space until their clipping limits meet. The worldspace position
of the pixel x, y ∈ [−1,+1] in one of the i cubemap sub-images



can be recovered using the following:

pos(x, y, i) =dist(x, y, i)·
norm (front(i) | right(i)x | up(i)y) , (1)

where front, right, up are unit vectors whose directions corre-
spond to the projection for face i. We note for clarity that only
the camera’s worldspace position (and not its orientation) is needed
to update the cubemap; our implementation uses fixed vectors for
front, right, up such that the faces unwrap as a cube, whose front
face is always oriented towards the positive x-axis (see Figure 2).

Figure 2: Illustration of scene geometry depth information rendered
to worldspace axis-aligned faces of the cubemap. The face pointing
toward the positive x-axis is highlighted in blue.

The cubemap can be updated at every frame, or simply when
there is camera movement. The cubemap does not require pre-
computation, or maintenance of any additional data structures. This
is an important property for environments that are dynamic or are in
the process of being authored. Since our applications of the cube-
map either use samples to estimate a single statistic or average mul-
tiple samples, we do not rely on having high-resolution cubemap
face textures, or use highly-detailed geometry.

In general, the sampling resolution of an object at a distance d from
the camera is 2d/cubeMapResolution. In our implementation,
we found a 64x64 sample size for each cube face gave us an effec-
tive resolution of 10 centimeters for objects 3.2 meters away, which
we found to be sufficient for typical environments. We next show
three particular applications of this environment representation.

3.1 Scale Detection

In navigation tools that use some notion of absolute speed (such as
the walk tool), it is necessary that speed be related to environment
size. In some applications, the scale of the environment is gener-
ally uniform and known, so speed parameters can be hand-tuned
to match that. However, it may not always be known (such as im-
ported geometry with incomplete or incorrect units), or may vary

greatly across the environment. In such situations, we can use the
cubemap’s distance values to estimate the scale of the local envi-
ronment the viewer is in. These estimates can be used to modulate
speed parameters.

In our implementation, we have found simply using the minimum
distance from the cubemap to estimate scale produces acceptable
and consistent navigation behaviour for a multitude of environ-
ments and scales, especially when there is little or no prior knowl-
edge of the environment geometry.

We have also experimented with using the mean of all distance val-
ues in the cubemap as a scale estimate. Unfortunately, it is neces-
sary to use a robust estimate, since the distance samples are likely
to contain a significant number of structured outliers. For exam-
ple, a room containing open doors or windows will contain distance
samples from the environment outside the room. We implemented
Tukey’s one-step biweight algorithm [Hoaglin et al. 2000] to find
an average distance value that is less affected by these structured
outliers. We have also explored using Gaussian mixture models
to cluster distance samples into different categories. However, we
have found that in practice these robust averaging approaches pro-
duce less predictable navigation behaviour.

Figure 3: Camera path is automatically modified to avoid collision
with nearby geometry within the collision radius.

3.2 Smooth Collision Resolution

To prevent the viewer from colliding with the environment and
avoid the overhead of typical geometric collision detection meth-
ods, we again take advantage of the cubemap (see Figure 3). For
every distance sample, we apply a soft collision penalty force if the
distance is within a threshold δ. When δ is constant across samples,
the viewer’s collision boundary is then a sphere with radius δ. The
net penalty force is then:

1

NxNy6

∑
x,y,i

w (dist(x, y, i)) · norm (pos(x, y, i)− eye). (2)

where w(dist) = sign(dist)e
−min(|dist|−δ,0)2

2σ2 is a soft penalty
function and σ is a softness parameter. Bound radius δ can be mod-
ulated by scale estimate as described in the previous subsection,
but there may still be cases when it is too large and may prevent



the viewer from navigating through small holes. To resolve this
in click-to-fly navigation mode, we slowly shrink the bound radius
when the viewer is far from their destination, but is not making any
progress towards it (i.e. is stuck due to collision).

3.3 Dynamic Viewing Frustum

Due to the limited numerical precision of the depth buffer (32-bit,
or possibly lower) using static values for the near and far plane
distances of the viewing frustum will cause undesirable clipping
at specific scales. To resolve this, our approach is to dynamically
modify the near and far plane distances of the viewing frustum us-
ing our cubemap approach.

We can rely on the maximum and minimum distances obtained by
our image-based representation to select optimal distances for the
near and far planes of the viewing frustum. The intuition behind
this approach is that we wish to keep the distance of visible scene
geometry within a threshold between the near and far planes. As the
camera moves around the scene, the near and far planes should be
dynamically updated to contain the changing minimum and maxi-
mum distances of scene geometry. In addition, if the current nor-
malized minimum distance from the cubemap is 1.0 (indicating no
geometry was rendered to the cubemap), then the near/far plane dis-
tances should be decreased/increased to “search” for the geometry
in the scene. In our system, we use the (non-normalized) minimum

Figure 4: Our frustum technique dynamically changes the near and
far plane clipping bounds. (a) The frustum does not change. (b)
The frustum is shortened. (c) The frustum is extended.

distance in the cubemap, cubeMinDist, to determine if changes in
the near and far planes are necessary (see Figure 4). We update the

near plane distance n at each frame using the following assignment:

n =


αn if cubeMinDist < An

βn if cubeMinDist > Bn

n otherwise
. (3)

In our implementation, we found the following variable assign-
ments produced satisfactory results: α = 0.75, β = 1.5, A =
2, B = 10, C = 100. We clamp n and Cn (the near and far plane
distances) for unreasonably small or large values.

In the case of navigating the Earth, we have prior knowledge of the
structure of the scene (a sphere with much smaller objects embed-
ded on its surface), and we could have, for example, used the length
of the tangent line from the camera position to the globe to define
the far plane distance. The problem with such an ad-hoc assignment
is that it does not work at all scales, indeed once sufficiently close
to the Earth’s surface the result is unacceptable. By comparison,
our cubemap-dependent approach to determine near and far plane
distances is robust, working both far from the Earth and up-close. It
requires neither ad-hoc assignments or prior knowledge of the ge-
ometry, making it a general, multiscale approach to managing the
viewing frustum.

3.4 Proxy Objects

Our system can render various types of primitives (sphere, cylin-
der, box or capsule) as a geometric approximation of a more com-
plicated scene object. We call these objects proxy objects. When
loading each object into the scene, the dimensions of the proxy ob-
ject are automatically calculated using the object’s vertex data. We
list some of the benefits of using proxy objects in our system:

Figure 5: Top row: At a significant distance from the object (left),
the low-resolution proxy object (right) is used for cubemap depth
rendering and for 3D cursor orientation and position. Bottom row:
At close distances, the original object geometry is used.

Performance: Updating the cubemap is a GPU-intensive operation.
Except when very close to a particular scene object, using a low-
detail geometric approximation will result in the cubemap yielding
similar if not equivalent scale detection/collision resolution results,
while taking less time to update.

Analytic Computation: Knowing the type of primitive, its dimen-
sions, and local coordinate frame, we can efficiently evaluate a pre-
cise distance from the camera to the proxy object, as well as near-



est point on the proxy geometry. This can enable specific naviga-
tion behaviours with a proxy object without the need to update the
cubemap. Coarse-level collision detection can also be performed.

Smooth Normal for Distant Objects: Our interface incorporates a
3D cursor whose appearance is consistent between scales. The
cursor sits on the surface of scene geometry, orienting itself on
the plane perpendicular to the surface normal. A somewhat dis-
tant scene object with variation in the normal direction will cause
the cursor to erratically orient in different directions as it is moved
along the object. By using the proxy object, the cursor orientation
remains consistent (see Figure 5).

4 Multiscale 3D Navigation

In the environment examples we provide here, there are several
fairly distinct scales in which the camera can operate. Specifically:
orbit-level, city-level, neighbourhood-level, and building interior-
level. We present the implementation-specific challenges, in pro-
ducing a system that works at these scales later, in the Discussion
section. In the following subsections, we detail the components
of our system that the user interacts with and utilizes to navigate
through our multiscale scene.

Figure 6: Interaction scheme for multiscale 3D navigation.

We developed a mouse-driven interaction scheme to drive Multi-
scale 3D Navigation. A left-mouse-buttom (LMB) click initiates
a fly towards the intersection with geometry under the mouse cur-
sor. Subsequent LMB clicks retarget the fly. While in flying mode,
moving the mouse around the viewport allows the user to look
around the scene while still following the original fly trajectory.
To break flying mode, a user clicks the right-mouse-button (RMB).
When stationary, a LMB drag initiates HoverCam mode, allowing
the user to perform exocentric inspection of geometry in the scene.
Conversely, a RMB drag performs an egocentric look operation.
A RMB click initiates push-out mode, where the collision bubbles
around objects expand, forcing the camera out and away from ge-
ometry in the scene. A single LMB click cancels push-out mode.
Finally, holding shift while dragging with the LMB allows the user
to perform a framed zoom-in on scene geometry (see Figure 6).

4.1 Look-and-Fly

The look-and-fly navigation method allows the user to travel
through the scene at a scale-dependent rate, while avoiding colli-
sion with obstacles. The user is able to freely change the viewing
direction of the camera with the mouse during flight. The centre of
the screen acts as a “deadzone”, a small area in which if the mouse
is present the viewing direction will not change. When the mouse
leaves the deadzone, the cursor’s direction from the centre of the
screen defines the angle the camera’s view direction should rotate.

The distance of the cursor from the deadzone controls the rate of
rotation.

The user initiates look-and-fly by left clicking. The destination
point of the flight is set to the current 3D cursor position pCursor ,
which remains fixed. During flight, we then use the following func-
tion to displace the camera position pCam over a time interval t∆
between frame updates:

pCam =pCam + (pCursor − pCam) · t∆ ·
cubeDistMin

2
, (4)

where cubeDistMin is the (non-normalized) distance of the clos-
est point in the scene, provided by the cubemap. Scaling the speed
of flying motion relative to the distance of nearby geometry pro-
vides a consistent sense of speed when navigating between scales.

While flying, the cubemap is also used to perform collision detec-
tion with the scene. Because of this, the path of flight will not
always be a straight line from start to finish - the camera will avoid
obstacles that enter its local vicinity. In fact, because of collision
detection, the camera will never reach the destination point given
by pCursor , instead being repelled once geometry enters the colli-
sion avoidance radius δ. The collision radius δ is assigned a new
value when flying is initiated, by using the distance from start to
finish (we use δ = ‖pCursor−pCam‖

4
).

4.2 Push-Out

As a complement to look-and-fly, we implement the push-out tech-
nique to perform the opposite behaviour. Moving the camera to a
position where it has perspective of a larger scale has a trivial so-
lution in the case of Earth navigation - simply move the camera
position further from the Earth’s centre. However in our case, the
ability to navigate within structures is a key component of our sys-
tem. The simple approach of translating the camera away from the
Earth will potentially penetrate the roof, resulting in a camera path
that is unnatural, and further does not provide a behaviour that is
consistent between scales.

Figure 7: By using push-out within an enclosure, the camera moves
along a curved path that takes it outside through an open hole.

Instead, our system uses the nearest exit point when the camera
is inside a structure. We exploit the collision resolution offered
by our image-based representation to achieve this. Specifically,
when the user right clicks the mouse to initiate push-out, we di-
late the collision avoidance radius δ. Specifically, we assign it
δ = 3.0 · cubeMinDist. In the case of the camera being enclosed
by scene geometry, this gets the camera flying toward an exit point
(such as a doorway or window), if present. In the case of the camera
being exterior to geometry, as is the case when orbiting the Earth,
or viewing a city from above, this moves the camera in a direction
generally away from the geometry. In both of these cases, the cam-
era moves in a natural way to take the user between scales, using
the same general approach. If the user wants more rapid movement
to a coarser scale, pressing the right mouse button additional times



multiplies the radius δ by a constant factor (we use δ = 3.0 · δ)
once the behaviour is initiated.

This technique is not robust in that it will not find a complex path
away from geometry (e.g., within a complex maze), however it is
reliable in producing simple motion paths where an exit point is
observable from the camera’s current position.

4.3 An Improved Hovercam

The original implementation of HoverCam navigation mode [Khan
et al. 2005] required calculation of the point on the environment
closest to the viewer along with a surface normal at that point. This
calculation was costly and relied on pre-computation of sphere tree
data structures. It is possible to use our cubemap to find the clos-
est point without explicitly testing the geometry, which is sufficent
for re-implementation of the HoverCam behaviour. Since the clos-
est point is guaranteed to lie on the surface visible to the viewer,
it is the worldspace position of the pixel in the cubemap with the
smallest distance value. The HoverCam approach is further sim-
plified in that the process of searching for a new closest point in
the direction of movement (to avoid both object collision, and un-
natural, hook-shaped camera paths) is handled automatically by the
cubemap, which searches all directions into the scene at once.

The original implementation also suffered from temporal coher-
ence issues when sampling the closest point from noisy geome-
try. To ensure smoothness of HoverCam navigation, G1 surfaces
are desirable. Since geometry-based smoothing is costly, we use
an image-based smoothing technique to approximate local smooth-
ing of geometry. We have implemented a smoothing algorithm that
uses a box-filter that specifically targets depth values in the cube-
map whose normalized values are less than 1. Other algorithms for
smoothing depth values in the cubemap exist (such as gaussian, or
a bilateral filter for edge preservation) which we have not yet eval-
uated.

Our system allows interaction with any of multiple independent
scene objects. The user performs HoverCam behaviour by dragging
the left mouse button on a particular scene object. Just the scene ob-
ject selected is rendered into the cubemap in order to find its closest
point (as it may not provide the true closest point in the scene to the
camera). This approach avoids the issue of the camera switching
between viewing the object of interest, and another separate object
in the scene which may be closer. For example, consider examining
the base of a tower (the object of interest), it would be undesirable
to have HoverCam suddenly switch the view to the Earth immedi-
ately below the camera. While we render only the object of interest
in the cubemap to obtain its closest point specifically, we still pe-
form collision detection with all scene objects by rendering each
into the cubemap.

4.3.1 Dynamic Up Vector

Up until this point we have not discussed how we update the up
vector for the camera, which is an important parameter. Also, in
the case of HoverCam behaviour, different up vector models vary
the general behaviour of the HoverCam as a navigational tool. In
the system we present here, we use the “global” up vector model,
on a per-scene-object basis.

In our system, each independent scene object has its own unique
origin and coordinate frame. We assume the scene object upon im-
portation is oriented such that its vertical direction points along the
positive y-axis. The influence of a scene object’s up vector is based
on the object’s proximity to the camera.

In the case of the Earth, we would like that the camera always point

to the North Pole when the camera is at an orbit-level scale in the
scene, but normal to the surface when up close. To achieve this,
our Earth object is a subclass of a generic scene object class. We
overload the up vector method to specify a more-complex up vector
assignment. The up vector points towards the North Pole but as the
camera moves closer to the surface the up vector direction gradually
changes to point normal to the Earth’s surface.

4.4 Framed Zooming

While holding shift, a left-click drag sets up a framed zoom. The
framed zoom allows the user to specify a particular region of the
scene they would like to see from a closer viewpoint. The extent
in which the camera zooms in will be determined by the framing
circle, whose radius is determined by projecting a ray from the cur-
rent mouse position through the plane defined by the position and
normal of the 3D cursor. The framing circle appears as a stencil,
darkening areas of the scene that will not be visible when rendered
at the destination (see Figure 8). The transparent green arrow pro-
vides a visual affordance of the destination position and orientation
of the camera when the left mouse button is released.

If pCursor and nCursor are the position and normal of the 3D cur-
sor, the framing circle has radius r, and the horizontal and vertical
FOVs of the camera are θH and θV , the new camera position pCam

is given by

pCam = pCursor + nCursor
r√

2min (tan θH , tan θV )
, (5)

and the camera will be oriented to look at pCursor .

Figure 8: (Left) Holding shift, the user clicks and drags to frame a
region. (Right) Upon release, the camera animates to a new position
whose view tightly contains the region.

5 Discussion

Implementing a system that works at a dynamic range of scales -
from thousands of kilometres down to centimetres - causes other
specific problems to surface which we must address.

One problem facing systems which allow navigation between such
scales results from the lack of floating point precision for vertex po-
sitions far from the origin of the scene. Our implementation orig-
inally used the Earth’s centre as the origin. Objects on the Earth’s
surface, far from this origin appeared to “jitter” when viewed close-
up. The non-uniform distribution of floating point values, whose
relative spacing is further exaggerated when zoomed in, produces
the observed effect. Note that the naive approach of keeping the



camera positioned at the origin and translating the scene geome-
try accordingly also will not prevent this effect, the culprit being
catastrophic cancellation in this case.

As our system is multiscale and relies on image-based techniques
for navigation, we had to address this issue. Our solution is to de-
fine a dynamic global origin that all scene objects are rendered rel-
ative to. The global origin of the scene moves according to the
smaller scene objects the camera is close to (specifically, the geo-
metric structures littering the Earth’s surface). Display lists for all
scene objects are regenerated relative to the global origin after it is
translated.

6 Conclusions

Our goal of providing a seamless navigation system for highly
multiscale 3D datasets was met. The key technique enabling this
advanced interaction was the cubemap. This image-based envi-
ronment representation was used effectively in (a) a robust scale-
detection system, (b) a smooth collision resolution heuristic, (c) a
dynamic viewing frustum critical to the success of the overall goal,
and (d) a proxy object rendering to facilitate object-centric naviga-
tion.

The simplified interactions for the Look-and-fly and Push-Out
modes facilitated the transition between many scales within the
dataset and this was made possible by the intelligent navigation ad-
justments implicitly made by the cubemap-based algorithms. In
particular, the Push-Out mode was not constrained by a specific in-
put point and so, nicely reflected an object-level scale change with
each invocation.

Also, by implementing an image-based HoverCam algorithm, this
high-level interaction technique could be provided without an ex-
pensive sphere-tree precomputation and this could work on dy-
namic 3D scenes as well.

Finally, the framed zoom operation, together with 3D cursor feed-
back provided fine control over navigation through a city model
containing many faceted targets. This situation benefitted notice-
able from the 3D cursor feedback increasing predictability of the
resulting camera motion.

Overall, significant progress was made to create a small group of
interactions to perform multiscale 3D navigation.

7 Acknowledgments

Keenan Crane for the excellent island/city/house/jug model, Justin
Matejka for help with figures, Ryan Schmidt for code bits and help-
ful discussion, Tovi Grossman and George Fitzmaurice. We also
thank Nicolas Burtnyk for originally suggesting this approach.

References

ABÁSOLO, M. J., AND DELLA, J. M. 2007. Magallanes: 3d navi-
gation for everybody. In GRAPHITE ’07: Proceedings of the 5th
international conference on Computer graphics and interactive
techniques in Australia and Southeast Asia, ACM, New York,
NY, USA, 135–142.

BACIU, G., AND WONG, W. S.-K. 1997. Rendering in object
interference detection on conventional graphics workstations. In
PG ’97: Proceedings of the 5th Pacific Conference on Computer
Graphics and Applications, IEEE Computer Society, Washing-
ton, DC, USA, 51.

BACIU, G., WONG, W., AND SUN, H. 1998. Recode: An image-
based collision detection algorithm. Computer Graphics and Ap-
plications, Pacific Conference on 0, 125.

BALAKRISHNAN, R., AND KURTENBACH, G. 1999. Exploring
bimanual camera control and object manipulation in 3d graphics
interfaces. In CHI ’99: Proceedings of the SIGCHI conference
on Human factors in computing systems, ACM, New York, NY,
USA, 56–62.

BARES, W. H., AND LESTER, J. C. 1999. Intelligent multi-shot
visualization interfaces for dynamic 3d worlds. In IUI ’99: Pro-
ceedings of the 4th international conference on Intelligent user
interfaces, ACM, New York, NY, USA, 119–126.

BARES, W., MCDERMOTT, S., BOUDREAUX, C., AND
THAINIMIT, S. 2000. Virtual 3d camera composition from
frame constraints. In MULTIMEDIA ’00: Proceedings of the
eighth ACM international conference on Multimedia, ACM,
New York, NY, USA, 177–186.

BURTNYK, N., KHAN, A., FITZMAURICE, G., BALAKRISHNAN,
R., AND KURTENBACH, G. 2002. Stylecam: interactive stylized
3d navigation using integrated spatial & temporal controls. In
UIST ’02: Proceedings of the 15th annual ACM symposium on
User interface software and technology, ACM, New York, NY,
USA, 101–110.

BURTNYK, N., KHAN, A., FITZMAURICE, G., AND KURTEN-
BACH, G. 2006. Showmotion: camera motion based 3d design
review. In I3D ’06: Proceedings of the 2006 symposium on In-
teractive 3D graphics and games, ACM, New York, NY, USA,
167–174.

COHEN, J. M., HUGHES, J. F., AND ZELEZNIK, R. C. 2000.
Harold: a world made of drawings. In NPAR ’00: Proceedings
of the 1st international symposium on Non-photorealistic anima-
tion and rendering, ACM, New York, NY, USA, 83–90.

DARKEN, R. P., AND SIBERT, J. L. 1993. A toolset for nav-
igation in virtual environments. In UIST ’93: Proceedings of
the 6th annual ACM symposium on User interface software and
technology, ACM, New York, NY, USA, 157–165.

DOS SANTOS, C. R., GROS, P., ABEL, P., LOISEL, D.,
TRICHAUD, N., AND PARIS, J. P. 2000. Metaphor-aware 3d
navigation. In INFOVIS ’00: Proceedings of the IEEE Sympo-
sium on Information Vizualization 2000, IEEE Computer Soci-
ety, Washington, DC, USA, 155.

DRUCKER, S. M., AND ZELTZER, D. 1995. Camdroid: a sys-
tem for implementing intelligent camera control. In SI3D ’95:
Proceedings of the 1995 symposium on Interactive 3D graphics,
ACM, New York, NY, USA, 139–144.

ELMQVIST, N., TUDOREANU, M. E., AND TSIGAS, P. 2008.
Evaluating motion constraints for 3d wayfinding in immersive
and desktop virtual environments. In CHI ’08: Proceeding of
the twenty-sixth annual SIGCHI conference on Human factors
in computing systems, ACM, New York, NY, USA, 1769–1778.

FAN, Z., WAN, H., AND GAO, S. 2004. Simple and rapid collision
detection using multiple viewing volumes. In VRCAI ’04: Pro-
ceedings of the 2004 ACM SIGGRAPH international conference
on Virtual Reality continuum and its applications in industry,
ACM, New York, NY, USA, 95–99.

FITZMAURICE, G., KHAN, A., PIEKÉ, R., BUXTON, B., AND
KURTENBACH, G. 2003. Tracking menus. In UIST ’03: Pro-
ceedings of the 16th annual ACM symposium on User interface
software and technology, ACM, New York, NY, USA, 71–79.



FITZMAURICE, G., MATEJKA, J., MORDATCH, I., KHAN, A.,
AND KURTENBACH, G. 2008. Safe 3d navigation. In SI3D ’08:
Proceedings of the 2008 symposium on Interactive 3D graphics
and games, ACM, New York, NY, USA, 7–15.

GALYEAN, T. A. 1995. Guided navigation of virtual environments.
In SI3D ’95: Proceedings of the 1995 symposium on Interactive
3D graphics, ACM, New York, NY, USA, 103–ff.

GLEICHER, M., AND WITKIN, A. 1992. Through-the-lens camera
control. In SIGGRAPH ’92: Proceedings of the 19th annual con-
ference on Computer graphics and interactive techniques, ACM,
New York, NY, USA, 331–340.

HAIK, E., BARKER, T., SAPSFORD, J., AND TRAINIS, S. 2002.
Investigation into effective navigation in desktop virtual inter-
faces. In Web3D ’02: Proceedings of the seventh international
conference on 3D Web technology, ACM, New York, NY, USA,
59–66.

HANSON, A. J., AND WERNERT, E. A. 1997. Constrained 3d nav-
igation with 2d controllers. In VIS ’97: Proceedings of the 8th
conference on Visualization ’97, IEEE Computer Society Press,
Los Alamitos, CA, USA, 175–ff.

HANSON, A. J., WERNERT, E. A., AND HUGHES, S. B. 1997.
Constrained navigation environments. IEEE Computer Society,
Los Alamitos, CA, USA, vol. 0, 95.

HOAGLIN, D., MOSTELLER, F., AND TUKEY, J. 2000. Under-
standing Robust and Exploratory Data Analysis. John Wiley &
Sons, New York, NY, USA.

IGARASHI, T., KADOBAYASHI, R., MASE, K., AND TANAKA,
H. 1998. Path drawing for 3d walkthrough. In UIST ’98: Pro-
ceedings of the 11th annual ACM symposium on User interface
software and technology, ACM, New York, NY, USA, 173–174.

JUL, S., AND FURNAS, G. W. 1998. Critical zones in desert fog:
aids to multiscale navigation. In UIST ’98: Proceedings of the
11th annual ACM symposium on User interface software and
technology, ACM, New York, NY, USA, 97–106.

KHAN, A., KOMALO, B., STAM, J., FITZMAURICE, G., AND
KURTENBACH, G. 2005. Hovercam: interactive 3d navigation
for proximal object inspection. In I3D ’05: Proceedings of the
2005 symposium on Interactive 3D graphics and games, ACM,
New York, NY, USA, 73–80.

KHAN, A., MORDATCH, I., FITZMAURICE, G., MATEJKA, J.,
AND KURTENBACH, G. 2008. Viewcube: a 3d orientation in-
dicator and controller. In SI3D ’08: Proceedings of the 2008
symposium on Interactive 3D graphics and games, ACM, New
York, NY, USA, 17–25.

KOLB, A., LATTA, L., AND REZK-SALAMA, C. 2004. Hardware-
based simulation and collision detection for large particle
systems. In HWWS ’04: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware,
ACM, New York, NY, USA, 123–131.

LI, T., AND CHOU, H. 2001. Improving navigation efficiency with
artificial force field. In In Proceedings of 2001 14th IPPR Con-
ference on Computer Vision, Graphics, and Image Processing.

LI, T.-Y., AND HSU, S.-W. 2004. An intelligent 3d user interface
adapting to user control behaviors. In IUI ’04: Proceedings of
the 9th international conference on Intelligent user interfaces,
ACM, New York, NY, USA, 184–190.

LI, T.-Y., AND TING, H.-K. 2000. An intelligent user interface
with motion planning for 3d navigation. In VR ’00: Proceedings

of the IEEE Virtual Reality 2000 Conference, IEEE Computer
Society, Washington, DC, USA, 177.

MACKINLAY, J. D., CARD, S. K., AND ROBERTSON, G. G. 1990.
Rapid controlled movement through a virtual 3d workspace. In
SIGGRAPH ’90: Proceedings of the 17th annual conference on
Computer graphics and interactive techniques, ACM, New York,
NY, USA, 171–176.

MYSZKOWSKI, K., OKUNEV, O., AND KUNII, T. 1995. Fast colli-
sion detection between complex solids using rasterizing graphics
hardware. The Visual Computer 11(9), 497.

ROPINSKI, T., STEINICKE, F., AND HINRICHS, K. 2005. A con-
strained road-based vr navigation technique for travelling in 3d
city models. In ICAT ’05: Proceedings of the 2005 international
conference on Augmented tele-existence, ACM, New York, NY,
USA, 228–235.

SALOMON, B., GARBER, M., LIN, M. C., AND MANOCHA, D.
2003. Interactive navigation in complex environments using path
planning. In I3D ’03: Proceedings of the 2003 symposium on
Interactive 3D graphics, ACM, New York, NY, USA, 41–50.

STEED, A. 1997. Efficient navigation around complex virtual envi-
ronments. In VRST ’97: Proceedings of the ACM symposium on
Virtual reality software and technology, ACM, New York, NY,
USA, 173–180.

TAN, D. S., ROBERTSON, G. G., AND CZERWINSKI, M. 2001.
Exploring 3d navigation: combining speed-coupled flying with
orbiting. In CHI ’01: Proceedings of the SIGCHI conference
on Human factors in computing systems, ACM, New York, NY,
USA, 418–425.

VASSILEV, T., SPANLANG, B., AND CHRYSANTHOU, Y. 2001.
Fast cloth animation on walking avatars. 260–267.

WARE, C., AND FLEET, D. 1997. Context sensitive flying in-
terface. In SI3D ’97: Proceedings of the 1997 symposium on
Interactive 3D graphics, ACM, New York, NY, USA, 127–ff.

WARE, C., AND OSBORNE, S. 1990. Exploration and virtual
camera control in virtual three dimensional environments. In
SI3D ’90: Proceedings of the 1990 symposium on Interactive
3D graphics, ACM, New York, NY, USA, 175–183.

WINTER, M., AND STAMMINGER, M. Depth-buffer based navi-
gation.

XIAO, D., AND HUBBOLD, R. 1998. Navigation guided by ar-
tificial force fields. In CHI ’98: Proceedings of the SIGCHI
conference on Human factors in computing systems, ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA,
179–186.


