Neatening sketched strokes using piecewise French Curves

James McCrae, Karan Singh
Q $\begin{aligned} & \text { Dynamic Graphics Pro } \\ & \text { University of Toronto } \\ & \text { www.dgp.toronto.edu }\end{aligned}$

French Curves

Physical tools, used to model curves

French Curves

Smoothly connect pre-determined curve points

French Curves

French Curves

dgp
Dynamic Graphics Project
University of Toronto
www.dgp.toronto.edu

Digital French Curves

Two-handed manipulation of digitized French curves (represented as cubic NURBS curves)

Karan Singh. 1999. Interactive curve design using digital French curves. Interactive 3D Graphics (I3D '99). ACM, New York, NY, USA, 23-30.

Motivation

The idea: French curves + sketch interface

Motivation

The idea: French curves + sketch interface
Why?

- Smooth, high quality
- Specific style/standard

- Fast to learn
- Easy curve modelling

Problem Statement

Specifically, given input polyline

Problem Statement

Specifically, given input polyline

French curve

Problem Statement

Specifically, given input polyline

Approach

Approach

Approach

Approach

Approach

Curvature Profiles

Curvature Profiles

Discrete curvature estimator:

Optimal Curvature Fit

Optimal Curvature Fit

Two parts:

1. Optimal French curve piece for segment of input
2. Optimal segmentation of input curve profile

Optimal Curvature Fit

1. Optimal French curve piece for segment of input

Solution: Iterate over French curve profiles:

$$
E_{f i t}(i, j)=\min _{u} \int_{0}^{w}\left|f(s)-g_{k}(u+s)\right| d s
$$

Optimal Curvature Fit

1. Optimal French curve piece for segment of input

Q: What about closed curves (as all physical
French curves would be)?

Optimal Curvature Fit

1. Optimal French curve piece for segment of input

A: Repeat French curve's profile

Optimal Curvature Fit

1. Optimal French curve piece for segment of input

Q: Physical French curves can be flipped upside down to produce other curves, address that?

Optimal Curvature Fit

1. Optimal French curve piece for segment of input

A: At each position, we perform a second evaluation of $\mathrm{E}_{\mathrm{fit}}$, negating curvature and reversing arc length direction:

$$
\begin{gathered}
E_{f i t}(i, j)=\min _{u} \int_{0}^{w}\left|f(s)-g_{k}(u+s)\right| d s \\
\boldsymbol{\|}^{w} \text { "flip" } g_{\mathrm{k}} \\
E_{f i t}(i, j)=\min _{u} \int_{0}^{w}\left|f(s)+g_{k}(u+w-s)\right| d s
\end{gathered}
$$

Optimal Curvature Fit

Two parts:

1. Optimal French curve piece for segment of input
2. Optimal segmentation of input curve profile

Optimal Curvature Fit

2. Optimal segmentation of input curve profile

Solution: Use dynamic programming:

$$
\mathbf{M}(i, j)=\min \left\{E_{\text {fit }}(i, j)+E_{\text {cost }}, \min _{i<k<j}\{\mathbf{M}(i, k)+\mathbf{M}(k, j)\}\right\}
$$

$E_{f t i}(i, j)$: fit error of optimal French curve piece with points $i . . j$ of input curve
$E_{\text {cost }}$: penalty for using additional French curve piece

Optimal Curvature Fit

2. Optimal segmentation of input curve profile
$E_{\text {cost }}=0.0$
50+ pieces
$\mathrm{E}_{\text {cost }}=0.2$
10 pieces
$E_{\text {cost }}=0.4$
5 pieces

French Curve Reconstruction

French Curve Reconstruction

Optimal Curvature Fit

- Rotate/translate optimal pieces to input segment endpoints
- French curve pieces are piecewise clothoid*, each G^{2} continuous

French Curve Reconstruction

[^0]
Interpolating Reconstruction

Interpolating Reconstruction

- Adjacent pieces may not have perfect alignment

Interpolating Reconstruction

Blending function:
$f(s)=s^{3}\left(6 s^{2}-15 s+10\right)$

Produces G^{2} continuity between French curve pieces

Interpolating Reconstruction

Interpolation used for "nearly closed" input

Results

Results

Results

Results

Results

Results

University of Toronto

Summary

We present an algorithm to use French curves with a sketch interface

Our approach:

- Creates a globally optimal input segmentation
- Selects curvature-optimal French curve pieces
- Balances number of French curve pieces and global curvature error
- Produces G ${ }^{2}$ continuous curves
- Runs interactively (for reasonable lengths)

Thanks

We will be releasing source code and a demo application online soon!

http://www.dgp.toronto.edu/~mccrae/
Thank you!

Dynamic Graphics Project
University of Toronto
www.dgp.toronto.edu

[^0]: *Refer to: James McCrae, Karan Singh. Sketching piecewise clothoid curves, SBIM 2008.

