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Abstract
We apply traditional bimanual curve modeling using French curves to the problem of automatic neatening of
sketched strokes. Given a sketched input stroke and a set of template French curves we present an approach that
fits the stroke using an optimal number of French curve segments. Our algorithm operates in both curvature and
point space, reconstructing the salient curvature profiles of French curve segments, while limiting error accumu-
lation resulting from curvature integration. User-controlled parameters allow the neatened stroke to model G2

continuous curves, capture G1 discontinuities, define closed curves and explore the trade-off between fitting error
and the number of French curve segments used. We present an interactive sketch stroke neatening implementation
to demonstrate the real-time performance of our algorithm and evaluate the quality of its results.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

Adapting tools and workflows from traditional design to the
digital realm has been a popular and effective approach to
leveraging the domain expertise of many designers. A large
number of interactive digital modeling tools are strongly
inspired by sketch and sculpt metaphors [KS08, Sin06].
In traditional engineering and product design, sweeps and
Burmester or French curves or sweeps have been extensively
used in the creation and editing of 2D design curves. Phys-
ically, these curves or sweeps are constructed out of plas-
tic, wood or steel and used as shape guides along which to
draw or manipulate clay [McC71]. Figure 1 shows a com-
plete Burmester set from a German engineering encyclope-
dia Lexicon der gesamten Technik, 1904. Here we use French
curve as a term encompassing pre-defined curve templates
that influence a design in two ways: they are used to neaten
rough design marks to create high-quality design curves and
the curves themselves capture a personal signature or corpo-
rate standard across a family of designs. A digital equivalent
of French curves was introduced in [Sin99] as a technique to
sculpt NURBS curves within conventional CAD modeling
pipelines.

The traditional application of French curves have a biman-
ual interaction [KFBB97], where one hand selects and posi-
tions the desired physical French curve, while the other hand

Figure 1: A complete French curve set from the Lexikon der
gesamten Technik, 1904.

commits a segment of it by sketching along it or dragging the
segment profile across a deformable 3D clay model. Singh
in [Sin99] sought to preserve this metaphor of interactively
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sculpting design curves based on their spatial proximity to a
manipulated French curve segment.

With the increasing adoption of pen and touch-based
input, however, sketch-based techniques are rapidly gain-
ing in prominence in conceptual design over conventional
interfaces that are based on the control point manipula-
tion of high-order spline curves. Sketch curve neatening is
thus an important ongoing research problem where vari-
ous approaches have been proposed. These approaches typ-
ically rely on existing families of desirable shapes such as
lines, circles, clothoids and cubic splines as shape priors
[BLP10, MS09, Far90], to eliminate motor and device noise
in sketch curves, while preserving the modeless fluidity of
sketching. The term neatening here refines the commonly
used terms of stroke smoothing or fairing to include inten-
tional sharp corners and other discontinuities in parts of the
sketch.

This paper thus contributes the affordance of French
curves, or user customizable shape primitives, to the prob-
lem of sketch stroke neatening. In our system, users load
a family of pre-authored French curves they wish to use,
and then sketch freely. We automatically find an optimal
piecewise combination of French curve segments that neat-
ens sketched strokes with user controlled continuity up to
G2 (see Figure 4). Equally important as the creation of
fair curves from sketched strokes is the preservation of in-
tended discontinuities (see Figure 3). French curves pro-
vide a unique mechanism of filtering discontinuities in tan-
gent and curvature, as it is possible to enforce that only dis-
continuities encapsulated within the given family of French
curves may be permitted in the neatened stroke. We are thus
able to neaten sketched strokes modelessly to conform to
the aesthetics of a family of French curves without requiring
their explicit selection and placement.

From a high-level our approach operates in curvature
space in a manner roughly as follows (see Figure 4): The
input stroke represented as a polyline is defined in curvature
space as a function of discrete curvature at the input points
with respect to arc-length along the stroke. The library of
French curves is similarly represented. The absolute differ-
ence of total curvature between a segment of the input stroke
and the French curve is used as an error of fit. A dynamic
programming algorithm is used to optimize the trade-off be-
tween the number of segments of French curves used and
their cumulative error of fit. The selected French curve seg-
ments are then individually transformed to match their cor-
responding input stroke segments. Adjacent segment end-
points that are within a given threshold are blended with G2

continuity, otherwise the algorithm recursively attempts to
improve the fit by introducing an additional segment. This
iterative mix of curve fitting in curvature and point space
results in an efficient algorithm that both captures the im-
portant role of curvature in defining the visual character of
curves and bounds the error accumulation in point space as

a result of curvature integration. G1 discontinuities can be
captured by either pre-filtering the input stroke into multiple
strokes based on curvature discontintuity, or by enforcing
that the discontinuity be represented by a French curve seg-
ment. A small number of user-controlled parameters allow
interactive exploration over continuity and error of fit of the
sketched strokes.

The remainder of this paper positions our work in rela-
tion to prior art, presents our sketch neatening algorithm and
concludes with an evaluation and discussion of the results
obtained.

Figure 2: Showing the alignment of the French curves with
each selected piece, in order to illustrate the specific sections
of each French curve used.

2. Related Work

Our work impacts two areas of research in sketch-based ge-
ometric modeling: traditional metaphors applied to digital
curve design and approaches to the interactive creation, edit-
ing and most importantly, neatening of curves.

Sketch and sculpt metaphors are a popular approach to
leverage existing domain expertise in the creation of interac-
tive modeling tools. An assortment of such techniques can
be found in [Sin06]. The most relevant among these and per-
haps the first digital adaptation of French curves is [Sin99],
where users interactively manipulate a French curve as a
sculpting tool to shape cubic NURBS curves based on their
spatial proximity to the French curve. In contrast, we auto-
matically process an entire sketched stroke to be represented
by a sequence of optimally-fitting curve segments selected
from an entire set of French curves.
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Figure 3: Fitting an input polyline using a French curve
that consists of a single corner piece. Such French curves
can be used to neaten deliberate G1 discontinuities present
in the input polyline.

The research literature on creation, editing, fairing and
neatening of curves is extensive and a testament to the im-
portance of the problem. Until a decade ago, virtually all
approaches to curve modeling focused on higher-order (typ-
ically cubic) splines [Far90]. The control points provide
sparse handles for curve manipulation. The curves them-
selves provided a linear approximation to minimum strain
energy point interpolation. Least-squares spline fitting is ro-
bust and efficient [Pra87, BBS08] however the curvature
plot of the resulting spline can be highly variable. Further,
while splines are desirable for representing smooth curves,
they are not ideally suited to represent curves that have
a mix of smoothness and high-frequency detail. The past
decade has seen the advent of alternate curve modeling tech-
niques that operate on densely sampled polyline representa-
tions of curves [BLP10, DJBDT10, FLTL08, MS09, GBS03,
TBSR04]. These approaches provide different handles and
metaphors for curve manipulation and impose smoothess
constraints on the polylines by curve primitive fitting or en-
ergy minimization. Indeed, minimizing the overall variation
of curvature along the curve allows natural shapes like circu-
lar arcs, and has been shown to provide better fairness char-
acteristics than cubic splines [MS92]. Rather than attempt to
model the aesthetics of the sketched curves using geomet-
ric properties of fairness, we allow users to import French
curves in order to express their aesthetics explicitly. Philo-
sophically, our approach is similar and complimentary to
curve analogies [HOCS02], where curve analogs provided
by French curve segments could be used to further stylize
our neatened strokes.

From a conceptual standpoint, our work is compara-
ble to [FLTL08] where pre-defined families of shapes are
used to neaten sketched strokes. While this approach allows
sketched strokes to be subconsciously neatened as the user

draws, the templates shown are limited to simple analytical
shape families like parallel lines or concentric circles, and
must be explicitly activated when sketching strokes based
on a given template. In contrast, our approach is modeless
matching each sketched stroke to an optimal sequence of
segments which are chosen from a potentially large and di-
verse set of French curves.

Finally, our algorithm is motivated by the curvature space
dynamic programming approach of [MS09]. Unlike [MS09],
we select segments considering both curvature and position
space. We are also not constrained to produce curves with
purely linear variation in curvature. This allows us the af-
fordance to individually fit French curve segments to the
sketched strokes and blend the transitions between adjacent
segments. As a result, curves generated by our algorithm
generally conform better to the input stroke.

3. Algorithm

A conceptual overview of our approach is shown in Figure 4.
The following subsections detail each of the key compo-
nents.

3.1. Curvature Estimation

We need to compute curvature profiles for both the given set
of French curves as polylines F1 . . .Fm and input polyline P̂.

It is important to first filter the input curve P̂ to remove
noise, which will result in a smoother curvature estima-
tion and allow for more aesthetically pleasing results fur-
ther along. So as a pre-process we iterate through the points
p̂1 . . . p̂n of the input curve, and for each point p̂i we consder
points within a local neighbourhood (5 units in our imple-
mentation) to compute an average point pi. The next point
p̂i we process will be beyond this neighbourhood, making
the spacing between points in the filtered curve more uni-
form. We ensure that the endpoints of the input curve P̂ are
also included in the filtered curve P.

We then compute the curvature profile for P. We calculate
the radial curvature value κ for each point of the curve. In
the continuous case κ can be expressed using the tangent
derivative

d~T
ds

= κ~N, (1)

where s is the arc-length parameter, and ~T and ~N are the
tangent and normal respectively at s.

Since P is a polyline consisting of an ordered set of dis-
crete points, we rely on an estimation of radial curvature at
each of the points. To determine κ at each point pi, we use

κ =
2 · ~v1× ~v2

|| ~v1 ||+ || ~v2 ||+ || ~v1+ ~v2 ||
, (2)
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Figure 4: Overview of the algorithm. Curvature profiles are computed for the input polyline and one or more French curves.
A dynamic programming algorithm finds sections of the French curve whose curvature profiles optimally match sections of the
input curve, while also trying to minimize the number of sections used. The input curve is reconstructed using sections of the
French curve with a piecewise clothoid representation. Finally, disjoint sections of the reconstructed curve are interpolated
together to produce a connected curve with G2 continuity.

where ~v1 = pi− pi−1 and ~v2 = pi+1− pi. To handle end-
points p1 and pn, we linearly interpolate the curvature from
the known interior values.

3.2. Finding Optimal Pieces

Before discussing how we divide the input curve into sec-
tions, we first describe how for a given section of the in-
put curve we determine the optimally fitting french curve
piece. We present in this order since the division of the in-
put curve depends on how well quantitatively sections of the
input curve can be matched with single French curve pieces.

To find the optimal French curve piece for a range of the
input curve pi . . . p j, of arc length w, for each of the French
curves F1 . . .Fm we move a window of width w by an offset
u in discrete steps along each French curve Fk’s curvature
profile as shown in Figure 5. At each position u, we calculate
a term for error in fit E f it(i, j) by integrating the difference
in curvature profiles, as expressed by

E f it(i, j) = min
u

∫ w

0
| f (s)−gk(u+ s) | ds, (3)

where f (s) expresses the curvature of the input curve P
between i and j, and gk(s) expresses the curvature for each
French curve Fk. In our implementation, we approximate the
integral by taking a finite set of samples from f and gk and
sum the absolute value of each pairwise difference.

3.2.1. Flipping

Being physical objects, French curves can be flipped upside
down. This is important to note because by doing so, the
creator perform a reflection across the tangential axis of any
given section of the French curve.

In curvature space, a flip corresponds to a negation of both

Figure 5: Given the curvature profile of a section of the
input curve (green) of length w, we find the optimal curva-
ture fit by sliding it along each of the French curve curvature
profiles (blue) and consider using the section of the French
curve where the difference (pink) is minimal.

the curvature values and the arc length direction. This pro-
vides a second continuum of possible curves to sample from
in reconstructing the input curve. To account for this, we per-
form a second evaluation of the E f it term at every point u by
using the modified equation

E f it(i, j) = min
u

∫ w

0
| f (s)+gk(u+w− s) | ds. (4)

Note that we use addition instead of subtraction within the
integral, and we sample from gk in the opposite direction.

3.2.2. Closed Curves

In the physical world, the French curve must always be
closed. It follows that our system should support these
curves as well.

Without addressing this, our approach will never choose a
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window that contains the first and last points of any French
curve (for a closed curve, the selection of first and last point
is arbitrary in defining the curve, but there will always nec-
essarily be some ordering of the points).

To adapt our approach of finding the optimal piece to a
closed curve, we repeat the curvature profile a second time,
and move the window along a length twice the arc length of
each French curve Fk, as shown in Figure 6. This ensures
that the window passes through sections of the French curve
that contain the first and last point.

Figure 6: To support closed French curves, we repeat the
French curve curvature profile (blue) a second time and slide
the window across the point of repetition in order to evaluate
all possible sections of the closed curve.

3.3. Splitting the Curve

To find the globally optimal segmentation of the curve, we
use a dynamic programming algorithm. An important pa-
rameter to our algorithm is the scalar Ecost term, which de-
fines the cost of using a French curve piece. This parameter
allows interactive calibration of the tradeoff between using
many French curve pieces (to represent the input curve more
faithfully), and using few French curve pieces (to create a
simpler, fairer curve that potentially has greater aesthetic ap-
peal) as shown in Figure 7.

Figure 7: Changing the value of Ecost influences the number
of pieces selected. Ecost values from left to right: 0, 0.2, 0.4.
The top row shows the input polyline and generated French
curve pieces. The middle row shows curvature profiles for
the French curve pieces. The bottom row shows the curvature
profile of the input polyline.

We compute the upper triangle of a matrix M. M is of size
n× n, where the input polyline P consists of n points. We
compute entries M(i, j), where 1≤ i < j≤ n, in a bottom-up
fashion (starting at elements closest to the diagonal) using

M(i, j)=min
{

E f it(i, j)+Ecost , min
i<k< j

{M(i,k)+M(k, j)}
}
,

(5)

which determines whether it is best to use a single French
curve piece (cost of E f it(i, j)+Ecost ) for the entire section
pi . . . p j, or to subdivide and use one (or more) pieces for
each of the intervals pi . . . pk and pk . . . p j. Information such
as where to split the input curve, which of the French curves
F1 . . .Fm to sample from and at what arc-length position, are
all stored as M is populated.

When this process is completed, M(1,n) expresses the
cost of the optimal configuration for points p1 . . . pn of P.
We “walk through” the matrix M starting at element (1,n),
splitting where necessary to reconstruct the solution.

3.4. Reconstruction

Given the curvature profile of each optimal French curve
piece, we form each of the pieces in point space as a piece-
wise clothoid curve. Each linear segment of the curvature
profile maps to a unique clothoid segment. These clothoid
segments are attached so position and tangent are continu-
ous, resulting in a curve with G2 (curvature) continuity. Con-
sult the appendix for more details on clothoids, as well as the
equations used in our implementation to evaluate clothoid
curves by an arc-length parameterization.

We now have an ordered set of French curve pieces rep-
resented as piecewise clothoid, but these pieces are not yet
aligned in space or connected. We translate and then rotate
each French curve piece to match its endpoints with the in-
put polyline points at the start and end of the section (i.e. the
piece which covers points pi . . . p j will be transformed so its
endpoints align as closely as possible with pi and p j).

Since the French curve piece is only a local approxima-
tion of the input curve, significant deviation in point space
is possible. A given French curve piece may not be accept-
able, despite being the best selection of those possible. The
problem is worsened by the fact that the error in curvature
is integrated twice in moving from curvature space to point
space.

In order to validate that the piece selected will be ade-
quate, we ensure that the piece endpoints and polyline end-
points have a distance between them which does not exceed
some threshold (in our implementation we use the value
4.0, but this threshold can be modified interactively), indi-
cating that the piece conforms well to the input polyline. If
the threshold is exceeded, we discard the piece and split the
section pi . . . p j optimally into two smaller sections that will
each be assigned one piece (or more, if those pieces selected
are also inadequate). At the end of this process, all selected
pieces conform well at the endpoints to their input polyline
sections.
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The final step is to connect each of these pieces. In order
to maintain G2 continuity, we use the polynomial function

f (s) = s3(6s2−15s+10), (6)

to interpolate between points sampled from adjacent
French curve pieces. Having a continuous second derivative,
and the following properties: f (0) = f ′(0) = f ′′(0) = 0,
f (1) = 1, f ′(1) = f ′′(1) = 0, and f ( 1

2 ) =
1
2 , causes adja-

cent French curve pieces to be joined with G2 continuity.

The user can control the arc-length distance to extend out-
ward from the French curve piece endpoints for blending, as
shown in Figure 8. Interpolation between points of two ad-
jacent pieces occurs over this interval.

Figure 8: French curve pieces (red and blue) are locally
blended with their neighbours (green) using an interpolating
function that results in a G2 curve. The arc-length distance
of the blend can be interactively modified. From left to right:
0 (no blend), 10 and 20 units.

To close input polylines, we use interpolation on the end
pieces of the reconstructed curves, as shown in Figure 9.

Figure 9: When the endpoints of the input polyline are in
close proximity (top of the curve), we close the curve by
smoothly interpolating between the two French curve pieces
at the endpoints.

4. Results and Discussion

In Figure 11, we show some piecewise French curves gener-
ated by our algorithm on a variety of input strokes. For all of
these results, the Ecost parameter was fixed at 0.2. Note that
an amount of deviation from the input curve is allowed to
take place, where the algorithm balances between using few
French curve pieces and precisely matching the input curve.
Figure 12 shows how our approach can be used to add artis-
tic effects to input strokes.

One limitation of our approach stems from the specific
function we have used to calculate the error in fit term E f it
(Equation 4) for a given French curve piece on an input curve
piece. A French curve piece with a zig-zag pattern, for exam-
ple, will have a curvature profile with pronounced alternat-
ing positive and negative peaks. If the arc-length spacing be-
tween these peaks is not consistent between the French curve
and input stroke (which may result from using longer or
shorter lines between each discontinuity), shifting in the arc-
length direction will cause the two profiles to be mis-aligned
with one another, leading to a high fitness error value. (A
close analogy would to be consider aligning two sinusoidal
curves with differing wavelengths.) An alternate formulation
of the error in fit which would not penalize arc-length shift-
ing between points of curvature maxima would improve the
selection process for curves with pronounced features (i.e.
structured G1 discontinuities).

Another limitation to our algorithm is the use of dynamic
programming to find a globally optimal segmentation of the
input curve. Being O(n2) in performance, the algorithm will
take significantly longer to process especially long curves.
The issue is alleviated by filtering the input curve, which
subsamples it and results in fewer points to process.

Exploring this limitation further, we also implemented a
greedy approach, which iterates along the input curve at-
tempting to use a progressively larger piece, at each step de-
termining if the error in fit exceeds a threshold. When the
threshold is exceeded, a split point to separate pieces one
point back is defined. A new piece is created which starts at
the split point and iteration then continues. This approach of-
fers linear time O(n) performance and scales well for longer
input polylines. An important downside of the approach is
that the solution produced is suboptimal in terms of global
curvature fit. In Figure 10 we time the algorithm on inputs
of various sizes and compare the results.

5. Conclusion

French curves provide a useful mechanism to convey con-
textual information for neatening sketched strokes.

Architectural drawings for example, might use a set of
French curves with straight lines and angles that will tend to
create rectilinear curves from sketches, while an automotive
set of French curves may be completely devoid of straight
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Figure 10: Processing time for our dynamic programming
approach compared to a greedy method, for a variety of in-
put sizes.

line shapes and instead comprise circles for wheels and other
characteristic curve profiles to be used across a fleet of de-
signs. The use of French curves in this paper is also mode-
less, in that once loaded the set of French curves are invisi-
ble to the user, and implicitly neaten sketched strokes, pre-
serving the modeless simplicity of pure sketching. Our inter-
active implementation shows them to be successful both at
neatening sketched strokes and effective in imposing a visual
characteristic on the resulting design curves.

One drawback of our sketch neatening algorithm and all
other approaches based on curve primitive fitting is that an
entire stroke must be completed before the neatened stroke
is computed and displayed. This makes our approach unsuit-
able for sketch applications such as feature tracking or per-
formance animation, where neatened curves must be com-
mitted as the user draws. The greedy version of our algo-
rithm is better in this regard as it can continually commit
neatened French curve segments as the user draws, tighten-
ing the visual loop between the user’s sketch and the final
output.

French curves also extend conceptually to manifold sur-
faces and in the future we would like to explore their appli-
cation to conceptual surface modeling.

Appendix A: Clothoids

The Fresnel integrals provide an arc-length parameterization
of the Cartesian coordinates for points along the spiral:

C(s) =
∫ s

0
cos

π

2
u2du, (7)

S(s) =
∫ s

0
sin

π

2
u2du. (8)

A point on the clothoid curve is defined as

πB
(

C(s)
S(s)

)
, (9)

Figure 11: Results generated using our system, organized
into pairs. For each pair, at left the French curve(s) and the
optimal pieces selected are shown, and on the right are the
input and neatened output curves. The colour correspon-
dence show what pieces of the French curve(s) were used
and where they are on the output curve. A translation has
been applied to each overlaid French curve piece so that
they are all visible.

where B is a uniform scaling parameter. Used by our im-
plementation, rational low-order approximations for the in-
tegrals [Hea85] are given by

C(s)≈ 1
2
−R(s)sin

(
π

2
(A(s)− s2)

)
, (10)

S(s)≈ 1
2
−R(s)cos

(
π

2
(A(s)− s2)

)
, (11)
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Figure 12: The single French curve piece on the left is used
with artistic effect to reconstruct a spiral-shaped input poly-
line.

where

R(s) =
0.506s+1

1.79s2 +2.054s+
√

2
, (12)

A(s) =
1

0.803s3 +1.886s2 +2.524s+2
. (13)

As their curvature varies linearly with arc-length,
clothoids are line segments in curvature space. Given a line
segment in curvature space, the horizontal difference be-
tween points is the arc-length l, and the vertical positions
of the two points specify the start and end curvatures κ1 and
κ2. This curvature space information is enough to solve for
the unique clothoid segment with these properties. In this
formulation, we solve for B, s1 and s2 (start and end arc-
lengths), which together define the section of the clothoid
curve to use:

B =

√
l

κ2−κ1
, (14)

s1 = κ1B (15)

s2 = κ2B (16)
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