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ABSTRACT

We present Drive, a system for the conceptual layout of 3D path
networks. Our sketch-based interface allows users to efficiently au-
thor path layouts with minimal instruction. Our system incorporates
some new and noteworthy components. We present the break-out
lens, a novel widget for interactive graphics, inspired by break-out
views used in engineering visualization. We also make three contri-
butions specific to path curve design: First, we extend our previous
work to fit aesthetic paths to sketch strokes with constraints, us-
ing piecewise clothoid curves. Second, we determine the height of
paths above the terrain using a constraint optimization formulation
of the occlusion relationships between sketched strokes. Finally,
we illustrate examples of terrain sensitive path construction in the
context of road design: automatically removing foliage, building
bridges and tunnels across topographic features and constructing
road signs appropriate to the sketched paths.

Index Terms: I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation; I.3.6 [Computer Graph-
ics]: Methodology and Techniques—Interaction techniques

1 INTRODUCTION

While path layouts are necessary for transportation design (roads,
railways, nature trails), they are also important as motion paths for
animation, navigation and visualization in games and virtual envi-
ronments. Noted landscape architect Lawrence Halprin [16] points
out that the design of such paths should emphasize the journey or
driving experience. In other words, the spatio-temporal aesthet-
ics of path design are as important as its engineering requirements.
Unfortunately, unlike 3D shape design where concept sketching
interfaces are now abundant, sketch-based path design is largely
unexplored. These shape modeling interfaces [18, 31], Google
SketchUp, are not suitable for conceptual path layout, forcing path
designers to reluctantly work with engineering focused CAD tools
such as AutoCAD Civil3D.

In this paper we present a coherent sketch-based system, Drive,
specifically aimed at conceptual path design. While we often use
road networks as a visual representation of the system (see Fig-
ure 1), our system can be adapted to paths representing railways,
waterways, nature trails, pipe or power lines, graph networks, net-
works of surface patches or general 3D curve based modeling (see
Figure 15).

2 RELATED WORK

Sketch-based interfaces generally have a quick-and-dirty feel to
them that is well-suited to ideation and conceptual prototyping.
Relevant to this paper a number of compelling systems have been
proposed for 3D shape modeling [40, 18, 36, 31, 29, 10], camera
motion along a path [17], spatial layout [1, 39], interface design

∗e-mail: mccrae@dgp.toronto.edu
†e-mail: karan@dgp.toronto.edu

Figure 1: Views of a road network created within Drive.

[22], animation [11, 35] and the sketching of flora and fauna [2] and
architectural environments, such as Google SketchUp. The area of
sketch-based path design, however, is largely unexplored.

Various aspects of our system draw upon existing research.
Our interface is largely driven by a single lasso menu and quick
selection-action phrasing [1]. We draw curves directly projected
onto a terrain much the same way that shape modeling systems
[18, 29, 19] project a sketched stroke onto underlying geometry.

Lifting these curves in 3D off the projected geometry or creating
non-planar curves in general is a difficult problem since sketched
strokes are inherently 2D in the view-plane. Common solutions to
this problem is to resolve in 3D, strokes sketched in multiple views
[8, 20]. Multi-view approaches while mathematically straightfor-
ward are suboptimal for a user that has to mentally deconstruct a
3D curve into multiple disconnected views. We alleviate this prob-
lem using a break-out lens that provides the capability of multiview
editing but in context of the current curve and surrounding environ-
ment. While lenses for zooming have existed for some time [6, 24]
in interactive visualization, we believe this the first approach to both
view manipulation and editing via a lens using nonlinear projection
[4, 9].

Occlusion has been exploited to disambiguate the depth of 3D
organic shapes [10]. In [10] visible contours of 3D objects are
processed to build 2D panels that are inflated into 3D shapes like
Teddy [18]. The occluded contours result in overlapping panels
whose depth is solved for by optimizing curvature, orientation and
distance of a panel axis from the sketch plane. Since our paths are
the same width, we simplify drawing by using a single stroke rep-
resent the spine of the path. We also satisfy occlusion constraints
using an optimization formulation better suited to path design than
3D shape modeling [10] (see Figures 6, 7).

Interaction techniques commonly represent continuous curves as
densely sampled polylines. Geometric properties for these curves,
however, needs to be imposed by the curve creation and editing
technique [14, 36]. One such geometric property is fairness [13],
that attempts to capture the visual aesthetic of a curve. Fairness is
closely related to how little and how smoothly a curve bends. For
planar curves it has been described as curvature continuity G2, with
a small number of segments of almost piecewise linear curvature
[13]. The family of curves whose curvature varies linearly with arc-
length are known as clothoids. Clothoids have been the subject of
prior research in CAD and transportation design as transition curves
smoothly connecting two curve segments [26, 23] or a spline where



every three consecutive points are fit with a parabola-like clothoid
segment [37]. Discrete formulation of clothoid using nonlinear sub-
division have also been proposed [15, 32]. The fairness proper-
ties of clothoids have been exploited to generate 2D curves that
approximate sketched input strokes [25] with better fairness prop-
erties than the common fairing approaches of spline fitting [30] or
discrete smoothing by iterative neighbour averaging [36]. This ap-
proach also automatically favours precise line and circular-arc seg-
ments which are desirable for transport path layout. A further ad-
vantage of fitting analytic curve segments like splines or clothoids
over discrete smoothing methods is that the paths can be regener-
ated at arbitrary resolution. We build upon the framework of [25]
in this paper to allow precise geometric constraints, necessary for
local control when editing path networks.

Finally, our design goal is not simply path network creation but
a conceptualization of the entire driving experience, in which paths
are an integrated part of the environment on which they are laid
out. Programs such as Google Earth and Microsoft Virtual Earth
provide compelling interfaces for visualizing terrain and other 3D
environments, but do not represent paths with independent geom-
etry. Path networks have also been used as an input for the proce-
dural modeling of 3D geometry [7]. We handle the construction of
the evolving environment by integrating it into the path design pro-
cess. Creating a path automatically defines a cut-and-fill corridor on
the terrain into which the path is integrated, removing foliage, con-
structing bridges, tunnels, path crossings and signage as dictated by
the evolving landscape and path network.

The drive through is executed with a select and play action, al-
lowing a user to animate the drive along a selected section of path
viewed from a number of typical vantage points, or with interactive
control during animation. There has been research on authoring
virtual flythroughs in the context of scene visualization [38, 34] or
product design [21, 5]. We also provide a simple select-and-time
action to alter the pacing of a drive along the path. We are thus able
to quickly author the rough timing of objects or cameras animating
along motion paths, functionality that is more precise and complex
to control in animation systems like Maya.

3 DESIGN GOALS

Our goal of rapidly conceptualizing a 3D driving experience
through sketching helps define a number of design principles.

1. A general problem with sketch-based 3D applications is a
philosophical disconnect in that view navigation for 3D scene
understanding is critical while traditional sketching is inher-
ently a 2D task from a fixed viewpoint. We aim towards
maintaining the focus on sketching and minimizing interac-
tive view navigation.

2. This application is designed not only for game designers and
transport landscape architects but also for novice users with-
out exceptional artistic skills, for example, to build custom
tracks to race on in a gaming environment, or exploring op-
tions in designing a path through a thicket from their cottage
to a nearby lake. The system should thus be easy to use with
limited instruction and fun to play with, encouraging creative
exploration.

3. As with most concept design applications we would like to
keep user focus on design with a maximal sketching surface
and without any distractions or cognitive overhead from the
UI.

4. While most sketch-based applications attempt to leverage the
many degrees of freedom of a pen and tablet, we aim to de-
sign an application that is equally operable by a mouse, with
minimal use of buttons or mode switching.

5. Finally given the conceptual nature and specific domain of
our design problem, we would like to make many intelligent
inferences from sketched strokes in the context of the evolving
environment, to maximize the visual impact of each sketched
stroke (as an example, see Figure 6).

Designed and implemented within the context of this system, we
draw attention to four key components:
Break-out lens: Inspired by break-out views used to indicate or-
thogonal viewpoints in engineering visualization, we develop an
interactive lens that performs a continuous view warp to provide an
in-context break-out view (see Figure 14). Important advantages of
the break-out lens are that its locality elegantly avoids view occlu-
sion commonly caused by undulating terrain (see Figure 16) and
sketching within the lens allows multi-view 3D curve editing, with-
out the handicap of mentally resolving the 3D curve from discon-
nected views.
Clothoids: Clothoids are the family of spirals whose curvature
varies linearly with arc-length. They are widely used in transporta-
tion engineering, since they can be navigated at constant speed by
linear steering and a constant rate of angular acceleration [26, 37].
Recently [25] presented an approach to interactive sketch stroke
filtering using clothoid curve fitting. We non-trivially adapt this
approach to our application, by incorporating geometric constraints
that allow us to interactively interpolate points, edit curves by overs-
ketching and represent closed curves using piecewise clohoids.
Crossing paths: We handle arbitrarily complex path crossings by
sketching occlusion as breaks in the curve path (see Figure 6). We
process the sketched strokes to implicitly join these breaks and de-
fine inequalities of path height. We then efficiently solve for height
along the path as an optimization that minimizes the height of the
path from the terrain, while maximizing the variation of height
needed to satisfy the occlusion relationships (see Figure 7).
Terrain sensitive sketching: Our implementation does not focus
specifically on the construction of path layouts but also on the rapid
conceptualization and preview of the entire driving experience. The
terrain is more than a canvas on which to sketch paths, it is an evolv-
ing environment into which the paths integrate, with automatic con-
struction of bridges, tunnels, road signs and changes in foliage (see
Figure 1, 8, 9).

4 PATH CREATION AND EDITING

Open curves are used for path creation and editing. Users sketch
strokes as 2D polylines in the view plane. Each of these points is
then projected onto a 3D heightfield terrain representation, to cre-
ate an unfiltered 3D curve representing a path. We resample the
3D curve on the terrain by inserting and deleting points to ensure a
reasonably even arc-length sampling. This 3D curve is then fit us-
ing clothoids in 2D in the XZ-plane, ignoring the height component
Y (see Figure 2), as is common in transportation design. The fit-
ted curve comprising line, circular-arc and piecewise clothoid seg-
ments is discretely sampled and projected back to the 3D geometry
to define the spine of the final path along which path geometry is
deformed.

Paths may be extended or edited by oversketching [3]. End-point
proximity and end-tangent alignment of the oversketched path to
existing paths is used to infer whether a new path is created or if an
existing path is extended or edited (see Figure 3). Selected regions
of paths can be deleted using the lasso menu. A path edited by
oversketching can be globally refitted using clothoids.

4.1 Clothoid Fitting with Geometric Constraints
The clothoid fitting approach of [25], while appropriate for the cre-
ation of smooth open paths as well as sharp corners in paths, is
unsuitable for creating smooth closed curves or for local path edit-
ing. We accomplish this by using the end-point and end-tangent



Figure 2: The sketched curve in the image plane is projected onto the
terrain geometry, then projected onto the XZ plane where it is repre-
sented as a 2D model consisting of line, circular-arc and clothoid
segments.

Figure 3: Extending a path (top) and editing it (middle) by oversketch-
ing. A selected portion is deleted (bottom) using the lasso-menu.
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Figure 4: Clothoid fitting: (a) Discrete stroke curvature is approxi-
mated as a piecewise linear function uniquely defining clothoid seg-
ments. (b) A rigid 2D transform minimizes the weighted least squares
error between the composite clothoid and the sketched stroke.

proximity of closed curves and local path edits as constraints to the
clothoid fitting process.

The input to our algorithm is a 2D polyline stroke, and the output
a smooth curve comprising line, circular-arc and clothoid segments.

We first provide a brief overview of the general clothoid fitting
approach given in [25] (see Figure 4). The Frenet-Serret formula
is used to compute discrete curvature [28] at vertices of the input
polyline. A dynamic programming algorithm is then used to fit
a piecewise linear approximation to the discrete curvature of the
stroke as a function of arc-length. A user defined parameter con-
trols the tradeoff between fitting error and the number of pieces of
linear curvature. The start and end curvature values of each lin-
ear piece uniquely determine a line, circular-arc or clothoid curve
segment. These segments assemble together uniquely with G2 con-
tinuity into a single composite curve. The next step involves deter-
mining a single 2D rigid transform that aligns this composite curve
with the sketched stroke to minimize the error of the stroke from
the transformed curve. This transform can be computed efficiently
by formulating the error as a weighted least squares optimization
problem [27].

For each clothoid segment Ci, we have its curvature space end-
points (xP

i ,yP
i ) and (xP

i+1,y
P
i+1). These parameters uniquely map to

a clothoid segment defined by B, that defines how tight the clothoid
spiral is, and the start and end parameter values t1 and t2.

B =

√
xP

i+1− xP
i

π(yP
i+1− yP

i )
, t1 = yP

i B and t2 = yP
i+1B. (1)

Given a geometric constraint we thus determine one or more ex-
isting clothoid pieces whose parameters we vary to locally satisfy
the given geometric constraints. For instance, to generate a G2 tran-
sition when oversketching (see Figure 3) or a closed clothoid curve
(see Figure 5) we need to enforce common end-point, end-tangent
and end-curvature values.

To close a curve, our approach introduces an additional clothoid
segment (which we call the join-piece) between the first and last
clothoid segments, which provides 5 dimensional variability to sat-
isfy the set of constraints. The 5 paramaters we operate on after
adding the join-piece are: the curvature value shared between end-
points of the first clothoid piece and the join-piece, the curvature
value shared between end-points of the last clothoid piece and the
join piece, and the arc-lengths of the first, last and join clothoid
pieces. We apply gradient descent iteratively to vary these clothoid
parameters, in order to minimize



Figure 5: Clothoids with constraints are used to model almost-closed
sketch strokes as closed G2 paths.

Figure 6: Breaks in the sketch stroke indicate the over/under occlu-
sion relationship between intersecting paths. A small break in a path
at a crossing indicates occlusion from above and makes the other
path pass over it. Unbroken paths indicate an intersection.

|| endPoint− startPoint ||2 +τ min
i

(|
∫

κ−2πi |). (2)

The first error term measures continuity of position between
startPoint and endPoint, and the second term is a measure of tan-
gential continuity. The integral of the curvature κ along a contin-
uous curve measures the change in tangent direction; tangents line
up when the integral of curvature is an integer multiple of 2π (it will
be ±2π for a simple closed curve). Alternatively, the angular error
between end-tangents may be used. Curvature continuity between
the three clothoid pieces is maintained by definition. The scalar
multiple τ of the second term is initialized at zero, and as conver-
gence proceeds is incremented to 5.0. This results in the curve first
bringing the end-points together, and then “straightening out” the
tangents at the connected end-points. In practice we find this nu-
merical approach to be stable and offering interactive performance,
typically converging in at most 300 iterations.

We are thus able to locally edit piecewise clothoids with numer-
ically precise point and tangent interpolation as well as represent
almost-closed input strokes with a single closed G2 curve.

4.2 Crossing Relationships
Crossing relationships between sketched paths are automatically
determined based on the observation that an overpass occludes
paths under it from an aerial view. Users can specify such occlusion
by a small break in one of the sketched paths at a crossing (see Fig-
ure 6. The order in which the solid and broken path is sketched is
not important. Two unbroken paths crossing each other indicate an
intersection. Distinguishing a path that is broken at a crossing from
two different paths is performed in a manner similar to path exten-
sion using end-point proximity and end-tangent alignment. Users
can always change the crossing relationship by selecting it with a
lasso and choosing between the over, under and intersect crossing
sub-menu options. Hovering over the suboptions previews the new
crossing relationship.

Figure 7: A complex multi-level crossing (left) and a closed path with
many crossings (right).

4.3 Complex Crossings
A simple overpass is easily handled using a typical height clearance
and grade for path elevation. Overpasses close to each other on the
same road or more complex crossing relationships (see Figure 7)
require a more sophisticated approach to determining path height
from the terrain. Our problem is to determine optimal height values
at all points where crossing relationships exist, while minimizing
overall height from the terrain.

The input to our path height optimizer is a set of n pairs of
points in the path network {(a0,b0), . . . ,(an−1,bn−1)} which have
the over-under crossing relationship. This means that for each pair
i, the vertical components of the points (denoted y(ai),y(bi)) are
such that y(ai) > y(bi).

We define a function for cost of path height from the terrain,
heightCost, as

heightCost =
n−1

∑
i=0

[
(y(ai)−T (ai))2 +(y(bi)−T (bi))2

]
(3)

where T (ai),T (bi) are the terrain heights at points ai,bi.
We also define a cost function, relationCost, that penalizes small

vertical distances between each pair in an over-under relationship.
This function is defined as

relationCost =
n−1

∑
i=0

{ 1
y(ai)−y(bi)

if y(ai) > y(bi)
∞ otherwise

. (4)

We minimize the objective function which is a weighted sum of the
two above mentioned functions:

w1 ·heightCost +w2 · relationCost. (5)

We use the steepest descent method with backtracking line search
to find a locally optimal solution for the set of vertical positions
{y(a0), . . . ,y(an−1),y(b0), . . . ,y(bn−1)}. The gradient within this
2n dimensional space is estimated by applying finite differencing
in each dimension independently.

Once we have normalized height values defined at crossing
points we scale them by a specified clearance and solve for height
along the path using Catmull-Rom spline interpolation of crossing
point heights.

We are thus able to sketch and handle an arbitrarily complex
ordering of crossing relationships. Note however, that if the rela-
tionships are close to a common intersection (such as in Figure 7),
reordering them using the lasso menu can be a problem as it is dif-
ficult to select a single pair of crossing paths.

4.4 Terrain Sensitive Sketching
The terrain in our system is not just a canvas on which to sketch
paths but an evolving environment into which sketched paths are
integrated. The paths we create are thus sensitive to the terrain over



Figure 8: Bridges, support pillars (left) and tunnels (right) are au-
tomatically constructed to integrate paths into the evolving environ-
ment.

Figure 9: Foliage is added (left) or removed using the lasso-menu
(right).

which they are sketched and appropriately add and remove geomet-
ric feature to alter the environment into which they are integrated.

Within Drive, a 2-lane road piece is defined parametrically that
can be laid along any given path. Roads can be replaced by arbitrary
geometry such as railway tracks, simply by replacing the paramet-
ric piece. Within the domain of roadway construction, as paths are
generated, Drive will automatically determine and place an appro-
priate set of landmarks, such as signs for stop, stop ahead, sharp
turn, bump, dip (see Figure 1). Appropriate road markings (such as
at intersections) are also placed automatically.

When a user sketches a path traversing water, edits a path to cut
through a terrain or elevate it above a terrain, bridges, tunnels and
support pillars are automatically constructed to add visual realism
(see Figure 8). Support pillars connecting the path to the terrain be-
low, tunnel lights and bridges, like roads, are defined parametrically
and can be readily customized.

We use foliage as an example of paths interacting with arbitrary
terrain attributes. The creation of paths automatically removes any
foliage on the paths. Optionally, foliage can be planted alongside
paths to improve the driving experience. Foliage in any selected
region may be made more or less dense using a random distribution
through the lasso-menu, but will not be placed on top of paths or
water bodies (see Figure 9).

5 INTERACTION AND VISUALIZATION

The single essential instruction to a user is that sketching an open
curve creates or edits paths and a closed (self-intersecting) curve
selects a region of interest and invokes a radial menu [1] that is
sensitive to the region’s content (see Figure 10). Note that closed
paths such as roundabouts can still be created, either as two or more
open curves, or as a single curve that is nearly closed. This clean
distinction between design and command space is trivial to learn,
placing little cognitive overhead on the user.

5.1 Lasso Menu
As shown in Figure 10, our lasso-menu is an 8-item radial menu
that is context-sensitive to the selection region. A number of menu
items have up to 3 sub-options defined as concentric wedges of the

Figure 10: Open curves create and edit paths (left) while closed
curves select a region and invoke a lasso-menu (right).

item. Hovering over a sub-option describes its text dynamically in
the middle of the menu, avoiding clutter and text at awkward orien-
tations. For many actions, such as path deletion or foliage change,
hovering the cursor provides the user a preview of the action, im-
proving the discoverability of the interface. The menu can also be
invoked by a press-and-hold action as an alternative to sketching a
closed curve.

5.2 Camera Control
As stated in our design goals, we would like promote single-view
sketching and minimize time spent on view navigation, which is
the single most frequently used control in typical 3D applications.
Fortunately, terrains are typically height-fields and largely visible
from a birds-eye view, reducing the need for constant view manip-
ulation while sketching. Given the large scale of terrains, however,
it is necessary to pan and zoom to access regions of the terrain at an
appropriate resolution. Users can frame a region by lassoing it and
selecting one of Birds-eye, Mid-way or Close-up sub-options (see
Figure 11) from the lasso menu, that are hand-crafted to not only
magnify but also tumble the camera so that the Close-up view from
the ground is almost orthogonal to the aerial Birds-eye view. Users
can also explore alternate viewpoints within the context of a single
view using the break-out view and lens.

Experienced users often expect typical tumble, pan and dolly
camera tools. We additionally support camera controls as found in
popular 3D systems such as Maya, even though persistent 3D cam-
era control detracts from our modeless, single-view sketch design
philosophy. The ALT key enables the camera, and the left, middle
and right mouse buttons tumble, pan and zoom respectively.

5.3 Break-outs
In traditional concept sketching and engineering visualization,
static alternate viewpoints known as break-out views are used to
illustrate local parts of a scene [12]. We are motivated by these
viewpoints, not only for rapid local 3D visualization of paths, but
also as an interface element for performing path height editing.

5.3.1 Break-out View
The user selects a region of a path and invokes a break-out view
from the lasso-menu (see Figure 12). We use the begining and
end points of the selected path segment to determine a 3D segment,
called the break-out axis. Intuitively, this axis defines a break-out
view as if the user was standing by the side of the path facing per-
pendicular to the axis. Note that the break-out axis can be defined
not just for planar paths, but those with height variation as well.
The break-out view is generated and shown as an animated transi-
tion within a window the shape of the lasso selection, the viewing
position within the break-out view translates to view the side of the
path at a proper distance (see Figure 12). The screen-space position
of the break-out view also moves across the centre of the screen
such that the path segment of interest can be shown from both the
original and break-out views simultaneously. The break-out view,



Figure 11: (Top row) The user lassos a region and selects the Birds-
eye camera preset. (Middle row) The Mid-way preset. (Botton row)
The Close-up preset.

Figure 12: Users select a region of the path (left) and invoke a break-
out view from the lasso-menu (right).

like any other GUI window, can be translated about screen space
and destroyed as needed. Multiple break-out views can co-exist
simultaneously.

We allow the user to oversketch within the view to edit path el-
evation in the same way paths are oversketched on the terrain (see
Figure 13). To determine new path heights along the selected seg-
ment, points of the path and the user’s oversketch stroke are pro-
jected onto an orthogonal plane whose axes are the break-out axis
and the vertical (height) axis. For each point along the path whose
projected position falls within the range of the projected sketch
stroke along the break-out axis, we assign a new height interpolated
from the two projected sketch stroke points which bound it.

5.3.2 Break-out Lens

Oversketching to edit path elevation in the break-out view is an
example of multiview 3D curve sketching. While mathematically
succinct, users find it difficult to draw 3D curves using multiple
disconnected views. This is less evident in our case, since path
curves have a clear dimensionality separation as 2D curves on a
ground-plane with a path elevation. However, we can address the

Figure 13: Oversketching within a breakout-view (left) allows the user
to edit path elevation. (Right) The result of the oversketch.

Figure 14: The break-out lens rendered without (left) or with (right) a
background plane.

break-out view disconnect by reformulating it as a break-out lens
(see Figure 14).

The break-out lens is similarly invoked with a selected path from
the lasso-menu. The lens consists of two concentric circles. The
interior of the inner circle behaves like a break-out view and the
region between the two circles provides a continuous view change
between the current camera view and the interior break-out view
[9]. The lens has four controls: move the lens, control the inner and
outer radii, and define the angle of rotation θ around the break-out
axis.

If the current camera view matrix is C and break-out view ro-
tation is Rθ , the view warp is accomplished by deforming points
inside the inner circle by RθC−1. The deformation of points in
between the two circles (RθC−1)t smoothly decays radially to the
current view as t goes from 1 at the inner radius to 0 at the outer
radius. We have implemented the view warping technique both in
software and as a vertex shader to run on the GPU.

The break-out lens, like the break-out view, allows oversketch-
ing to edit path elevation. In this case, it is possible to perform
oversketching using any setting for θ so long as the vertical axis
is not coincident with the camera viewing direction. Intuitively, a
rotation θ that provides a near-orthogonal viewing direction of the
path will be more ideal for editing. The continuous context of the
break-out lens improves the usability of multi-view sketching and
can be used to sketch curves and perform silhouette based 3D de-
formations [33, 29] from a single view (see Figure 15).

Break-out lenses offer a number of appealing affordances over
global view changes that make them a useful general tool for inter-
active 3D graphics (see Figure 15).

• Unconstrained 3D camera control can be notoriously cumber-
some. Break-out lenses are domain specifically constrained
by the scene geometry underneath to a simple view-angle con-
trol, rather than a free-form tumble/pan/zoom.

• The concept of lenses, such as zoom lenses, are common in
interactive graphic applications, into which break-out lenses
seamlessly integrate. Zoom lenses are popular as they provide
fast alternate views of local regions within a global context,



Figure 15: A curve is sketched and oversketched with a break-out
lens to define a wire deformation of the nose.

Figure 16: The break-out view of a path (left) can be occluded by
scene geometry in the foreground. The break-out lens (right) avoids
occlusion problems by deforming scene geometry locally.

while keeping user-focus on a primary task. Break-out lenses
similarly allow continued sketching in a desired view with lo-
cal view changes when needed, instead of bookmarking the
view, temporarily changing it and then jumping back.

• Oversketching in a break-out lens is natural for path height
editing and homogeneous with path editing on the terrain. In
contrast, the same oversketch after a global view change can
be ambiguously interpreted as a path height edit or a path edit
on the terrain.

• Tumbling a birds-eye view to the ground often causes hilly
terrain to occlude the sketched path/region. Users may be able
to dolly the view-in past occluding features, or to manually
adjust camera clip planes to solve this. Instead, the locality
of the break-out lens solves this problem by design (see Fig-
ure 16).

5.3.3 Rendering the Background Plane

A major difference between the break-out view in Figure 12 and the
break-out lens in Figure 14 is the lack of a horizon and background
in the lens. This is because the terrain wraps around continuously
obscuring the background plane. We can address this by render-
ing a background plane on the far side of the path from the camera
to simulate a horizon and background. This plane, drawn strictly
within the inner radius, makes the view within the lens more like a
view from ground perspective, yet provides a continuous transition
on the near side (see Figure 14). The opacity of the background
plane is interpolated with the rotation of the lens to produce a con-
tinuous transition (the system uses values of 30 and 75 degrees to
interpolate from transparent to opaque).

6 TIMING AND PLAYBACK

Visualizing the navigation experience along paths is an essential
aspect of our system. Lassoing a path and selecting Play from the
lasso-menu starts a vehicle navigating along it. The camera view

during playback can be selected from a context sensitive lasso-
menu (see video) from a set of meaninigful predefined views or
controlled by the user in a freeform manner. If the user select por-
tions of paths with intersections, the straightest option is followed.
Navigation speed is a constant by default. The user can alter the
timing along the path by selecting a region of the path and choos-
ing a speed from the timing menu item (our system depicts these
timings as speed limit signs placed roadside).

7 IMPLEMENTATION

Our path design system Drive is implemented in C + + using
OpenGL and GLUT. It was tested on 2 systems: an AMD Athlon64
3000+ 2GHz and an Intel Xeon 2.2GHz, both with 1 GB RAM.
Many of the terrains demonstrated are represented as grids whose
resolutions range from 256x256 to 1024x1024. Path pieces and
other environmental geometry primitives consist of approximately
100-200 triangles each. Complex scenes authored with our system
consisting of hundreds of thousands of triangles can be displayed
and interacted with in real-time. All aspects of creation and render-
ing in our system: sketching, clothoid fitting, path crossing resolu-
tion, view warping and editing operations perform in real-time.

8 CONCLUSION

Our system was initially aimed at custom path design for virtual
game environments. Early conversations with practicing landscape
architects, however, made us realize both the broader application
space of conceptual path design and the lack of any existing sys-
tems that address it. We informally evaluated our system by pro-
viding a brief set of instructions and the application to half a dozen
people with mixed computer graphics skill. In general, the response
was positive and the surprise bonuses of terrain sensitive geometry
kept the users engaged. Some were able to discover most of the
functionality without being told. We also revaluated our applica-
tion with the landscape architects who felt the system was instantly
useable in conceptual transportation layout. No comment was made
about the lasso-menu which we see as a sign of a good inconspicu-
ous UI. The feedback with respect to all our design goals was posi-
tive, though some users familiar with CG applications, persistently
navigated the scene with the 3D camera controls by habit.

In summary, we have presented a novel system for the concept
sketching of path layouts. Our system integrate a number of new
ideas each of which is also applicable to a wider range of ap-
plications. Clothoid fitting is shown to be useful for generating
fair curves from input sketch strokes. Arbitrarily complex self-
occluding 3D curves can be effectively created using our optimiza-
tion of crossing relationships. The break-out view and lens find
use in general shape modeling and visualization (see Figure 15).
The locality of the break-out lens in particular guarantees that any
region can be seen from an arbitrary viewpoint without being ob-
scured by other parts of the scene. Terrain sensitive sketching adds
to the overall appeal of our system, allowing users to very quickly
author engaging environments. In the future, we hope to extend
terrain sensitive sketching from curve layouts to area layouts with
applications in landscaping and urban planning.
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